Skip to main content
Log in

Restriction of heat equation with Newton–Sobolev data on metric measure space

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

On a complete doubling metric measure space \(({\mathcal {X}},d,\mu )\) supporting the weak Poincaré inequality, by establishing some capacitary strong-type inequalities for the Hardy–Littlewood maximal operator, we characterize such a measure \(\nu \) on \({\mathcal {X}}\times {\mathbb {R}}_+\) that \(f\mapsto \int _{{\mathcal {X}}} p_{t^2}(\cdot ,y)f(y)\,d\mu (y)\) is bounded from Newton–Sobolev space \(N^{1,p}({\mathcal {X}})\) under \(p\in [1,\infty )\) into the Lebesgue space \(L^q({\mathcal {X}}\times {\mathbb {R}}_+,\nu )\) with \(q\in {\mathbb {R}}_+\), where the kernel \(p_t\) satisfies certain two-sided estimate. This offers a priori estimate for the solution to the heat equation with a Newton–Sobolev data on the given metric measure space \({\mathcal {X}}\). Via taking \(t\rightarrow 0\), a characterization of \(\nu \) on \({\mathcal {X}}\) ensuring the continuity of \(N^{1,p}({\mathcal {X}})\subset L^q({\mathcal {X}},\nu )\) is also obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aalto, D., Kinnunen, J.: The discrete maximal operator in metric spaces. J. Anal. Math. 111, 369–390 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adams, D.R.: A note on Choquet integrals with respect to Hausdorff capacity. In: Cwikel, M., Peetre, J., Sagher, Y., Wallin, H. (eds.) Function Spaces and Applications (Lund, 1986), pp. 115–124, Lecture Notes in Math. 1302. Springer, Berlin (1988)

  3. Adams, D.R.: Choquet integrals in potential theory. Publ. Mat. 42, 3–66 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Adams, D.R., Hedberg, L.I.: Function Spaces and Potential Theory. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  5. Aikawa, H., Ohtsuka, M.: Extremal length of vector measures. Ann. Acad. Sci. Fenn. Math. 24, 61–88 (1999)

    MathSciNet  MATH  Google Scholar 

  6. Ambrosio, L., Mondino, A., Savare, G.: Nonlinear diffusion equations and curvature conditions in metric measure spaces. Mem. Am. Math. Soc. (to appear)

  7. Anger, B.: Representations of capacities. Math. Ann. 229, 245–258 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  8. Aronson, D.G.: Bounds for the fundamental solution of a parabolic equation. Bull. Am. Math. Soc. 73, 890–896 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  9. Barlow, M.T., Bass, R.F.: Brownian motion and harmonic analysis on Sierpinski carpets. Can. J. Math. 54, 673–744 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Barlow, M.T., Grigor’yan, A., Kumagai, T.: On the equivalence of parabolic Harnack inequalities and heat kernel estimates. J. Math. Soc. Jpn 64, 1091–1146 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Björn, A., Björn, J.: Nonlinear Potential Theory on Metric Spaces, EMS Tracts in Mathematics 17. European Mathematical Society (EMS), Zürich (2011)

    Book  MATH  Google Scholar 

  12. Björn, A., Björn, J.: The variational capacity with respect to nonopen sets in metric spaces. Potential Anal. 40, 57–80 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cheeger, J.: Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9, 428–517 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Choquet, G.: Theory of capacities. Ann. Inst. Fourier (Grenoble) 5, 131–295 (1953–54)

  15. Coifman, R.R., Weiss, G.: Analyse Harmonique Non-commutative sur Certains Espaces Homogènes. Étude de Certaines Intégrales Singulières. Lecture Notes in Math. 242. Springer, Berlin (1971)

    Book  MATH  Google Scholar 

  16. Coifman, R.R., Weiss, G.: Extensions of Hardy spaces and their use in analysis. Bull. Am. Math. Soc. 83, 569–645 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  17. Coulhon, T.: Heat kernels on non-compact Riemannian manifolds: a partial survey, Séminaire de Théorie Spectrale et Géométrie, No. 15, Année 1996–1997, 167–187, Sémin. Théor. Spectr. Géom. 15, Univ. Grenoble I, Saint-Martin-d’Héres (1996)

  18. Dodziuk, J.: Maximum principle for parabolic inequalities and the heat flow on open manifolds. Indiana Univ. Math. J. 32, 703–716 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  19. Donnelly, H.: Positive solutions of the heat and eigenvalue equations on Riemannian manifolds. In: Naveira, A.M., Ferrández, A., Mascaró, F. (eds.) DifferentialGeometry, Peñscola 1985, pp. 143–151, LectureNotes inMath. 1209. Springer, Berlin (1986)

  20. Donnelly, H.: Uniqueness of positive solutions of the heat equation. Proc. Am. Math. Soc. 99, 353–356 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  21. Erbar, M., Kuwada, K., Sturm, K.T.: On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces. Invent. Math. 201, 993–1071 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fuglede, B.: Extremal length and functional completion. Acta. Math. 98, 171–218 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  23. Grigor’yan, A.: The heat equation on noncompact Riemannian manifolds. Mat. Sb. 182, 55–87 (1991)

    MATH  Google Scholar 

  24. Grigor’yan, A.: Heat kernels and function theory on metric measure spaces. Contemp. Math. 338, 143–172 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Grigor’yan, A., Hu, J.: Off-diagonal upper estimates for the heat kernel of the Dirichlet forms on metric spaces. Invent. Math. 174, 81–126 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Grigor’yan, A., Hu, J., Lau, K.-S.: Heat kernels on metric measure spaces and an application to semilinear elliptic equations. Trans. Am. Math. Soc. 355, 2065–2095 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Grigor’yan, A., Liu, L.: Heat kernel and Lipschitz–Besov spaces. Forum Math. 27, 3567–3613 (2015)

    MathSciNet  MATH  Google Scholar 

  28. Grigor’yan, A., Telcs, A.: Two-sided estimates of heat kernels on metric measure spaces. Ann. Probab. 40, 1212–1284 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Gyrya, P., Saloff-Coste, L.: Neumann and Dirichlet heat kernels in inner uniform domains. Astérisque 336, viii+144 (2011)

  30. Hajłasz, P., Koskela, P.: Sobolev Met Poincaré. Mem. Am. Math. Soc. 145(688) x+101 (2000)

  31. Hakkarainen, H., Kinnunen, J.: The BV-capacity in metric spaces. Manuscr. Math. 132, 51–73 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hakkarainen, H., Shanmugalingam, N.: Comparisons of relative BV-capacities and Sobolev capacity in metric spaces. Nonlinear Anal. 74, 5525–5543 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Heinonen, J.: Lectures on Analysis on Metric Spaces. Springer, New York (2001)

    Book  MATH  Google Scholar 

  34. Heinonen, J., Koskela, P.: Quasiconformal maps in metric spaces with controlled geometry. Acta Math. 181, 1–61 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  35. Heinonen, J., Koskela, P., Shanmugalingam, N., Tyson, J.: Sobolev Spaces on Metric Measure Spaces: An Approach Based on Upper Gradients. Cambridge Studies in Advanced Mathematics 44. Cambridge University Press, Cambridge (2015)

    Book  MATH  Google Scholar 

  36. Hino, M.: Indices of Dirichlet forms. Sugaku Expositions 30, 187–205 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Jiang, R., Li, H., Zhang, H.: Heat kernel bounds on metric measure spaces and some applications. Potential Anal. 44, 601–627 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kinnunen, J., Korte, R., Shanmugalingam, N., Tuominen, H.: Lebesgue points and capacities via the boxing inequality in metric spaces. Indiana Univ. Math. J. 57, 401–430 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. Kinnunen, J., Latvala, V.: Lebesgue points for Sobolev functions on metric spaces. Rev. Mat. Iberoam. 18, 685–700 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  40. Kinnunen, J., Shanmugalingam, N.: Regularity of quasi-minimizers on metric spaces. Manuscr. Math. 105, 401–423 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  41. Korevaar, J.N., Schoen, R.M.: Sobolev spaces and harmonic maps for metric space targets. Commun. Anal. Geom. 1, 561–659 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  42. Korobenko, L., Maldonado, D., Rios, C.: From Sobolev inequality to doubling. Proc. Am. Math. Soc. 143, 4017–4028 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  43. Koskela, P., MacManus, P.: Quasiconformal mappings and Sobolev spaces. Studia Math. 131, 1–17 (1998)

    MathSciNet  MATH  Google Scholar 

  44. Koskela, P., Shanmugalingam, N., Tyson, J.T.: Dirichlet forms, Poincaré inequalities, and the Sobolev spaces of Korevaar and Schoen. Potential Anal. 21, 241–262 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  45. Li, P.: Large time behavior of the heat equation on complete manifolds with nonnegative Ricci curvature. Ann. Math. (2) 124, 1–21 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  46. Li, P., Yau, S.T.: On the parabolic kernel of the Schrödinger operator. Acta Math. (2) 156, 153–201 (1986)

    Article  Google Scholar 

  47. Lott, J., Villani, C.: Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. (2) 169, 903–991 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  48. Miranda Jr., M.: Functions of bounded variation on ”good” metric spaces. J. Math. Pures Appl. (9) 82, 975–1004 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  49. Orobitg, J., Verdera, J.: Choquet integrals, Hausdorff content and the Hardy–Littlewood maximal operator. Bull. Lond. Math. Soc. 30, 145–150 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  50. Rajala, T.: Local Poincaré inequalities from stable curvature conditions on metric spaces. Calc. Var. Partial Diff. Equ. 44, 477–494 (2012)

    Article  MATH  Google Scholar 

  51. Saloff-Coste, L.: A note on Poincaré, Sobolev, and Harnack inequalities. Internat. Math. Res. Notices 2, 27–38 (1992)

    Article  MATH  Google Scholar 

  52. Saloff-Coste, L.: Aspects of Sobolev-Type Inequalities. London Mathematical Society Lecture Note Series 289. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  53. Shanmugalingam, N.: Newtonian spaces: an extension of Sobolev spaces to metric measure spaces, Ph.D. thesis (1999)

  54. Shanmugalingam, N.: Newtonian spaces: an extension of Sobolev spaces to metric measure spaces. Rev. Mat. Iberoam. 16, 243–279 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  55. Sturm, K.T.: Diffusion processes and heat kernels on metric spaces. Ann. Probab. 26, 1–55 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  56. Sturm, K.T.: On the geometry of metric measure spaces I. Acta Math. 196, 65–131 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  57. Sturm, K.T.: On the geometry of metric measure spaces II. Acta Math. 196, 133–177 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  58. Väisäla, J.: Lectures on \(n\)-Dimensional Quasiconformal Mapping. Lecture notes in Mathematics 229. Springer, Berlin (1971)

    Book  MATH  Google Scholar 

  59. Varopoulos, NTh, Saloff-Coste, L., Coulhon, T.: Analysis and Geometry on Groups. Cambridge Tracts in Mathematics 100. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  60. Xiao, J.: Carleson embeddings for Sobolev spaces via heat equation. J. Differ. Equ. 224, 277–295 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  61. Yang, D., Yuan, W.: A note on dyadic Hausdorff capacities. Bull. Sci. Math. 132, 500–509 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  62. Ziemer, W.P.: Weakly Differentiable Functions. Springer, New York (1989)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for several helpful comments on the original version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Yuan.

Additional information

Communicated by R. Schoen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

L. Liu was supported by NNSF of China Grant # 11771446; J. Xiao was supported by NSERC of Canada Grant # 202979463102000; D. Yang was supported by NNSF of China Grant # 11571039 and #11671185; W. Yuan (the corresponding author) was supported by NNSF of China Grant # 11871100; L. Liu, D. Yang and W. Yuan were also supported by NNSF of China Grant #11761131002.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Xiao, J., Yang, D. et al. Restriction of heat equation with Newton–Sobolev data on metric measure space. Calc. Var. 58, 165 (2019). https://doi.org/10.1007/s00526-019-1611-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-019-1611-3

Mathematics Subject Classification

Navigation