Skip to main content
Log in

Eventual smoothness and stabilization in a three-dimensional Keller–Segel–Navier–Stokes system with rotational flux

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We consider the spatially 3-D version of the following Keller–Segel–Navier–Stokes system with rotational flux

$$\begin{aligned} \left\{ \begin{array}{l} n_t+u\cdot \nabla n=\Delta n-\nabla \cdot (nS(x,n,c)\nabla c),\quad x\in \Omega , t>0,\\ c_t+u\cdot \nabla c=\Delta c-c+n,\quad x\in \Omega , t>0,\\ u_t+\kappa (u \cdot \nabla )u+\nabla P=\Delta u+n\nabla \phi ,\quad x\in \Omega , t>0,\\ \nabla \cdot u=0,\quad x\in \Omega , t>0\\ \end{array}\right. \end{aligned}$$
(*)

under no-flux boundary conditions in a bounded domain \(\Omega \subseteq \mathbb {R}^{3}\) with smooth boundary, where \(\phi \in W^{2,\infty } (\Omega )\) and \(\kappa \in \mathbb {R}\) represent the prescribed gravitational potential and the strength of nonlinear fluid convection, respectively. Here the matrix-valued function \(S(x,n,c)\in C^2(\bar{\Omega }\times [0,\infty )^2 ;\mathbb {R}^{3\times 3})\) denotes the rotational effect which satisfies \(|S(x,n,c)|\le C_S(1 + n)^{-\alpha }\) with some \(C_S > 0\) and \(\alpha \ge 0\). Compared with the signal consumption case as in chemotaxis-(Navier-)Stokes system, the quantity c of system \((*)\) is no longer a priori bounded by its initial norm in \(L^\infty \), which means that we have less regularity information on c. Moreover, the tensor-valued sensitivity functions result in new mathematical difficulties, mainly linked to the fact that a chemotaxis system with such rotational fluxes thereby loses an energy-like structure. In this paper, under an explicit condition on the size of \(C_S\) relative to \(C_N\), we can prove that the weak solution (ncu) becomes smooth ultimately, and that it approaches the unique spatially homogeneous steady state \((\bar{n}_0,\bar{n}_0,0)\), where \(\bar{n}_0=\frac{1}{|\Omega |}\int _{\Omega }n_0\) and \(C_N\) is the best Poincaré constant. To the best of our knowledge, there are the first results on asymptotic behavior of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amann, H.: Compact embeddings of vector-valued Sobolev and Besov spaces. Glasnik Mat. 55, 161–177 (2000)

    MathSciNet  MATH  Google Scholar 

  2. Bellomo, N., Belloquid, A., Tao, Y., Winkler, M.: Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues. Math. Models Methods Appl. Sci. 25, 1663–1763 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Black, T.: Global solvability of chemotaxis-fluid systems with nonlinear diffusion and matrix-valued sensitivities in three dimensions. Nonlinear Anal. 180, 129–153 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cao, X., Lankeit, J.: Global classical small-data solutions for a three-dimensional Chemotaxis Navier-Stokes System involving Matrix-Valued Sensitivities. Cal. Var. Partial Differ. Equ. 55, 107–123 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chae, M., Kang, K., Lee, J.: Global existence and temporal decay in Keller-Segel models coupled to fluid equations. Comm. Part. Differ. Equ. 39, 1205–1235 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cieślak, T., Winkler, M.: Finite-time blow-up in a quasilinear system of chemotaxis. Nonlinearity 21, 1057–1076 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dombrowski, C., et al.: Self-concentration and large-scale coherence in bacterial dynamics. Phys. Rev. Lett. 93, 098103 (2004)

    Article  Google Scholar 

  8. Duan, R., Lorz, A., Markowich, P.A.: Global solutions to the coupled chemotaxis-fluid equations. Comm. Part. Differ. Equ. 35, 1635–1673 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Di Francesco, M., Lorz, A., Markowich, P.: Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: global existence and asymptotic behavior. Disc. Contin. Dyn. Syst. 28, 1437–1453 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Espejo, E.E., Winkler, M.: Global classical solvability and stabilization in a two-dimensional chemotaxis-Navier-Stokes system modeling coral fertilization. Nonlinearity 31, 1227–1259 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Friedman, A.: Partial Differential Equations. Holt, Rinehart Winston, New York (1969)

    MATH  Google Scholar 

  12. Fujita, H., Kato, T.: On the Navier-Stokes initial value problem I. Arch. Ration. Mech. Anal. 16, 269–315 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fujiwara, D., Morimoto, H.: An \(L^r\)-theorem of the Helmholtz decomposition of vector fields. J. Fac. Sci. Univ. Tokyo 24, 685–700 (1977)

    MathSciNet  MATH  Google Scholar 

  14. Giga, Y.: Solutions for semilinear parabolic equations in \(L^p\) and regularity of weak solutions of the Navier-Stokes system. J. Differ. Equ. 61, 186–212 (1986)

    Article  MATH  Google Scholar 

  15. Giga, Y., Sohr, H.: Abstract \(L^p\) estimate for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains. J. Funct. Anal. 102, 72–94 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hillen, T., Painter, K.: A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58, 183–217 (2009)

  17. Horstmann, D., Winkler, M.: Boundedness vs. blow-up in a chemotaxis system. J. Differ. Equ. 215, 52–107 (2005)

  18. Ishida, S., Seki, K., Yokota, T.: Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains. J. Differ. Equ. 256, 2993–3010 (2014)

  19. Ke, Y., Zheng, J.: An optimal result for global existence in a three-dimensional Keller-Segel-Navier-Stokes system involving tensor-valued sensitivity with saturation. Calculus Var. Partial Differ. Eqns. 58, 58–109 (2019)

    MathSciNet  MATH  Google Scholar 

  20. Kowalczyk, R.: Preventing blow-up in a chemotaxis model. J. Math. Anal. Appl. 305, 566–585 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ladyzenskaja, O.A., Solonnikov, V.A., Uralceva, N.N.: Linear and Quasi-Linear Equations of Parabolic Type. Amer. Math. Soc. Transl, Providence, RI (1968)

    Book  Google Scholar 

  22. Leray, J.: Sur le mouvement d̀un liquide visqueus amplissant l̀espace. Acta Math. 63, 193–248 (1934)

    Article  MathSciNet  Google Scholar 

  23. Li, D., et al.: Boundedness in a three-dimensional Keller-Segel-Stokes system involving tensor-valued sensitivity with saturation. Disc. Contin. Dyn. Syst. B 24, 831–849 (2019)

    MathSciNet  MATH  Google Scholar 

  24. Li, Y., Li, Y.: global boundedness of solutions for the chemotaxis-Navier-Stokes system in \(R^2\). J. Differ. Equ. 261, 6570–6613 (2016)

    Article  MATH  Google Scholar 

  25. Liu, J., Wang, Y.: Boundedness and decay property in a three-dimensional Keller-Segel-Stokes system involving tensor-valued sensitivity with saturation. J. Differ. Equ. 261, 967–999 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu, J., Wang, Y.: Global weak solutions in a three-dimensional Keller-Segel-Navier-Stokes system involving a tensor-valued sensitivity with saturation. J. Differ. Equ. 262, 5271–5305 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu, J.-G., Lorz, A.: A coupled chemotaxis-fluid model: global existence. Ann. Inst. H. Poincaré Anal. Non Linéaire 28, 643–652 (2011)

  28. Lorz, A.: Coupled chemotaxis fluid equations. Math. Models Methods Appl. Sci. 20, 987–1004 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Peng, Y., Xiang, Z.: Global existence and boundedness in a 3D Keller-Segel-Stokes system with nonlinear diffusion and rotational flux. Z. Angew. Math. Phys. 68, 68 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Simon, J.: Compact sets in the space \(L^{p}(O, T;B)\). Annali di Matematica 146(1), 65–96 (1986)

    Article  Google Scholar 

  31. Sohr, H.: The Navier-Stokes Equations, An Elementary Functional Analytic Approach. Birkhäuser Verlag, Basel (2001)

  32. Solonnikov, V. A.: Schauder estimates for the evolutionary generalized Stokes problem, Nonlinear equations and spectral theory, Amer. Math. Soc. Transl. Ser. 2, vol. 220, Amer. Math. Soc., Providence, RI, pp. 165–200 (2007)

  33. Tao, Y., Winkler, M.: Global existence and boundedness in a Keller-Segel-Stokes model with arbitrary porous medium diffusion. Disc. Contin. Dyn. Syst. Ser. A 32, 1901–1914 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Tao, Y., Winkler, M.: Locally bounded global solutions in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion. Ann. Inst. H. Poincaré Anal. Non Linéaire 30, 157–178 (2013)

  35. Tao, Y., Winkler, M.: Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis-fluid system. Z. Angew. Math. Phys. 66, 2555–2573 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Tello, J.I., Winkler, M.: A chemotaxis system with logistic source. Comm. Partial Differ. Equ. 32, 849–877 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Tuval, I., Cisneros, L., Dombrowski, C., et al.: Bacterial swimming and oxygen transport near contact lines. Proc. Natl. Acad. Sci. USA 102, 2277–2282 (2005)

    Article  MATH  Google Scholar 

  38. Wang, L., Mu, C., Zheng, P.: On a quasilinear parabolic-elliptic chemotaxis system with logistic source. J. Differ. Equ. 256, 1847–1872 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang, Y., Winkler, M., Xiang, Z.: Global classical solutions in a two-dimensional chemotaxis-Navier-Stokes system with subcritical sensitivity. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze XVII I 2036–2145 (2018)

  40. Wang, Y., Xiang, Z.: Global existence and boundedness in a Keller-Segel-Stokes system involving a tensor-valued sensitivity with saturation: the 3D case. J. Differ. Equ. 261, 4944–4973 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wiegner, M.: The Navier-Stokes equationsa neverending challenge? Jahresber. Deutsch. Math.-Verein. 101, 1–25 (1999)

    MathSciNet  MATH  Google Scholar 

  42. Winkler, M.: Does a volume-filling effect always prevent chemotactic collapse. Math. Methods Appl. Sci. 33, 12–24 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Winkler, M.: Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source. Comm. Partial Differ. Equ. 35, 1516–1537 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  44. Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model. J. Differ. Equ. 248, 2889–2905 (2010)

  45. Winkler, M.: Global large-data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops. Comm. Partial Differ. Equ. 37, 319–351 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  46. Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system. J. Math. Pures Appl. 100, 748–767 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  47. Winkler, M.: Stabilization in a two-dimensional chemotaxis-Navier-Stokes system. Arch. Ration. Mech. Anal. 211, 455–487 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  48. Winkler, M.: Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity. Calc. Var. Partial Differ. Eqns. 54, 3789–3828 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  49. Winkler, M.: Large-data global generalized solutions in a chemotaxis system with tensor-valued sensitivities. SIAM J. Math. Anal. 47, 3092–3115 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  50. Winkler, M.: Global weak solutions in a three-dimensional chemotaxis-Navier-Stokes system. Ann. Inst. H. Poincaré Anal. Non Linéaire 33, 1329–1352 (2016)

  51. Winkler, M.: How far do oxytaxis-driven forces influence regularity in the Navier-Stokes system? Trans. Am. Math. Soc. 369, 3067–3125 (2017)

    Article  MATH  Google Scholar 

  52. Winkler, M.: Global existence and stabilization in a degenerate chemotaxis-Stokes system with mildly strong diffusion enhancement. J. Differ. Equ. 264, 6109–6151 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  53. Winkler, M.: Does fluid interaction affect regularity in the three-dimensional Keller-Segel System with saturated sensitivity? J. Math. Fluid Mech. 20, 1889–1909 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  54. Winkler, M.: Can rotational fluxes impede the tendency toward spatial homogeneity in nutrient taxis (-Stokes) systems? Int. Math. Res. Not. (2019)

  55. Winkler, M.: A three-dimensional Keller-Segel-Navier-Stokes system with logistic source: Global weak solutions and asymptotic stabilization. J. Func. Anal. 276, 1339–1401 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  56. Xue, C.: Macroscopic equations for bacterial chemotaxis: integration of detailed biochemistry of cell signaling. J. Math. Biol. 70, 1–44 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  57. Xue, C., Othmer, H.G.: Multiscale models of taxis-driven patterning in bacterial populations. SIAM J. Appl. Math. 70, 133–167 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  58. Zhang, Q., Zheng, X.: Global well-posedness for the two-dimensional incompressible chemotaxis-Navier-Stokes equations. SIAM J. Math. Anal. 46, 3078–3105 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  59. Zheng, J.: Boundedness of solutions to a quasilinear parabolic-elliptic Keller-Segel system with logistic source. J. Differ. Equ. 259, 120–140 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  60. Zheng, J.: A note on boundedness of solutions to a higher-dimensional quasi-linear chemotaxis system with logistic source. Zeitsc. Angew. Mathe. Mech. 97, 414–421 (2017)

    Article  MathSciNet  Google Scholar 

  61. Zheng, J.: Global weak solutions in a three-dimensional Keller-Segel-Navier-Stokes system with nonlinear diffusion. J. Differ. Equ. 263, 2606–2629 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  62. Zheng, J.: An optimal result for global classical and bounded solutions in a two-dimensional Keller-Segel-Navier-Stokes system with sensitivity. arXiv:1903.01033 (2019)

  63. Zheng, J.: Global solvability and stabilization in a two-dimensional chemotaxis-Navier-Stokes system with chemotactic sensitivity modeling coral fertilization (preprint)

  64. Zheng, J.: An optimal result for global very weak solutions to a chemotaxis-fluid system with nonlinear diffusion and rotational flux (preprint)

  65. Zheng, J.: An optimal result for global existence and boundedness in a three-dimensional Keller-Segel-Stokes system with nonlinear diffusion. J. Differ. Equ. 267, 2385–2415 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  66. Zheng, J., Ke, Y.: Large time behavior of solutions to a fully parabolic chemotaxis-haptotaxis model in \(N\) dimensions. J. Differ. Equ. 266, 1969–2018 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  67. Zheng, J., Ke, Y.: Blow-up prevention by nonlinear diffusion in a 2D Keller-Segel-Navier-Stokes system with rotational flux. J. Differ. Equ. 268, 7092–7120 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank the referee for numerous remarks which significantly improved this work. This work is partially supported by Shandong Provincial Science Foundation for Outstanding Youth (No. ZR2018JL005) and the National Natural Science Foundation of China (No. 11601215).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiashan Zheng.

Additional information

Communicated by L. Caffarelli.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, J. Eventual smoothness and stabilization in a three-dimensional Keller–Segel–Navier–Stokes system with rotational flux. Calc. Var. 61, 52 (2022). https://doi.org/10.1007/s00526-021-02164-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-021-02164-6

Mathematics Subject Classification

Navigation