Skip to main content

High Rates and Impact Experiments

  • Reference work entry
Springer Handbook of Experimental Solid Mechanics

Part of the book series: Springer Handbooks ((SHB))

Abstract

Experimental techniques for high-strain-rate measurements and for the study of impact-related problems are described. An approach to classifying these experimental techniques is presented, and the state-of-the-art is briefly described. An in-depth description of the basis for high-strain-rate experiments is presented, with an emphasis on the development of a range of strain rates and a range of stress states. The issues associated with testing metals, ceramics and soft materials are reviewed. Next, experimental techniques that focus on studying the propagation of waves are considered, including plate impact and shock experiments. Experiments that focus on the development of dynamic failure processes are separately reviewed, including experiments for studying spallation and dynamic fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ASTM:

American Society for Testing and Materials

HSRPS:

high strain rate pressure shear

LORD:

laser occlusive radius detector

NIST:

National Institute of Standard and Technology

NVI:

normal velocity interferometer

PMMA:

polymethyl methacrylate

PVDF:

polyvinylidene fluoride

RF:

radiofrequency

SHPB:

split-Hopkinson pressure bar

TDI:

transverse displacement interferometer

VISAR:

velocity interferometer system for any reflector

References

  1. J.E. Field, W.G. Proud, S.M. Walley, H.T. Goldrein: Review of experimental techniques for high rate deformation and shock studies. In: New Experimental Methods in Material Dynamics and Impact, ed. by W.K. Nowacki, J.R. Klepaczko (Institute of Fundamental Technological Research, Warsaw 2001) p. 109

    Google Scholar 

  2. C.S. Coffey, V.F. DeVost: Drop weight impact machines: a review of recent progress, JANNAF Propulsion Systems Hazards Subcommittee Meeting CPIA Publ., 1(446), 527–531 (1986)

    Google Scholar 

  3. J.D. Winkel, D.F. Adams: Instrumented drop weight impact testing of cross-ply and fabric composites, Composites 16(4), 268–278 (1985)

    Google Scholar 

  4. N. Banthia, S. Mindess, A. Bentur, M. Pigeon: Impact testing of concrete using a drop-weight impact machine, Exp. Mech. 29(1), 63–69 (1989)

    Google Scholar 

  5. P.R. Sreenivasan, S.K. Ray, S.L. Mannan, P. Rodriguez: Determination of K(Id) at or below NDTT using instrumented drop-weight testing, Int. J. Fract. 55(3), 273–283 (1992)

    Google Scholar 

  6. C.S. Coffey, V.F. Devost: Impact testing of explosives and propellants, Propellants Explosives Pyrotechnics 20(3), 105–115 (1995)

    Google Scholar 

  7. H.M. Hsiao, I.M. Daniel, R.D. Cordes: Dynamic compressive behavior of thick composite materials, Exp. Mech. 38(3), 172–180 (1998)

    Google Scholar 

  8. T. Nicholas, A.M. Rajendran: Material characterization at high strain-rates. In: High Velocity Impact Dynamics, ed. by J.A. Zukas (Wiley, New York 1990) pp. 127–296

    Google Scholar 

  9. S.M. Walley, J.E. Field: Strain rate sensitivity of polymers in compression from low to high strain rates, DYMAT J. 1, 211–228 (1994)

    Google Scholar 

  10. G. Ravichandran, G. Subhash: A micromechanical model for high strain rate behavior of ceramics, Int. J. Sol. Struct. 32, 2627–2646 (1995)

    MATH  Google Scholar 

  11. D. Jia, K.T. Ramesh, E. Ma: Effects of nanocrystalline and ultrafine grain sizes on constitutive behavior and shear bands in iron, Acta Mater. 51(12), 3495–3509 (2003)

    Google Scholar 

  12. H. Kolsky: An investigation of the mechanical properties of materials at very high rates of loading, Proceedings of the Physical Society, Vol. 62B (London, 1949) p. 676

    Google Scholar 

  13. G.T. Gray III: Classic split-Hopkinson pressure bar testing. In: ASM Handbook, Vol. 8, ed. by H. Kuhn, D. Medlin (ASM Int., Materials Park Ohio 2000) pp. 462–476

    Google Scholar 

  14. K.T. Ramesh, S. Narasimhan: Finite deformations and the dynamic measurement of radial strains in compression Kolsky bar experiments, Int. J. Sol. Struct. 33(20), 3723–3738 (1996)

    Google Scholar 

  15. T.S. Lok, X.B. Li, D. Liu, P.J. Zhao: Testing and response of large diameter brittle materials subjected to high strain rate, J. Mat. Civil Eng. 14(3), 262–269 (2002)

    Google Scholar 

  16. D. Jia, K.T. Ramesh: A rigorous assessment of the benefits of miniaturization in the Kolsky bar system, Exp. Mech. 44(5), 445–454 (2004)

    Google Scholar 

  17. E.D.H. Davies, S.C. Hunter: The dynamic compression testing of solids by the method of the split Hopkinson pressure bar (SHPB), J. Mech. Phys. Solids 11, 155–179 (1963)

    Google Scholar 

  18. J.F. Bell: An experimental diffraction grating study of the quasi-static hypothesis of the SHPB experiment, J. Mech. Phys. Solids 14, 309–327 (1966)

    Google Scholar 

  19. L.D. Bertholf, C.H. Karnes: Two dimensional analysis of the split Hopkinson pressure bar system, J. Mech. Phys. Solids 23, 1–19 (1975)

    Google Scholar 

  20. ASTM: ASTM Standard E9 3.01 102: Standard test method of compression testing of metallic materials at room temperature (ASTM International, West Conshohocken 1999)

    Google Scholar 

  21. F. Wang, J.G. Lenard: An experimental study of interfacial friction-hot ring compression, Trans. ASME: J. Eng. Mater. Technol. 114, 13–18 (1992)

    Google Scholar 

  22. R. Skalak: Longitudinal impact of a semi-infinite circular elastic bar, J. Appl. Mech. 24, 59–64 (1957)

    MATH  MathSciNet  Google Scholar 

  23. D.J. Frew, M.J. Forrestal, W. Chen: Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar, Exper. Mech. 42, 93–106 (2002)

    Google Scholar 

  24. D.A. Gorham: Specimen inertia in high strain-rate compression, J. Phys. D 22, 1888–1893 (1989)

    Google Scholar 

  25. J.Z. Malinowski, J.R. Klepaczko: A unified analytic and numerical approach to specimen behaviour in the SHPB, Int. J. Mech. Sci. 28, 381–391 (1986)

    Google Scholar 

  26. G. Subhash, G. Ravichandran: Split-Hopkinson bar testing of ceramics. In: ASM Handbook, Vol. 8, ed. by H. Kuhn, D. Medlin (ASM Int., Materials Park Ohio 2000) pp. 497–504

    Google Scholar 

  27. H. Wang, K.T. Ramesh: Dynamic strength and fragmentation of hot-pressed silicon carbide under uniaxial compression, Acta mater. 52(2), 355–367 (2004)

    Google Scholar 

  28. G. Subhash, G. Ravichandran: Mechanical behaviour of a hot pressed aluminum nitride under uniaxial compression, J. Mater. Sci. 33, 1933–1939 (1998)

    Google Scholar 

  29. G. Ravichandran, G. Subhash: Critical appraisal of limiting strain rates for compression testing of ceramics in a split Hopkinson pressure bar, J. Amer. Ceram. Soc. 77, 263–267 (1994)

    Google Scholar 

  30. W. Chen, G. Subhash, G. Ravichandran: Evaluation of ceramic specimen geometries used in split Hopkinson pressure bar, DYMAT J. 1, 193–210 (1994)

    Google Scholar 

  31. W. Chen, F. Lu, D.J. Frew, M.J. Forrestal: Dynamic compression testing of soft materials, Trans. ASME: J. Appl. Mech. 69, 214–223 (2002)

    MATH  Google Scholar 

  32. G.T. Gray III, W.R. Blumenthal: Split-Hopkinson pressure bar testing of soft materials. In: ASM Handbook, Vol. 8, ed. by H. Kuhn, D. Medlin (ASM Int., Materials Park Ohio 2000) pp. 462–476

    Google Scholar 

  33. C.R. Siviour, S.M. Walley, W.G. Proud, J.E. Field: Are low impedance Hopkinson bars necessary for stress equilibrium in soft materials?. In: New Experimental Methods in Material Dynamics and Impact, ed. by W.K. Nowacki, J.R. Klepaczko (Inst. Fund. Technol. Res., Warsaw 2001) pp. 421–427

    Google Scholar 

  34. W. Chen, F. Lu, B. Zhou: A quartz-crystal-embedded split Hopkinson pressure bar for soft materials, Exper. Mech. 40, 1–6 (2000)

    MATH  Google Scholar 

  35. D.T. Casem, W. Fourney, P. Chang: Wave separation in viscoelastic pressure bars using single-point measurements of strain and velocity, Polymer Testing 22, 155–164 (2003)

    Google Scholar 

  36. J.L. Chiddister, L.E. Malvern: Compression-impact testing of aluminum at elevated temperatures, Exper. Mech. 3, 81–90 (1963)

    Google Scholar 

  37. Z. Rosenberg, D. Dawicke, E. Strader, S.J. Bless: A new technique for heating specimens in Split-Hopkinson-bar experiments using induction coil heaters, Exper. Mech. 26, 275–278 (1986)

    Google Scholar 

  38. A. Gilat, X. Wu: Elevated temperature testing with the torsional split Hopkinson bar, Exper. Mech. 34, 166–170 (1994)

    Google Scholar 

  39. A.M. Lennon, K.T. Ramesh: A technique for meas-uring the dynamic behavior of materials at high temperatures, Int. J. Plast. 14(12), 1279–1292 (1998)

    Google Scholar 

  40. S. Nemat-Nasser, J.B. Isaacs: Direct Measurement of Isothermal Flow Stress of Metals at Elevated Temperature and High Strain Rates with Application to Ta and Ta-W Alloys, Acta Mater. 45(3), 907–919 (1997)

    Google Scholar 

  41. D. Basak, H.W. Yoon, R. Rhorer, T.J. Burns, T. Matsumoto: Temperature control of pulse heated specimens in a Kolsky bar apparatus using microsecond time-resolved pyrometry, Int. J. Thermophys. 25(2), 561–574 (2004)

    Google Scholar 

  42. J. Harding, E.O. Wood, J.D. Campbell: Tensile testing of materials at impact rates of strain, J. Mech. Engng Sci. 2, 88–96 (1960)

    Google Scholar 

  43. S. Nemat-Nasser, J.B. Isaacs, J.E. Starrett: Hopkinson techniques for dynamic recovery experiments, Proc. Royal Soc. London A20, 371–391 (1991)

    Google Scholar 

  44. G.H. Staab, A. Gilat: A direct-tension split Hopkinson bar for high strain-rate testing, Exp. Mech. 31(3), 232–235 (1991)

    Google Scholar 

  45. Y. Li, K.T. Ramesh, E.S.C. Chin: Comparison of the plastic deformation and failure of A359/SiC and 6061-T6/Al2O3 metal matrix composites under dynamic tension, Mat. Sci. Eng. A 371(1-2), 359–370 (2004)

    Google Scholar 

  46. W.E. Baker, C.H. Yew: Strain-rate effects in the propagation of torsional plastic waves, Trans. ASME: J. Appl. Mech. 33, 917–923 (1966)

    Google Scholar 

  47. K.A. Hartley, J. Duffy, R.H. Hawley: The torsional Kolsky (split-Hopkinson) bar. In: ASM Handbook, Vol. 8, ed. by H. Kuhn, D. Medlin (ASM Int., Materials Park Ohio 2000) pp. 218–228

    Google Scholar 

  48. A. Marchand, J. Duffy: An experimental study of the formation process of adiabatic shear bands in a structural steel, J. Mech. Phys. Solids. 36(3), 251–283 (1988)

    Google Scholar 

  49. C.K.H. Dharan, F.E. Hauser: Determination of stress-strain characteristics at very high strain rates, Exper. Mech. 10, 370–376 (1970)

    Google Scholar 

  50. G.L. Wulf, G.T. Richardson: The measurement of dynamic stress-strain relationships at very high strain rates, J. Phys. E 7, 167–169 (1974)

    Google Scholar 

  51. D.A. Gorham: Measurement of stress-strain properties of strong metals at very high strain rates, Inst. Phys. Conf. Ser. 47, 16–24 (1980)

    Google Scholar 

  52. N.A. Safford: Materials testing up to 105 s −1 using a miniaturised hopkinson bar with dispersion corrections, Proc. 2nd Intl. Symp. on Intense Dynamic Loading and its Effects, ed. by G. Zhang, S. Huang (Sichuan Univ. Press, Chengdu 1992) pp. 378–383

    Google Scholar 

  53. D.A. Gorham, P.H. Pope, J.E. Field: An improved method for compressive stress-strain measurements at very high strain rates, Proc. R. Soc. Lond. A 438, 153–170 (1992)

    MATH  Google Scholar 

  54. J. Shioiri, K. Sakino, S. Santoh: Strain rate sensitivity of flow stress at very high rates of strain. In: Constitutive Relation in High/Very-High Strain Rates, ed. by K. Kawata, J. Shioiri (Springer, Berlin Heidelberg 1995) pp. 49–58

    Google Scholar 

  55. F. Kamler, P. Niessen, R.J. Pick: Measurement of the behaviour of high-purity copper at very high rates of strain, Canad. J. Phys. 73, 295–303 (1995)

    Google Scholar 

  56. R.W. Klopp, R.J. Clifton: Pressure-shear plate impact testing. In: ASM Handbook, Vol. 8, ed. by H. Kuhn, D. Medlin (ASM Int., Materials Park Ohio 1985) pp. 230–239

    Google Scholar 

  57. K.J. Frutschy, R.J. Clifton: High-temperature pressure-shear plate impact experiments on OFHC copper, J. Mech. Phys. Sol. 46(10), 1723–1743 (1998)

    Google Scholar 

  58. K.T. Ramesh, N. Kelkar: Technique for the continuous measurement of projectile velocities in plate impact experiments, Rev. Sci. Instrum. 66(4), 3034–3036 (1995)

    Google Scholar 

  59. S. Yadav, D.R. Chichili, K.T. Ramesh: The mechanical response of a 6061-T6 Al/Al2O3 metal matrix composite at high rates of deformation, Acta metall. mater. 43(12), 4453–4464 (1995)

    Google Scholar 

  60. D. Jia, A.M. Lennon, K.T. Ramesh: High-strain-rate pressure-shear recovery: a new experimental technique, Int. J. Sol. Struc. 37(12), 1679–1699 (2000)

    MATH  Google Scholar 

  61. A. Bekker, J.C. Jimenez-Victory, P. Popov, D.C. Lagoudas: Impact induced propagation of phase transformation in a shape memory alloy rod, Int. J. Plast. 18, 1447–1479 (2002)

    MATH  Google Scholar 

  62. J.U. Cazamias, W.D. Reinhart, C.H. Konrad, L.C. Chhabildas, S.J. Bless: Bar impact tests on alumina (AD995). In: Shock Compression of Condensed Matter - 2001, ed. by M.D. Furnish, N.N. Thadhani, Y. Horie (Am. Inst. Phys., Melville 2002) pp. 787–790

    Google Scholar 

  63. L.C. Chhabildas, M.D. Furnish, W.D. Reinhart, D.E. Grady: Impact of AD995 alumina rods. In: Shock Compression of Condensed Matter - 1997, ed. by S.C. Schmidt, D.P. Dandekar, J.W. Forbes (Am. Inst. Phys., Woodbury 1998) pp. 505–508

    Google Scholar 

  64. F.G. Díaz-Rubio, J. Rodríguez Pérez, V. Sánchez Gálvez: The spalling of long bars as a reliable method of measuring the dynamic tensile strength of ceramics, Int. J. Impact Eng. 27, 161–177 (2002)

    Google Scholar 

  65. K.G. Holland, L.C. Chhabildas, W.D. Reinhart, M.D. Furnish: Experiments on CERCOM SiC rods under impact. In: Shock Compression of Condensed Matter - 1999, ed. by M.D. Furnish, L.C. Chhabildas, R.S. Hixson (Am. Inst. Phys., Melville 2000) pp. 585–588

    Google Scholar 

  66. R. Russell, S.J. Bless, T. Beno: Impact induced failure zones in Homalite bars:. In: Shock Compression of Condensed Matter - 2001, ed. by M.D. Furnish, N.N. Thadhani, Y. Horie (Am. Inst. Phys., Melville 2002) pp. 811–814

    Google Scholar 

  67. D.S. Drumheller: Introduction to Wave Propagation in Nonlinear Fluids and Solids (Cambridge Univ. Press, Cambridge 1998)

    Google Scholar 

  68. M.A. Meyers: Dynamic Behavior of Materials (Wiley, New York 1994)

    MATH  Google Scholar 

  69. G.T. Gray III: Shock wave testing of ductile materials. In: ASM Handbook, Vol. 8, ed. by H. Kuhn, D. Medlin (ASM Int., Materials Park Ohio 2000) pp. 462–476

    Google Scholar 

  70. S.C. Schmidt, J.N. Johnson, L.W. Davidson: Shock Compression of Condensed Matter - 1989 (North Holland, Amsterdam 1990)

    Google Scholar 

  71. S.C. Schmidt, R.D. Dick, J.W. Forbes, D.G. Tasker (Eds.): Shock Compression of Condensed Matter - 1991 (Elsevier, Amsterdam 1992)

    Google Scholar 

  72. S.C. Schmidt, W.C. Tao: Shock Compression of Condensed Matter - 1995 (Am. Inst. Phys., Woodbury 1996)

    Google Scholar 

  73. S.C.D.P. Schmidt Dandekar, J.W. Forbes: Shock Compression of Condensed Matter - 1997 (Am. Inst. Phys., Woodbury 1998)

    Google Scholar 

  74. M.D. Furnish, L.C. Chhabildas, R.S. Hixson: Shock Compression of Condensed Matter - 1999 (Am. Inst. Phys., Melville 2000)

    Google Scholar 

  75. L. Davison, R.A. Graham: Shock compression of solids, Phys. Rep. 55, 255–379 (1979)

    Google Scholar 

  76. J.R. Asay, M. Shahinpoor: High-Pressure Shock Compression of Solids (Springer-Verlag, New York 1993)

    MATH  Google Scholar 

  77. L. Davison, D.E. Grady, M. Shahinpoor: High-Pressure Shock Compression of Solids II: Dynamic Fracture and Fragmentation (Springer, New York 1996)

    MATH  Google Scholar 

  78. L. Davison, Y. Horie, M. Shahinpoor: High-Pressure Shock Compression of Solids IV: Response of Highly Porous Solids to Shock Compression (Springer, New York 1997)

    Google Scholar 

  79. L. Davison, M. Shahinpoor: High-Pressure Shock Compression of Solids III (Springer, New York 1998)

    Google Scholar 

  80. J.A. Zukas (Ed.): High Velocity Impact Dynamics (Wiley, New York 1990)

    Google Scholar 

  81. M.F. Gogulya, A.Y. Dolgoborodov, M.A. Brazhnikov: Investigation of shock and detonation waves by optical pyrometry, Int. J. Imp. Eng. 23(1), 283–293 (1999)

    Google Scholar 

  82. G.I. Pangilinan, Y.M. Gupta: Time-resolved raman measurements in nitromethane shocked to 140 Kbar, J. Phys. Chem. 98(13), 4522–4529 (1994)

    Google Scholar 

  83. W.D. Reinhart, L.C. Chhabildas, D.E. Carroll, T.K. Bergstresser, T.F. Thornhill, N.A. Winfree: Equation of state measurements of materials using a three-stage gun to impact velocities of 11 km/s, Int. J. Imp. Eng. 26(1-10), 625–637 (2001)

    Google Scholar 

  84. Y.M. Gupta: Use of piezoresistance gauges to quantify the stress state in a shocked solid. In: Experimental Techniques in the Dynamics of Deformable Solids, ed. by K.T. Ramesh (ASME, New York 1993) pp. 89–101

    Google Scholar 

  85. R. Feng, G.F. Raiser, Y.M. Gupta: Material strength and inelastic deformation of silicon carbide under shock wave compression, J. Appl. Phys. 83(1), 79–86 (1998)

    Google Scholar 

  86. Z. Rosenberg, D. Yaziv, Y. Partom: Calibration of foil-like manganin gauges in planar shock-wave experiments, J. Appl. Phys. 51(6), 3702–3705 (1980)

    Google Scholar 

  87. Y.M. Gupta: Analysis of manganin and ytterbium gauge data under shock loading, J. Appl. Phys. 54(9), 6094–6098 (1983)

    Google Scholar 

  88. R.A. Graham, F.W. Neilson, W.B. Benedick: Piezoelectric current from shock-loaded quartz - a submicrosecond stress gauge, J. Appl. Phys. 36(5), 1775–00 (1965)

    Google Scholar 

  89. T. Obara, N.K. Bourne, Y. Mebar: The construction and calibration of an inexpensive PVDF stress gauge for fast pressure measurements, Meas. Sci. Technol. 6(4), 345–348 (1995)

    Google Scholar 

  90. L.M. Barker: The accuracy of VISAR instrumentation. In: Shock Compression of Condensed Matter - 1997, ed. by S.C. Schmidt, D.P. Dandekar, J.W. Forbes (Am. Inst. Phys., Woodbury, 1998) pp. 833–836

    Google Scholar 

  91. L.M. Barker: The development of the VISAR and its use in shock compression science. In: Shock Compression of Condensed Matter - 1999, ed. by M.D. Furnish, L.C. Chhabildas, R.S. Hixson (Am. Inst. Phys., Melville 2000) pp. 11–17

    Google Scholar 

  92. L.M. Barker, R.E. Hollenbach: Laser interferometer for measuring high velocities of any reflecting surface, J. Appl. Phys. 43, 4669–4675 (1972)

    Google Scholar 

  93. J. Edwards, K.T. Lorenz, B.A. Remington, S. Pollaine, J. Colvin, D. Braun, B.F. Lasinski, D. Reisman, J.M. McNaney, J.A. Greenough, R. Wallace, H. Louis, D. Kalantar: Laser-driven plasma loader for shockless compression and acceleration of samples in the solid state, Phys. Rev. Lett. 92(6) (2004)

    Google Scholar 

  94. N.K. Bourne, Z. Rosenberg, J.E. Field: High-speed photography of compressive failure waves in glasses, J. Appl. Phys. 78, 3736–3739 (1995)

    Google Scholar 

  95. B. Paliwal, K.T. Ramesh, J.W. McCauley: Direct observation of the dynamic compressive failure of a transparent polycrystalline ceramic (AlON), J. Am. Ceramic Soc. 89(6), 2128–2133 (2006)

    Google Scholar 

  96. K. Ravi-Chandar: Dynamic fracture (Wiley, New York 2005)

    Google Scholar 

  97. E. El-Magd, M. Brodmann: Influence of precipitates on ductile fracture of aluminium alloy AA7075 at high strain rates, Mat. Sci. Eng. A. Struct. Mat. Prop. Microstruct. Proces. 307(1-2), 143–150 (2001)

    Google Scholar 

  98. D.M. Goto, D.A. Koss, V. Jablokov: The influence of tensile stress states on the failure of HY-100 steel, Metallurg. Mat. Trans. A 30(9), 2835–2842 (1999)

    Google Scholar 

  99. J. Kang, M. Jain, D.S. Wilkinson, J.D. Embury: Microscopic strain mapping using scanning electron microscopy topography image correlation at large strain, J. Strain Anal. Eng. Design 40(5), 559–570 (2005)

    Google Scholar 

  100. W. Tong, H. Tao, X.Q. Jiang, N.A. Zhang, M.P. Marya, L.G. Hector, X.H.Q. Gayden: Deformation and fracture of miniature tensile bars with resistance-spot-weld microstructures, Metallurg. Mat. Trans. A 36A(10), 2651–2669 (2005)

    Google Scholar 

  101. B. Wattrisse, A. Chrysochoos, J.M. Muracciole, M. Nemoz-Gaillard: Kinematic manifestations of localisation phenomena in steels by digital image correlation, Europ. J. Mech. A 20(2), 189–211 (2001)

    MATH  Google Scholar 

  102. B. Wattrisse, A. Chrysochoos, J.M. Muracciole, M. Nemoz-Gaillard: Analysis of strain localization during tensile tests by digital image correlation, Exp. Mech. 41(1), 29–39 (2001)

    Google Scholar 

  103. P.E. Magnusen, E.M. Dubensky, D.A. Koss: The effect of void arrays on void linking during ductile fracture, Acta Metallurgica 36(5), 1503–1509 (1988)

    Google Scholar 

  104. E.M. Dubensky, D.A. Koss: Void pore distributions and ductile fracture, Metallurg. Mat. Trans. A 18(9), 1887–1895 (1987)

    Google Scholar 

  105. R.J. Bourcier, Koss D.A., R.E. Smelser, O. Richmond: The influence of porosity on the deformation and fracture of alloys, Acta Metallurgica 34(12), 2443–2453 (1986)

    Google Scholar 

  106. T. Pardoen, I. Doghri, F. Delannay: Experimental and numerical comparison of void growth models and void coalescence criteria for the prediction of ductile fracture in copper bars, Acta Mater. 46(2), 541–00 (1998)

    Google Scholar 

  107. H.J. Prentice, W.G. Proud: 3 Dimensional dynamic deformation measurments using stereoscopic imaging and digital speckle photography. In: Shock Compression of Condensed Matter, Vol. 2, ed. by M.D. Furnish, M. Elert, T.P. Russell, C.T. White (AIP, Baltimore 2005) p. 1275

    Google Scholar 

  108. X.Y. Wu, K.T. Ramesh, T.W. Wright: The effects of thermal softening and heat conduction on the dynamic growth of voids, Int. J. Sol. Struct. 40(13), 4461–4478 (2003)

    MATH  Google Scholar 

  109. G. Ravichandran, R.J. Clifton: Dynamic fracture under plane-wave loading, Int. J. Fract. 40(3), 157–201 (1989)

    Google Scholar 

  110. V. Prakash, L.B. Freund, R.J. Clifton: Stress wave radiation from a crack tip during dynamic initiation, J. Appl. Mech.-Trans. ASME 59(2), 356–365 (1992)

    Google Scholar 

  111. M. Zhou, R.J. Clifton: Dynamic ductile rupture under conditions of plane strain, Int. J. Imp. Eng. 19(3), 189–206 (1997)

    Google Scholar 

  112. Z. Zhang, R.J. Clifton: Shear band propagation from a crack tip, J. Mech. Phys Sol. 51(11-12), 1903–1922 (2003)

    Google Scholar 

  113. R. Godse, G. Ravichandran, R.J. Clifton: Micromechanisms of dynamic crack-propagation in an aisi-4340-steel, Mat. Sci. Eng. A 112, 79–88 (1989)

    Google Scholar 

  114. J.N. Johnson: Dynamic fracture and spallation in ductile solids, J. Appl. Phys. 52(4), 2812–2825 (1981)

    Google Scholar 

  115. D.E. Grady: The spall strength of condensed matter, J. Mech. Phys Sol. 36(3), 353–00 (1988)

    Google Scholar 

  116. G.I. Kanel, S.V. Razorenov, K. Baumung, J. Singer: Dynamic yield and tensile strength of aluminum single crystals at temperatures up to the melting point, J. Appl. Phys. 90(1), 136–143 (2001)

    Google Scholar 

  117. T. Antoun, L. Seaman, D.R. Curran, G.I. Kanel, S.V. Razorenov, A.V. Utkin: Spall Fracture (Springer, New York 2004)

    Google Scholar 

  118. Y.L. Bai, B. Dodd: Adiabatic Shear Localization: Occurrence, Theories and Applications (Pergamon, Oxford 1992)

    Google Scholar 

  119. T.W. Wright: The mathematical theory of adiabatic shear bands (Cambridge Univ. Press, Cambridge 2002)

    Google Scholar 

  120. J.H. Giovanola: Observation of adiabatic shear banding in simple torsion. In: Impact Loading and Dynamic Behaviour of Materials, ed. by C.Y. Chiem, H.D. Kunze, L.W. Meyer (DGM Informationsgesellschaft, Oberursel 1988) pp. 705–710

    Google Scholar 

  121. M.G. daSilva, K.T. Ramesh: The rate-dependent deformation and localization of fully dense and porous Ti-6Al-4V, Mat. Sci. Eng. A 232(1-2), 11–22 (1997)

    Google Scholar 

  122. K.T. Ramesh: On the localization of shearing deformations in a tungsten heavy alloy, Mech. Materials 17, 165–173 (1994)

    Google Scholar 

  123. A. Molinari, R.J. Clifton: Analytical characterization of shear localization in thermoviscoplastic materials, J. Appl. Mech.-Trans. ASME 54(4), 806–812 (1987)

    MATH  Google Scholar 

  124. B. Deltort: Experimental and numerical aspects of adiabatic shear in a 4340 steel, J. Phys. IV France Colloq. C8 (DYMAT 94) 4, 447–452 (1994)

    Google Scholar 

  125. D.R. Chichili, K.T. Ramesh, K.J. Hemker: Adiabatic shear localization in alpha-titanium: experiments, modeling and microstructural evolution, J. Mech. Phys Sol. 52(7), 1889–1909 (2004)

    MATH  Google Scholar 

  126. D.R. Chichili, K.T. Ramesh: Recovery experiments for adiabatic shear localization: A novel experimental technique, J. Appl. Mech.-Transact. ASME 66(1), 10–20 (1999)

    Google Scholar 

  127. Q. Xue, L.T. Shen, T.L. Bai: Elimination of loading reverberation in the split Hopkinson torsional bar, Rev. Sci. Instr. 66(9), 5298–5304 (1995)

    Google Scholar 

  128. M.A. Meyers, G. Subhash, B.K. Kad, L. Prasad: Evolution of microstructure and shear-band formation in alpha-hcp titanium, Mech. Mat. 17(2-3), 175–193 (1994)

    Google Scholar 

  129. Z.Q. Duan, S.X. Li, D.W. Huang: Microstructures and adiabatic shear bands formed by ballistic impact in steels and tungsten alloy, Fat. Fract. Eng. Mat. Struct. 26(12), 1119–1126 (2003)

    Google Scholar 

  130. Q. Xue, M.A. Meyers, V.F. Nesterenko: Self-organization of shear bands in titanium and Ti-6Al-4V alloy, Acta Mater. 50(3), 575–596 (2002)

    Google Scholar 

  131. D. Rittel, S. Lee, G. Ravichandran: A shear-compression specimen for large strain testing, Exp. Mech. 42(1), 58–64 (2002)

    Google Scholar 

  132. M. Zhou, A.J. Rosakis, G. Ravichandran: Dynamically propagating shear bands in impact-loaded prenotched plates. 1. Experimental investigations of temperature signatures and propagation speed, J. Mech. Phys Sol. 44(5), 981–1006 (1996)

    Google Scholar 

  133. P.R. Guduru, A.J. Rosakis, G. Ravichandran: Dynamic shear bands: an investigation using high speed optical and infrared diagnostics, Mech. Mat. 33(6), 371–402 (2001)

    Google Scholar 

  134. D.E. Grady, D.A. Benson: Fragmentation of metal rings by electromagnetic loading, Exp. Mech. 23(4), 393–400 (1983)

    Google Scholar 

  135. W.H. Gourdin: The expanding ring as a high-strain rate test, J. Met. 39(10), A65–A65 (1987)

    Google Scholar 

  136. S. Dujardin, G. Gazeaud, A. Lichtenberger: Dynamic behavior of copper studied using the expanding ring test, J. Physique 49(C-3), 55–62 (1988)

    Google Scholar 

  137. W.H. Gourdin: Analysis and assessment of electromagnetic ring expansion as a high-strain-rate test, J. Appl. Phys. 65(2), 411–422 (1989)

    Google Scholar 

  138. W.H. Gourdin: Constitutive properties of copper and tantalum at high-rates of tensile strain - expanding ring results, Inst. Phys. Conf. Ser. 102, 221–226 (1989)

    Google Scholar 

  139. W.H. Gourdin, S.L. Weinland, R.M. Boling: Development of the electromagnetically launched expanding ring as a high-strain-rate test technique, Rev. Sci. Instr. 60(3), 427–432 (1989)

    Google Scholar 

  140. H. Zhang, K. Ravi-Chandar: On the dynamics of necking and fragmentation - I. Real-time and post-mortem observations in Al6061-O, Int. J. Fracture 142, 183 (2006)

    Google Scholar 

  141. F.H. Zhou, J.F. Molinari, K.T. Ramesh: Analysis of the brittle fragmentation of an expanding ring, Comp. Mat. Sci. 37(1-2), 74–85 (2006)

    Google Scholar 

  142. P.R. Guduru, L.B. Freund: The dynamics of multiple neck formation and fragmentation in high rate extension of ductile materials, Int. J. Sol. Struct. 39(21-22), 5615–5632 (2002)

    MATH  Google Scholar 

  143. M.J. Forrestal, B.W. Duggin, R.I. Butler: Explosive loading technique for the uniform expansion of 304 stainless steel cylinders at high strain rates, J. Appl. Mech.-Transact. ASME 47(1), 17–20 (1980)

    Google Scholar 

  144. J.F. Kalthoff: On the measurement of dynamic fracture toughnesses - a review of recent work, Int. J. Fract. 27(3-4), 277–298 (1985)

    Google Scholar 

  145. R.A.W. Mines: Characterization and measurement of the mode 1-dynamic initiation of cracks in metals at intermediate strain rates - a review, Int. J. Imp. Eng. 9(4), 441–454 (1990)

    MathSciNet  Google Scholar 

  146. A.J. Rosakis: Application of coherent gradient sensing (cgs) to the investigation of dynamic fracture problems, Optics Lasers Eng. 19(1-3), 3–41 (1993)

    Google Scholar 

  147. K. Ravi-Chandar: Dynamic fracture of nominally brittle materials, Int. J. Fract. 90(1-2), 83–102 (1998)

    Google Scholar 

  148. A. Shukla: High-speed fracture studies on bimaterial interfaces using photoelasticity - a review, J. Strain Anal. Eng. Design 36(2), 119–142 (2001)

    Google Scholar 

  149. J.F. Kalthoff: Modes of dynamic shear failure in solids, Int. J. Fract. 101(1-2), 1–31 (2000)

    Google Scholar 

  150. D.D. Anderson, A. Rosakis: Comparison of three real time techniques for the measurement of dynamic fracture initiation toughness in metals, Eng. Fract. Mech. 72(4), 535–555 (2005)

    Google Scholar 

  151. V. Parameswaran, A. Shukla: Dynamic fracture of a functionally gradient material having discrete property variation, J. Mat. Sci. 33(10), 3303–331 (1998)

    Google Scholar 

  152. A.J. Rosakis, A.T. Zehnder, R. Narasimhan: Caustics by reflection and their application to elastic-plastic and dynamic fracture-mechanics, Optic. Eng. 27(7), 596–610 (1988)

    Google Scholar 

  153. K. Arakawa, R.H. Drinnon, M. Kosai, A.S. Kobayashi: Dynamic fracture-analysis by moire interferometry, Exp. Mech. 31(4), 306–309 (1991)

    Google Scholar 

  154. H.V. Tippur, A.J. Rosakis: Quasi-static and dynamic crack-growth along bimaterial interfaces - a note on crack-tip field-measurements using coherent gradient sensing, Exp. Mech. 31(3), 243–251 (1991)

    Google Scholar 

  155. T.A. Siewert, M.P. Monahan (Eds.): Pendulum Impact Testing: A Century of Progress (ASTM International, Conshohocken 2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaliat T. Ramesh Prof. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Ramesh, K.T. (2008). High Rates and Impact Experiments. In: Sharpe, W. (eds) Springer Handbook of Experimental Solid Mechanics. Springer Handbooks. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30877-7_33

Download citation

Publish with us

Policies and ethics