Skip to main content
Log in

A multi-step relay implementation of the successive iteration of analysis and design method for large-scale natural frequency-related topology optimization

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Large-scale natural frequency-related topology optimization problems pose a great challenge due to the high computational cost required by the iterative computation of the system eigenvalues and their sensitivities in each design iteration. This paper presents a new framework based on a multi-step relay strategy in conjunction with the idea of successive iteration of analysis and design (SIAD), to find high-quality solutions at affordable computational costs. The method starts from a relatively coarse finite element discretization, and then use gradually refined meshes to improve the design resolution. For a given level of mesh resolution, the method interleaves the eigenvalue solution routine with the optimization iterations to achieves sequential approximations of the eigenpairs along with the structural design evolution, thus avoiding the time-consuming eigenpair analysis in each optimization iteration. By sequentially solving the optimization problem and projecting intermediate designs and the corresponding approximate eigenmodes from a coarser mesh onto finer meshes, the proposed multi-step relay method can further substantially alleviate the computational burden and generate high-resolution boundaries in the final design. Numerical examples show that this method can be used to solve natural frequency maximization topology optimization problems with millions of degrees of freedom on a desktop workstation, and is much more efficient than the conventional double-loop method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidiscip Optim 48:1031–1055

    Article  MathSciNet  Google Scholar 

  2. Zargham S, Ward TA, Ramli R, Badruddin IA (2016) Topology optimization: a review for structural designs under vibration problems. Struct Multidiscip Optim 53:1157–1177

    Article  MathSciNet  Google Scholar 

  3. Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69:635–654

    Article  Google Scholar 

  4. Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192:227–246

    Article  ADS  MathSciNet  Google Scholar 

  5. Allaire G, Jouve F, Toader A-M (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194:363–393

    Article  ADS  MathSciNet  Google Scholar 

  6. Huang X, Xie Y-M (2010) A further review of ESO type methods for topology optimization. Struct Multidiscip Optim 41:671–683

    Article  Google Scholar 

  7. Huang X, Zuo ZH, Xie Y (2010) Evolutionary topological optimization of vibrating continuum structures for natural frequencies. Comput Struct 88:357–364

    Article  Google Scholar 

  8. Vicente WM, Zuo ZH, Pavanello R, Calixto TKL, Picelli R, Xie YM (2016) Concurrent topology optimization for minimizing frequency responses of two-level hierarchical structures. Comput Methods Appl Mech Eng 301:116–136

    Article  ADS  MathSciNet  Google Scholar 

  9. Sanders C, Norato J, Walsh T, Aquino W (2020) An error-in-constitutive equations strategy for topology optimization for frequency-domain dynamics. Comput Methods Appl Mech Eng 372:113330

    Article  ADS  MathSciNet  Google Scholar 

  10. Liu H, Zhang WH, Gao T (2015) A comparative study of dynamic analysis methods for structural topology optimization under harmonic force excitations. Struct Multidiscip Optim 51:1321–1333

    Article  MathSciNet  Google Scholar 

  11. Liang X, Du JB (2019) Concurrent multi-scale and multi-material topological optimizationof vibro-acoustic structures. Comput Methods Appl Mech Eng 349:117–148

    Article  ADS  Google Scholar 

  12. Díaz AR, Kikuchi N (1992) Solutions to shape and topology eigenvalue optimization problems using a homogenization method. Int J Numer Methods Eng 35:1487–1502

    Article  MathSciNet  Google Scholar 

  13. Ma ZD, Cheng HC, Kikuchi N (1994) Structural design for obtaining desired eigenfrequencies by using the topology and shape optimization method. Comput Syst Eng 5:77–89

    Article  Google Scholar 

  14. Krog LA, Olhoff N (1999) Optimum topology and reinforcement design of disk and plate structures with multiple stiffness and eigenfrequency objectives. Comput Struct 72:535–563

    Article  Google Scholar 

  15. Jensen JS, Pedersen NL (2006) On maximal eigenfrequency separation in two-material structures: the 1D and 2D scalar cases. J Sound Vib 289:967–986

    Article  ADS  Google Scholar 

  16. Pedersen NL (2000) Maximization of eigenvalues using topology optimization. Struct Multidiscip Optim 20:2–11

    Article  Google Scholar 

  17. Van Keulen F, Haftka R, Kim N (2005) Review of options for structural design sensitivity analysis. Part 1: linear systems. Comput Methods Appl Mech Eng 194:3213–3243

    Article  ADS  Google Scholar 

  18. Du J, Olhoff N (2007) Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps. Struct Multidiscip Optim 34:91–110

    Article  MathSciNet  Google Scholar 

  19. Zhou P, Du J, Lu Z (2017) Topology optimization of freely vibrating continuum structures based on nonsmooth optimization. Struct Multidiscip Optim 56(3):603–618

    Article  MathSciNet  Google Scholar 

  20. Yoon GH, Donoso A, Bellido JC, Ruiz D (2020) Highly efficient general method for sensitivity analysis of eigenvectors with repeated eigenvalues without passing through adjacent eigenvectors. Int J Numer Methods Eng 121:4473–4492

    Article  MathSciNet  Google Scholar 

  21. Li Z, Shi T, Xia Q (2017) Eliminate localized eigenmodes in level set based topology optimization for the maximization of the first eigenfrequency of vibration. Adv Eng Softw 107:59–70

    Article  CAS  Google Scholar 

  22. Yoon GH (2010) Maximizing the fundamental eigenfrequency of geometrically nonlinear structures by topology optimization based on element connectivity parameterization. Comput Struct 88:120–133

    Article  Google Scholar 

  23. Gao W, Wang F, Sigmund O (2020) Systematic design of high-Q prestressed micro membrane resonators. Comput Methods Appl Mech Eng 361:112692

    Article  ADS  MathSciNet  Google Scholar 

  24. Wang X, Zhang P, Ludwick S, Belski E, To AC (2018) Natural frequency optimization of 3D printed variable-density honeycomb structure via a homogenization-based approach. Addit Manuf 20:189–198

    Google Scholar 

  25. He J, Kang Z (2018) Achieving directional propagation of elastic waves via topology optimization. Ultrasonics 82:1–10

    Article  PubMed  Google Scholar 

  26. Men H, Lee KY, Freund RM, Peraire J, Johnson SG (2014) Robust topology optimization of three-dimensional photonic-crystal band-gap structures. Opt Express 22:22632–22648

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Li Y, Huang X, Meng F, Zhou S (2016) Evolutionary topological design for phononic band gap crystals. Struct Multidiscip Optim 54:595–617

    Article  MathSciNet  Google Scholar 

  28. Takezawa A, Yamamoto T, Zhang X, Yamakawa K, Nakano S, Kitamura M (2019) An objective function for the topology optimization of sound-absorbing materials. J Sound Vib 443:804–819

    Article  ADS  Google Scholar 

  29. Liu T, Zhu JH, Zhang WH, Zhao H, Kong J, Gao T (2019) Integrated layout and topology optimization design of multi-component systems under harmonic base acceleration excitation. Struct Multidiscip Optim 59:1053–1073

    Article  MathSciNet  Google Scholar 

  30. Plocher J, Panesar A (2019) Review on design and structural optimisation in additive manufacturing: towards next-generation lightweight structures. Mater Des 183:108164

    Article  Google Scholar 

  31. Aage N, Lazarov BS (2013) Parallel framework for topology optimization using the method of moving asymptotes. Struct Multidiscip Optim 47:493–505

    Article  MathSciNet  Google Scholar 

  32. Bathe KJ (2013) The subspace iteration method—revisited. Comput Struct 126:177–183

    Article  Google Scholar 

  33. Kim TS, Kim JE, Kim YY (2004) Parallelized structural topology optimization for eigenvalue problems. Int J Solids Struct 41:2623–2641

    Article  Google Scholar 

  34. Andreassen E, Ferrari F, Sigmund O, Diaz AR (2018) Frequency response as a surrogate eigenvalue problem in topology optimization. Int J Numer Methods Eng 113:1214–1229

    Article  MathSciNet  Google Scholar 

  35. Ferrari F, Lazarov BS, Sigmund O (2018) Eigenvalue topology optimization via efficient multilevel solution of the frequency response. Int J Numer Methods Eng 115:872–892

    Article  MathSciNet  Google Scholar 

  36. Ferrari F, Sigmund O (2020) Towards solving large-scale topology optimization problems with buckling constraints at the cost of linear analyses. Comput Methods Appl Mech Eng 363:112911

    Article  ADS  MathSciNet  Google Scholar 

  37. Kang Z, He J, Shi L, Miao Z (2020) A method using successive iteration of analysis and design for large-scale topology optimization considering eigenfrequencies. Comput Methods Appl Mech Eng 362:112847

    Article  ADS  MathSciNet  Google Scholar 

  38. Bourdin B (2001) Filters in topology optimization. Int J Numer Methods Eng 50:2143–2158

    Article  MathSciNet  Google Scholar 

  39. Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190:3443–3459

    Article  ADS  Google Scholar 

  40. Stolpe M, Svanberg K (2001) An alternative interpolation scheme for minimum compliance topology optimization. Struct Multidiscip Optim 22:116–124

    Article  Google Scholar 

  41. Aage N, Andreassen E, Lazarov BS (2015) Topology optimization using PETSc: an easy-to-use, fully parallel, open source topology optimization framework. Struct Multidiscip Optim 51:565–572

    Article  MathSciNet  Google Scholar 

  42. https://petsc.org/

  43. Squillacote AH, Ahrens J, Law C, Geveci B, Moreland K, King B (2007) The paraview guide. Kitware Inc, Clifton Park

    Google Scholar 

  44. Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24:359–373

    Article  MathSciNet  Google Scholar 

  45. Schaefer S, McPhail T, Warren J (2006) Image deformation using moving least squares. ACM Trans Gr 25:533–540

    Article  Google Scholar 

Download references

Acknowledgements

The support of the National Natural Science Foundation of China (11872140) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhan Kang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, L., Li, J., Liu, P. et al. A multi-step relay implementation of the successive iteration of analysis and design method for large-scale natural frequency-related topology optimization. Comput Mech 73, 403–418 (2024). https://doi.org/10.1007/s00466-023-02372-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-023-02372-1

Keywords

Navigation