Skip to main content
Log in

The Variational Capacity with Respect to Nonopen Sets in Metric Spaces

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

We pursue a systematic treatment of the variational capacity on metric spaces and give full proofs of its basic properties. A novelty is that we study it with respect to nonopen sets, which is important for Dirichlet and obstacle problems on nonopen sets, with applications in fine potential theory. Under standard assumptions on the underlying metric space, we show that the variational capacity is a Choquet capacity and we provide several equivalent definitions for it. On open sets in weighted R n it is shown to coincide with the usual variational capacity considered in the literature. Since some desirable properties fail on general nonopen sets, we introduce a related capacity which turns out to be a Choquet capacity in general metric spaces and for many sets coincides with the variational capacity. We provide examples demonstrating various properties of both capacities and counterexamples for when they fail. Finally, we discuss how a change of the underlying metric space influences the variational capacity and its minimizing functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adamowicz, T., Shanmugalingam, N.: Non-conformal Loewner type estimates for modulus of curve families. Ann. Acad. Sci. Fenn. Math. 35, 609–626 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  2. Adamowicz, T., Björn, A., Björn, J., Shanmugalingam, N.: Prime ends for domains in metric spaces. Adv. Math. 238, 459–505 (2013). doi:10.1016/j.aim.2013.01.014

    Article  MATH  MathSciNet  Google Scholar 

  3. Aikawa, H., Essén, M.: Potential Theory—Selected Topics. Lecture Notes in Math., vol. 1633. Springer, Berlin–Heidelberg (1996)

    MATH  Google Scholar 

  4. Björn, A.: A regularity classification of boundary points for p-harmonic functions and quasiminimizers. J. Math. Anal. Appl. 338, 39–47 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Björn, A.: Cluster sets for Sobolev functions and quasiminimizers. J. Anal. Math. 112, 49–77 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Björn, A., Björn, J.: Nonlinear Potential Theory on Metric Spaces. EMS Tracts in Mathematics, vol. 17. European Math. Soc., Zurich (2011)

    Book  MATH  Google Scholar 

  7. Björn, A., Björn., J.: Obstacle and Dirichlet problems on arbitrary nonopen sets in metric spaces, and fine topology. arXiv:1208.4913 (2012). Accessed 24 Aug 2012

  8. Björn, A., Björn, J., Shanmugalingam, N.: The Dirichlet problem for p-harmonic functions on metric spaces. J. Reine Angew. Math. 556, 173–203 (2003)

    MATH  MathSciNet  Google Scholar 

  9. Björn, A., Björn, J., Shanmugalingam, N.: Quasicontinuity of Newton–Sobolev functions and density of Lipschitz functions on metric spaces. Houst. J. Math. 34, 1197–1211 (2008)

    MATH  Google Scholar 

  10. Björn, A., Björn, J., Mäkäläinen, T., Parviainen, M.: Nonlinear balayage on metric spaces. Nonlinear Anal. 71, 2153–2171 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Björn, A., Björn, J., Parviainen, M.: Lebesgue points and the fundamental convergence theorem for superharmonic functions on metric spaces. Rev. Mat. Iberoam. 26, 147–174 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. Björn, A., Björn, J., Shanmugalingam, N.: The Dirichlet problem for p-harmonic functions with respect to the Mazurkiewicz boundary, and new capacities. arXiv:1302.3887 (2013). Accessed 15 Feb 2013

  13. Björn, J.: Boundary continuity for quasiminimizers on metric spaces. Ill. J. Math. 46, 383–403 (2002)

    MATH  Google Scholar 

  14. Björn, J.: Wiener criterion for Cheeger p-harmonic functions on metric spaces. In: Potential Theory in Matsue. Advanced Studies in Pure Mathematics, vol. 44, pp. 103–115. Mathematical Society of Japan, Tokyo (2006)

  15. Björn, J.: Fine continuity on metric spaces. Manuscr. Math. 125, 369–381 (2008)

    Article  MATH  Google Scholar 

  16. Björn, J.: Necessity of a Wiener type condition for boundary regularity of quasiminimizers and nonlinear elliptic equations. Calc. Var. Partial Differ. Equ. 35, 481–496 (2009)

    Article  MATH  Google Scholar 

  17. Björn, J., MacManus, P., Shanmugalingam, N.: Fat sets and pointwise boundary estimates for p-harmonic functions in metric spaces. J. Anal. Math. 85, 339–369 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  18. Cheeger, J.: Differentiability of Lipschitz functions on metric spaces. Geom. Funct. Anal. 9, 428–517 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  19. Farnana, Z.: Pointwise regularity for solutions of double obstacle problems on metric spaces. Math. Scand. 109, 185–200 (2011)

    MATH  MathSciNet  Google Scholar 

  20. Hajłasz, P.: Sobolev spaces on metric-measure spaces. In: Auscher, P., Coulhon, T., Grigor’yan, A. (eds.) Heat Kernels and Analysis on Manifolds, Graphs and Metric Spaces (Paris, 2002). Contemp. Math., vol. 338, pp. 173–218. Amer. Math. Soc., Providence, RI (2003)

    Chapter  Google Scholar 

  21. Hajłasz, P., Koskela, P.: Sobolev met Poincaré. Mem. Am. Math. Soc. vol. 145, issue 688 (2000)

  22. Heinonen, J.: Lectures on Analysis on Metric Spaces. Springer, New York (2001)

    Book  MATH  Google Scholar 

  23. Heinonen, J., Koskela, P.: Quasiconformal maps in metric spaces with controlled geometry. Acta Math. 181, 1–61 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  24. Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations, 2nd edn. Dover, Mineola, NY (2006)

    MATH  Google Scholar 

  25. Holopainen, I., Shanmugalingam, N.: Singular functions on metric measure spaces. Collect. Math. 53, 313–332 (2002)

    MATH  MathSciNet  Google Scholar 

  26. Kallunki [Rogovin], S., Shanmugalingam, N.: Modulus and continuous capacity. Ann. Acad. Sci. Fenn. Math. 26, 455–464 (2001)

    MathSciNet  Google Scholar 

  27. Kilpeläinen, T., Malý, J.: The Wiener test and potential estimates for quasilinear elliptic equations. Acta Math. 172, 137–161 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  28. Kinnunen, J., Martio, O.: The Sobolev capacity on metric spaces. Ann. Acad. Sci. Fenn. Math. 21, 367–382 (1996)

    MATH  MathSciNet  Google Scholar 

  29. Kinnunen, J., Martio, O.: Choquet property for the Sobolev capacity in metric spaces. In: Proceedings on Analysis and Geometry (Novosibirsk, Akademgorodok, 1999), pp. 285–290. Sobolev Institute Press, Novosibirsk (2000)

    Google Scholar 

  30. Kinnunen, J., Martio, O.: Nonlinear potential theory on metric spaces. Ill. J. Math. 46, 857–883 (2002)

    MATH  MathSciNet  Google Scholar 

  31. Kinnunen, J., Martio, O.: Potential theory of quasiminimizers. Ann. Acad. Sci. Fenn. Math. 28, 459–490 (2003)

    MATH  MathSciNet  Google Scholar 

  32. Kinnunen, J., Korte, R.: Characterizations of Sobolev inequalities on metric spaces. J. Math. Anal. Appl. 344, 1093–1104 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  33. Kinnunen, J., Korte, R., Shanmugalingam, N., Tuominen, H.: Lebesgue points and capacities via the boxing inequality in metric spaces. Indiana Univ. Math. J. 57(1), 401–430 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  34. Korte, R.: Geometric implications of the Poincaré inequality. Results Math. 50, 93–107 (2007)

    Article  MathSciNet  Google Scholar 

  35. Korte, R.: A Caccioppoli estimate and fine continuity for superminimizers on metric spaces. Ann. Acad. Sci. Fenn. Math. 33, 597–604 (2008)

    MATH  MathSciNet  Google Scholar 

  36. Korte, R., Shanmugalingam, N.: Equivalence and self-improvement of p-fatness and Hardy’s inequality, and association with uniform perfectness. Math. Z. 264, 99–110 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  37. Korte, R., Lehrbäck, J., Tuominen, H.: The equivalence between pointwise Hardy inequalities and uniform fatness. Math. Ann. 351, 711–731 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  38. Korte, R., Marola, N., Shanmugalingam, N.: Quasiconformality, homeomorphisms between metric measure spaces preserving quasiminimizers, and uniform density property. Ark. Mat. 50, 111–134 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  39. Koskela, P., MacManus, P.: Quasiconformal mappings and Sobolev spaces. Studia Math. 131, 1–17 (1998)

    MATH  MathSciNet  Google Scholar 

  40. Lehrbäck, J.: Neighbourhood capacities. Ann. Acad. Sci. Fenn. Math. 37, 35–51 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  41. Lehrbäck, J., Shanmugalingam, N.: Quasiadditivity of variational capacity. arXiv:1211.6933 (2012). Accessed 29 Nov 2012

  42. Lindqvist, P., Martio, O.: Two theorems of N. Wiener for solutions of quasilinear elliptic equations. Acta Math. 155, 153–171 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  43. Luzin, N.N.: Sur les propriétés des fonctions mesurables. C. R. Acad. Sci. Paris 154, 1688–1690 (1912)

    Google Scholar 

  44. Malý, J., Ziemer, W.P.: Fine Regularity of Solutions of Elliptic Partial Differential Equations. Math. Surveys and Monographs, vol. 51. Amer. Math. Soc., Providence, RI (1997)

    Book  MATH  Google Scholar 

  45. Martio, O.: Capacity and potential estimates for quasiminimizers. Complex Anal. Oper. Theory 5, 683–699 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  46. Maz′ya, V.G.: On the continuity at a boundary point of solutions of quasi-linear elliptic equations. Vestnik Leningrad. Univ. Mat. Mekh. Astronom. 25(13), 42–55 (1970) (Russian). English transl.: Vestnik Leningrad Univ. Math. 3, 225–242 (1976)

  47. Shanmugalingam, N.: Newtonian spaces: an extension of Sobolev spaces to metric measure spaces. Rev. Mat. Iberoam. 16, 243–279 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  48. Shanmugalingam, N.: Harmonic functions on metric spaces. Ill. J. Math. 45, 1021–1050 (2001)

    MATH  MathSciNet  Google Scholar 

  49. Vitali, G.: Una proprietà delle funzioni misurabili. R. Ist. Lombardo Sci. Lett. Rend. 38, 599–603 (1905)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jana Björn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Björn, A., Björn, J. The Variational Capacity with Respect to Nonopen Sets in Metric Spaces. Potential Anal 40, 57–80 (2014). https://doi.org/10.1007/s11118-013-9341-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-013-9341-1

Keywords

Mathematics Subject Classifications (2010)

Navigation