Skip to main content
Log in

Topology optimization of freely vibrating continuum structures based on nonsmooth optimization

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

The non-differentiability of repeated eigenvalues is one of the key difficulties to obtain the optimal solution in the topology optimization of freely vibrating continuum structures. In this paper, the bundle method, which is a very promising one in the nonsmooth optimization algorithm family, is proposed and implemented to solve the problem of eigenfrequency optimization of continuum. The bundle method is well-known in the mathematical programming community, but has never been used to solve the problems of topology optimization of continuum structures with respect to simple or multiple eigenfrequencies. The advantage of this method is that the specified information of iteration history may be collected and utilized in a very efficient manner to ensure that the next stability center is closer to the optimal solution, so as to avoid the numerical oscillation in the iteration history. Moreover, in the present method, both the simple and multiple eigenfrequencies can be managed within a unified computational scheme. Several numerical examples are tested to validate the proposed method. Comparisons with nonlinear semidefinite programming method and 0–1 formulation based heuristic method show the advantages of the proposed method. It is showed that, the method can deal with the nonsmoothness of the repeated eigenvalues in topology optimization in a very effective and efficient manner without evaluating the multiplicity of the eigenvalues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Notes

  1. The problem (6) is not a standard LP problem, but since \( \hat{f} \) is piecewise-linear, (6) can be easily converted to a standard LP problem (Boyd and Vandenberghe 2004).

References

  • Achtziger W, Kocvara M (2007a) Structural topology optimization with eigenvalues. SIAM J Optim 18(4):1129–1164

    Article  MathSciNet  MATH  Google Scholar 

  • Achtziger W, Kocvara M (2007b) On the maximization of the fundamental eigenvalue in topology optimization. Struct Multidiscip Optim 34(3):181–195

    Article  MathSciNet  MATH  Google Scholar 

  • Allwright JC (1989) On maximizing the minimum eigenvalue of a linear combination of symmetric matrices. SIAM J Matrix Anal Appl 10(3):347–382

    Article  MathSciNet  MATH  Google Scholar 

  • Apkarian P, Noll D, Prot O (2008) A trust region spectral bundle method for nonconvex eigenvalue optimization. SIAM J Optim 19(1):281–306

    Article  MathSciNet  MATH  Google Scholar 

  • Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9):635–654

    MATH  Google Scholar 

  • Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications: Springer

  • Blanco AM, Bandoni JA (2003) Eigenvalue and singular value optimization. Mecanica Computational:1258–1272

  • Bourdin B (2001) Filters in topology optimization. Int J Numer Methods Eng 50(9):2143–2158

    Article  MathSciNet  MATH  Google Scholar 

  • Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Stanford

    Book  MATH  Google Scholar 

  • Chen S, Guo R, Meng G (2009) Second-order sensitivity of eigenpairs in multiple parameter structures. Appl Math Mech 30(12):1475–1487. doi:10.1007/s10483-009-1201-z

    Article  MathSciNet  MATH  Google Scholar 

  • Deaton JD, Grandhi RV (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49(1):1–38. doi:10.1007/s00158-013-0956-z

    Article  MathSciNet  Google Scholar 

  • Díaz AR, Kikuchi N (1992) Solutions to shape and topology eigenvalue optimization problems using a homogenization method. Int J Numer Methods Eng 35(7):1487–1502

    Article  MathSciNet  MATH  Google Scholar 

  • Du J, Olhoff N (2007) Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps. Struct Multidiscip Optim 34(2):91–110. doi:10.1007/s00158-007-0101-y

    Article  MathSciNet  MATH  Google Scholar 

  • Fan MKH, Nekooie B (1992) On minimizing the largest eigenvalue of a symmetric matrix. Paper presented at the Proceedings of the 31st IEEE Conference

  • Fiala J, Kočvara M, Stingl. M (2013) Penlab: a matlab solver for nonlinear semidefinite optimization. arXiv preprint arXiv: 1311.5240

  • Gomes HM (2011) Truss optimization with dynamic constraints using a particle swarm algorithm. Exp Syst Appl 38(1):957–968. doi:10.1016/j.eswa.2010.07.086

    Article  Google Scholar 

  • Grandhi R (1993) Structural optimization with frequency constraints — a review. AIAA J 31(12):2296–2303

    Article  MATH  Google Scholar 

  • Haarala M, Miettinen K, Mäkelä MM (2004) New limited memory bundle method for large- scale nonsmooth optimization. Optim Methods Softw 19(6):673–692

    Article  MathSciNet  MATH  Google Scholar 

  • Hare W, Sagastizábal C (2010) A redistributed proximal bundle method for nonconvex optimization. SIAM J Optim 20(5):2442–2473

    Article  MathSciNet  MATH  Google Scholar 

  • Hiriart-Urruty J (2013) Convex analysis and minimization algorithms ii : advanced theory and bundle methods: Springer Science & Business Media

  • Huang X, Zuo ZH, Xie YM (2010) Evolutionary topological optimization of vibrating continuum structures for natural frequencies. Comput Struct 88(5):357–364. doi:10.1016/j.compstruc.2009.11.011

    Article  Google Scholar 

  • Kanno Y, Ohsaki M (2001) Necessary and sufficient conditions for global optimality of eigenvalue optimization problems. Struct Multidiscip Optim 22(3):248–252

    Article  Google Scholar 

  • Karmitsa N, Mäkelä MM (2010) Adaptive limited memory bundle method for bound constrained large-scale nonsmooth optimization. Optimization 59(6)

  • Karmitsaa N, Bagirovb A, Mäkeläa MM (2012) Comparing different nonsmooth minimization methods and software. Optim Methods Softw 27(1)

  • Kaveh A, Ilchi Ghazaan M (2016) Optimal design of dome truss structures with dynamic frequency constraints. Struct Multidiscip Optim 53(3):605–621. doi:10.1007/s00158-015-1357-2

    Article  MathSciNet  Google Scholar 

  • Kaveh A, Zolghadr A (2013) Topology optimization of trusses considering static and dynamic constraints using the css. Appl Soft Comput 13(5):2727–2734. doi:10.1016/j.asoc.2012.11.014

    Article  Google Scholar 

  • Kim TS, Kim YY (2000) MAC-based mode-tracking in structural topology optimization. Comput Struct 74(3):375–383

    Article  MathSciNet  Google Scholar 

  • Kiwiel KC (1985) Methods of descent for nondifferentiable optimization. Springer, Berlin

    Book  MATH  Google Scholar 

  • Kočvara M, Sting M (2003) Pennon: a code for convex nonlinear and semidefinite programming. Optim Methods Softw 18(3):317–333

    Article  MathSciNet  MATH  Google Scholar 

  • Krog LA, Olhoff N (1999) Optimum topology and reinforcement design of disk and plate structures with multiple stiffness and eigenfrequency objectives. Comput Struct 72(4):535–563

    Article  MATH  Google Scholar 

  • Lewis AS, Overton ML (1996) Eigenvalue optimization. ACTA NUMERICA 5(5):149–190

    Article  MathSciNet  MATH  Google Scholar 

  • Ma Z, Kikuchi N (1995) Topological design for vibrating structures. Comput Methods Appl Mech Eng 121(1):259–280

    Article  MathSciNet  MATH  Google Scholar 

  • Mäkelä M (2002) Survey of bundle methods for nonsmooth optimization. Optim Methods Softw 17(1):1–29

    Article  MathSciNet  MATH  Google Scholar 

  • Masur EF, Mrdz Z (1979) Non-stationary optimality conditions in structural design. Int J Solids Struct 15(6):503–512

    Article  MATH  Google Scholar 

  • Miura H Jr, Schmit A (1978) Second order approximation of natural frequency constraints in structural synthesis. Int J Numer Methods Eng 13(2):337–351

    Article  MATH  Google Scholar 

  • MOSEK Aps (2015) The mosek optimization toolbox for matlab manual. Version 7.1 (revision 28)

  • Nocedal J, Wright SJ (2006) Numerical optimization: Springer

  • Overton ML (1988) On minimizing the maximum eigenvalue of a symmetric matrix. SIAM J Matrix Anal Appl 9(2):256–268

    Article  MathSciNet  MATH  Google Scholar 

  • Overton ML (1992) Large-scale optimization of eigenvalues. SIAM J Optim 2(1):88–120

    Article  MathSciNet  MATH  Google Scholar 

  • Overton ML, Womersley RS (1995) Second derivatives for optimizing eigenvalues of symmetric matrices

  • Parikh N, Boyd T (2014) Proximal algorithms. Found Trends Optim 1(3):127–239

    Article  Google Scholar 

  • Pedersen NL (2000) Maximization of eigenvalues using topology optimization. Struct Multidiscip Optim 20(1):2–11

    Article  MathSciNet  Google Scholar 

  • Peng X, Sui Y (2007) Topological optimization of the continuum structure with non-frequency-band constraints. ACTA Mech Solida Sin-Chin Edit 28(2):145–150

    Google Scholar 

  • Petersson J, Patriksson M (1997) Topology optimization of sheets in contact by a subgradient method. Int J Numer Methods Eng 40(7):1295–1321

    Article  MathSciNet  MATH  Google Scholar 

  • Rockafellar RT (2015) Convex analysis: Princeton university press

  • Sagastizábal C, Solodov M (2005) An infeasible bundle method for nonsmooth convex constrained optimization without a penalty function or a filter. SIAM J Optim 16(1):146–169

    Article  MathSciNet  MATH  Google Scholar 

  • Schramm H, Zowe J (1992) A version of the bundle idea for minimizing a nonsmooth function: conceptual idea, convergence analysis, numerical results. SIAM J Optim 2(1):121–152

    Article  MathSciNet  MATH  Google Scholar 

  • Seyranian AP, Lund E, Olhoff N (1994) Multiple eigenvalues in structural optimization problems. Struct Optim 8(4):207–227

    Article  Google Scholar 

  • Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33(4–5):401–424. doi:10.1007/s00158-006-0087-x

    Article  Google Scholar 

  • Sigmund O (2011) On the usefulness of non-gradient approaches in topology optimization. Struct Multidiscip Optim 43(5):589–596. doi:10.1007/s00158-011-0638-7

    Article  MathSciNet  MATH  Google Scholar 

  • Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim 16(1):68–75

    Article  Google Scholar 

  • Tcherniak D (2002) Topology optimization of resonating structures using simp method. Int J Numer Methods Eng 54(11):1605–1622

    Article  MATH  Google Scholar 

  • Te B, Da T (2001) Topology optimization of nonlinear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26–27):3443–3459

    Google Scholar 

  • Thore C (2016) Multiplicity of the maximum eigenvalue in structural optimization problems. Struct Multidiscip Optim 53(5):961–965. doi:10.1007/s00158-015-1380-3

    Article  MathSciNet  Google Scholar 

  • van Ackooij W, de Oliveira W (2014) Level bundle methods for constrained convex optimization with various oracles. Comput Optim Appl 57(3):555–597

    Article  MathSciNet  MATH  Google Scholar 

  • Wolkowicz H, Saigal R, Vandenberghe L (2012) Handbook of semidefinite programming: theory, algorithms, and applications: Springer Science

  • Xie YM, Steven GP (1996) Evolutionary structural optimization for dynamic problems. Comput Struct 58(6):1067–1073

    Article  MATH  Google Scholar 

  • Yang Y, Pang L, Ma X, Shen J (2014) Constrained nonconvex nonsmooth optimization via proximal bundle method. J Optim Theory Appl 163(3):900–925. doi:10.1007/s10957-014-0523-9

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang Y (2014) Topology optimization of continuous structure with frequency constraints and software development. Master, Beijing University of Technology, Beijing

    Google Scholar 

Download references

Acknowledgements

The research is supported by NSFC (11372154) which is gratefully acknowledged by the authors. Prof. Kocvara is also of great help for sharing the PENLAB package. In the online version of this paper, we offer some sample codes showing how to use the bundle method, the SDP method and the GA to solve all the examples in this paper. Some animations showing the iteration process of the examples in this paper are also available in the online resource. Readers interested in this paper are welcome to contact the corresponding author for more original codes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pingzhang Zhou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(MAT 2 kb)

ESM 2

(GIF 1125 kb)

ESM 3

(GIF 2747 kb)

ESM 4

(GIF 689 kb)

ESM 5

(GIF 1671 kb)

ESM 6

(GIF 609 kb)

ESM 7

(PDF 98 kb)

(FLV 1220 kb)

ESM 9

(M 1 kb)

ESM 10

(P 1 kb)

ESM 11

(P 1 kb)

ESM 12

(P 1 kb)

ESM 13

(P 1 kb)

ESM 14

(P 1 kb)

ESM 15

(M 312 bytes)

ESM 16

(P 1 kb)

ESM 17

(P 1 kb)

ESM 18

(M 3 kb)

ESM 19

(P 409 bytes)

ESM 20

(P 422 bytes)

ESM 21

(P 2 kb)

ESM 22

(P 566 bytes)

ESM 23

(P 159 bytes)

ESM 24

(P 653 bytes)

ESM 25

(DOCX 14 kb)

Appendix

Appendix

THEOREM Given two positive definite matrices \( \mathbf{A}\left(\mathbf{x}\right),\mathbf{B}\left(\mathbf{x}\right)\in {\mathbb{S}}_{++}^{ndof} \) which are smooth functions (the smoothness implies the continuity and differentiability) of the independent variables \( \mathbf{x}\in {\mathtt{\mathbb{R}}}^n \), λ is the largest eigenvalue of (A, B) with multiplicity t, the corresponding eigenvectors are the columns of Φ = [φ 1, ⋯, φ t ] ∈ ℝndof × t, then the subdifferential of λ(x) is the set

$$ \partial \lambda \left(\mathbf{x}\right)=\left\{\mathbf{v}\in {\mathbb{R}}^n\left|{v}_i=\right.\left\langle {\boldsymbol{\Phi}}^{\mathrm{T}}\left(\frac{\partial \mathbf{A}}{\partial {x}_i}-\lambda \frac{\partial \mathbf{B}}{\partial {x}_i}\right)\boldsymbol{\Phi}, \mathbf{U}\right\rangle \right\} $$
(39)

for some U ∈ ℝt, tr U = 1, U ≽ 0.

Proof. The generalized eigenvalue problem is given by

$$ \lambda =\underset{\boldsymbol{\upvarphi} \in {\mathbb{R}}^{ndof}}{ \sup}\left\{{\boldsymbol{\upvarphi}}^{\mathrm{T}}\mathbf{A}\boldsymbol{\upvarphi } \left|{\boldsymbol{\upvarphi}}^{\mathrm{T}}\mathbf{B}\boldsymbol{\upvarphi } =1\right.\right\} $$
(40)

It is useful to define another auxiliary eigenvalue problem corresponding to the original generalized eigenvalue problem,

$$ \begin{array}{c}\lambda =\underset{\mathbf{q}\in {\mathbb{R}}^{ndof}}{ \sup}\left\{\left\langle \mathbf{q},\mathbf{S}\mathbf{q}\right\rangle \left|{\mathbf{q}}^{\mathrm{T}}\mathbf{q}=1\right.\right\}\\ {}=\underset{\mathbf{q}\in {\mathbb{R}}^{ndof}}{ \sup}\left\{\left\langle \mathbf{q}{\mathbf{q}}^{\mathrm{T}},\mathbf{S}\right\rangle \left|{\mathbf{q}}^{\mathrm{T}}\mathbf{q}=1\right.\right\}\end{array} $$
(41)

where, S and q are related to A and φ by

$$ \begin{array}{l}\mathbf{S}={\mathbf{G}}^{-1}\mathbf{A}{\mathbf{G}}^{-\mathrm{T}}\\ {}\mathbf{q}={\mathbf{G}}^{\mathrm{T}}\boldsymbol{\upvarphi} \end{array} $$
(42)

G comes from the Cholesky factorization of matrix B,

$$ \mathbf{B}=\mathbf{G}{\mathbf{G}}^{\mathrm{T}} $$
(43)

where G is a lower triangular matrix.

First we consider the subdifferential of the eigenvalue λ with respect to S by (41),

$$ \partial \lambda \left(\mathbf{S}\right)=\mathrm{conv}\left\{\mathbf{q}{\mathbf{q}}^{\mathrm{T}}\left|{\mathbf{q}}^{\mathrm{T}}\mathbf{q}=1,\mathbf{Sq}=\lambda \mathbf{q}\right.\right\} $$
(44)

where, conv(⋅) denotes the convex hull of a set.

Next we compute \( \frac{\partial \mathbf{S}}{\partial {x}_i} \) which will be used afterwards,

$$ \begin{array}{l}\kern1em \frac{\partial \mathbf{S}}{\partial {x}_i}=\frac{\partial \left({\mathbf{G}}^{-1}\mathbf{A}{\mathbf{G}}^{-\mathrm{T}}\right)}{\partial {x}_i}\\ {}=-{\mathbf{G}}^{-1}\frac{\partial \mathbf{G}}{\partial {x}_i}\mathbf{S}+{\mathbf{G}}^{-1}\frac{\partial \mathbf{A}}{\partial {x}_i}{\mathbf{G}}^{-\mathrm{T}}-\mathbf{S}\frac{\partial {\mathbf{G}}^{\mathrm{T}}}{\partial {x}_i}{\mathbf{G}}^{-\mathrm{T}}\end{array} $$
(45)

The inner product of qq T and \( \frac{\partial \mathbf{S}}{\partial {x}_i} \) gives,

$$ \begin{array}{l}\left\langle \frac{\partial \mathbf{S}}{\partial {x}_i},\mathbf{q}{\mathbf{q}}^{\mathrm{T}}\right\rangle =\left\langle \frac{\partial \mathbf{S}}{\partial {x}_i}\mathbf{q},\mathbf{q}\right\rangle \\ {}=-2\lambda {\mathbf{q}}^{\mathrm{T}}{\mathbf{G}}^{-1}\frac{\partial \mathbf{G}}{\partial {x}_i}\mathbf{q}+{\mathbf{q}}^{\mathrm{T}}{\mathbf{G}}^{-1}\frac{\partial \mathbf{A}}{\partial {x}_i}{\mathbf{G}}^{-\mathrm{T}}\mathbf{q}\end{array} $$
(46)

By using the chain rule, we have

$$ \frac{\partial \lambda}{\partial {x}_i}=\left\langle \frac{\partial \lambda}{\partial \mathbf{S}},\frac{\partial \mathbf{S}}{\partial {x}_i}\right\rangle $$
(47)

Using (44) and (46), after some trivial algebra, we have

$$ \frac{\partial \lambda}{\partial {x}_i}=\mathrm{conv}\left\{{\boldsymbol{\upvarphi}}^{\mathrm{T}}\frac{\partial \mathbf{A}}{\partial {x}_i}\boldsymbol{\upvarphi} -\lambda {\boldsymbol{\upvarphi}}^{\mathrm{T}}\frac{\partial \mathbf{B}}{\partial {x}_i}\boldsymbol{\upvarphi} \right\} $$
(48)

Equation (48) can be further simplified to drop the convex hull operator,

$$ \begin{array}{c}\kern1em \frac{\partial \lambda}{\partial {x}_i}\\ {}=\mathrm{conv}\left\{\left\langle \frac{\partial \mathbf{A}}{\partial {x}_i}-\lambda \frac{\partial \mathbf{B}}{\partial {x}_i},\boldsymbol{\Phi} \boldsymbol{\upomega} {\boldsymbol{\upomega}}^{\mathrm{T}}{\boldsymbol{\Phi}}^{\mathrm{T}}\right\rangle \right\}\\ {}=\left\{\left\langle \frac{\partial \mathbf{A}}{\partial {x}_i}-\lambda \frac{\partial \mathbf{B}}{\partial {x}_i},\boldsymbol{\Phi} \mathbf{U}{\boldsymbol{\Phi}}^{\mathrm{T}}\right\rangle \right\}\\ {}=\left\{\left\langle {\boldsymbol{\Phi}}^{\mathrm{T}}\left(\frac{\partial \mathbf{A}}{\partial {x}_i}-\lambda \frac{\partial \mathbf{B}}{\partial {x}_i}\right)\boldsymbol{\Phi}, \mathbf{U}\right\rangle \right\}\end{array} $$
(49)

where,

\( \boldsymbol{\upomega} \in {\mathbb{R}}^t,{\boldsymbol{\upomega}}^{\mathrm{T}}\boldsymbol{\upomega} =1 \) ;Φ = [φ 1, ⋯, φ t ] ;U ∈  t, tr U = 1, U ≽ 0;

t is the multiplicity of the maximum eigenvalue;

The first equation holds because of inner product’s properties and φ = Φω; the second equation holds because of the lemma (Overton 1992)

$$ \begin{array}{l}\kern1.5em \mathrm{conv}\left\{\boldsymbol{\upomega} {\boldsymbol{\upomega}}^{\mathrm{T}}\left|{\boldsymbol{\upomega}}^{\mathrm{T}}\boldsymbol{\upomega} =1\right.\right\}\\ {}=\left\{\left.\mathbf{U}\right|\mathbf{U}\in {\mathbb{S}}^t,\mathrm{tr}\kern0.5em \mathbf{U}=1,\mathbf{U}\succcurlyeq 0\right\}\end{array} $$
(50)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, P., Du, J. & Lü, Z. Topology optimization of freely vibrating continuum structures based on nonsmooth optimization. Struct Multidisc Optim 56, 603–618 (2017). https://doi.org/10.1007/s00158-017-1677-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-017-1677-5

Keywords

Navigation