Skip to main content
Log in

The BV-capacity in metric spaces

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

We study basic properties of the BV-capacity and Sobolev capacity of order one in a complete metric space equipped with a doubling measure and supporting a weak Poincaré inequality. In particular, we show that the BV-capacity is a Choquet capacity and the Sobolev 1-capacity is not. However, these quantities are equivalent by two sided estimates and they have the same null sets as the Hausdorff measure of codimension one. The theory of functions of bounded variation plays an essential role in our arguments. The main tool is a modified version of the boxing inequality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio L.: Some fine properties of sets of finite perimeter in Ahlfors regular metric measure spaces. Adv. Math. 159(1), 51–67 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ambrosio L.: Fine properties of sets of finite perimeter in doubling metric measure spaces. Calculus of variations, nonsmooth analysis and related topics. Set-Valued Anal. 10(2–3), 111–128 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Björn, A., Björn, J.: Nonlinear potential theory in metric spaces (to appear)

  4. Björn, A., Björn, J., Parviainen, M.: Lebesgue points and the fundamental convergence theorem for superharmonic functions. Rev. Mat. Iberoam. (to appear)

  5. Björn A., Björn J., Shanmugalingam N.: Quasicontinuity of Newton–Sobolev functions and density of Lipschitz functions on metric spaces. Houst. Math. J. 34(4), 1197–1211 (2008)

    MATH  Google Scholar 

  6. Choquet G.: Forme abstraite du téorème de capacitabilité (French). Ann. Inst. Fourier. (Grenoble) 9, 83–89 (1959)

    MATH  MathSciNet  Google Scholar 

  7. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton (1992)

  8. Federer, H.: Geometric Measure Theory. Die Grundlehren der mathematischen Wissenschaften, Band 153. Springer-Verlag Inc., New York (1969)

  9. Federer, H., Ziemer, W.P.: The Lebesgue set of a function whose distribution derivatives are p-th power summable. Indiana Univ. Math. J. 22, 139–158 (1972/73)

    Google Scholar 

  10. Giusti, E.: Minimal Surfaces and Functions of Bounded Variation. Monographs in Mathematics, vol. 80. Birkhäuser Verlag, Basel (1984)

  11. Gol’dshtein V., Troyanov M.: Capacities in metric spaces. Integral Equ. Oper. Theory 44(2), 212–242 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gustin W.: Boxing inequalities. J. Math. Mech. 9, 229–239 (1960)

    MATH  MathSciNet  Google Scholar 

  13. Hajłasz, P.: Sobolev spaces on metric-measure spaces. In: Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces (Paris, 2002). Contemporary Mathematics, vol. 338, pp. 173–218. American Mathematical Society, Providence (2003)

  14. Hajłasz, P., Koskela, P.: Sobolev met Poincaré. Mem. Am. Math. Soc. 145(688) (2000)

  15. Heinonen, J.: Lectures on Analysis on Metric Spaces. Universitext, Springer-Verlag, New York (2001)

  16. Kallunki S., Shanmugalingam N.: Modulus and continuous capacity. Ann. Acad. Sci. Fenn. Math. 26(2), 455–464 (2001)

    MATH  MathSciNet  Google Scholar 

  17. Kilpeläinen T., Kinnunen J., Martio O.: Sobolev spaces with zero boundary values on metric spaces. Potential Anal. 12(3), 233–247 (2000)

    Article  MathSciNet  Google Scholar 

  18. Kinnunen J., Korte R., Shanmugalingam N., Tuominen H.: Lebesgue points and capacities via the boxing inequality in metric spaces. Indiana Univ. Math. J. 57(1), 401–430 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kinnunen J., Latvala V.: Lebesgue points for Sobolev functions on metric spaces. Rev. Math. Iberoam. 18, 685–700 (2002)

    MATH  MathSciNet  Google Scholar 

  20. Kinnunen J., Martio O.: The Sobolev capacity on metric spaces. Ann. Acad. Sci. Fenn. Math. 21(2), 367–382 (1996)

    MATH  MathSciNet  Google Scholar 

  21. Kinnunen, J., Martio, O.: Choquet property for the Sobolev capacity in metric spaces. In: Proceedings on Analysis and Geometry (Russian) (Novosibirsk Akademgorodok, 1999), pp. 285–290. Izdat. Ross. Akad. Nauk Sib. Otd. Inst. Math., Novosibirsk (2000)

  22. Kinnunen J., Martio O.: Sobolev space properties of superharmonic functions on metric spaces. Results Math. 44(1–2), 114–129 (2003)

    MATH  MathSciNet  Google Scholar 

  23. Mäkäläinen T.: Adams inequality on metric measure spaces. Rev. Math. Iberoam. 25(2), 533–558 (2009)

    MATH  Google Scholar 

  24. Maz’ja, V.G.: Sobolev Spaces. Translated from the Russian by T. O. Shaposhnikova. Springer Series in Soviet Mathematics. Springer-Verlag, Berlin (1985)

  25. Miranda M.: Functions of bounded variation on “good” metric spaces. J. Math. Pures Appl. (9) 82(8), 975–1004 (2003)

    MATH  MathSciNet  Google Scholar 

  26. Shanmugalingam N.: Newtonian spaces: an extension of Sobolev spaces to metric measure spaces. Rev. Math. Iberoam. 16(2), 243–279 (2000)

    MATH  MathSciNet  Google Scholar 

  27. Ziemer, W.P.: Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation. Graduate Texts in Mathematics, vol. 120. Springer-Verlag, New York (1989)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juha Kinnunen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hakkarainen, H., Kinnunen, J. The BV-capacity in metric spaces. manuscripta math. 132, 51–73 (2010). https://doi.org/10.1007/s00229-010-0337-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-010-0337-5

Mathematics Subject Classification (2000)

Navigation