Skip to main content
Log in

A stabilized quasi and bending consistent meshfree Galerkin formulation for Reissner–Mindlin plates

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The state-of-the-art locking-free meshfree Galerkin formulation for modeling the Reissner–Mindlin plate problems is plagued by the following issues: (1) the requirement of a large enough kernel support size in avoiding kernel instability because of the quadratic basis in meeting the Kirchhoff mode reproducing condition, as well as (2) the tedious construction of the conforming representative domains and the smoothed strain in the stabilized conforming integration scheme. This study introduces an efficient and stabilized approach that circumvents the above-mentioned issues. A quasi-consistent reproducing kernel approximation is first developed to enable a smaller kernel support size to be used without the moment matrix singularity issue under a controllable loss of completeness; thus, the approximation construction is accelerated. Then, a bending consistent nodal integration method is proposed where the bending consistency in Galerkin formulation is achieved via an assumed strain approach without using the conforming cell. A variational multiscale stabilization method from our earlier research is implemented to avoid low energy instability while maintaining the locking-free property. The performance of the present formulation is validated in several benchmark problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Zienkiewicz O, Taylor R, Too J (1971) Reduced integration technique in general analysis of plates and shells. Int J Numer Meth Eng 3(2):275–290

    Article  MATH  Google Scholar 

  2. Dvorkin EN, Bathe K-J (1984) A continuum mechanics based four-node shell element for general non-linear analysis. Eng Comput 1(1):77–88

    Article  Google Scholar 

  3. Bathe K-J, Dvorkin EN (1985) A four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation. Int J Numer Meth Eng 21(2):367–383

    Article  MATH  Google Scholar 

  4. Bathe K-J, Dvorkin EN (1986) A formulation of general shell elements—the use of mixed interpolation of tensorial components. Int J Numer Meth Eng 22(3):697–722

    Article  MATH  Google Scholar 

  5. Simo JC, Rifai M (1990) A class of mixed assumed strain methods and the method of incompatible modes. Int J Numer Meth Eng 29(8):1595–1638

    Article  MathSciNet  MATH  Google Scholar 

  6. Wilson EL, Taylor RL, Doherty WP and Ghaboussi J (1973) Incompatible displacement models, Numerical and computer methods in structural mechanics, pp 43–57. https://doi.org/10.1016/B978-0-12-253250-4.50008-7

    Chapter  Google Scholar 

  7. Bletzinger K-U, Bischoff M, Ramm E (2000) A unified approach for shear-locking-free triangular and rectangular shell finite elements. Comput Struct 75(3):321–334

    Article  Google Scholar 

  8. Koschnick F, Bischoff M, Camprubi N, Bletzinger K-U (2005) The discrete strain gap method and membrane locking. Comput Methods Appl Mech Eng 194(21–24):2444–2463

    Article  MATH  Google Scholar 

  9. Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods. Int J Numer Meth Fluids 20(8–9):1081–1106

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen J-S, Hillman M, Chi S-W (2017) Meshfree methods: progress made after 20 years. J Eng Mech 143(4):04017001

    Google Scholar 

  11. Liu W-K, Li S, Belytschko T (1997) Moving least-square reproducing kernel methods (I) methodology and convergence. Comput Methods Appl Mech Eng 143(1–2):113–154

    Article  MathSciNet  MATH  Google Scholar 

  12. Li S, Liu WK (1999) Reproducing kernel hierarchical partition of unity, part I - formulation and theory. Int J Numer Meth Eng 45(3):251–288

    Article  MATH  Google Scholar 

  13. Li S, Liu WK (1999) Reproducing kernel hierarchical partition of unity, part II - applications. Int J Numer Meth Eng 45(3):289–317

    Article  Google Scholar 

  14. Chen J-S, Liu WK, Hillman M, Chi S-W, Lian Y and Bessa M (2017) Reproducing kernel particle method for solving partial differential equations. In: Stein E, Borst R, Hughes TJR (eds)Encyclopedia of computational mechanics, 2nd edn. John Wiley & Sons, Ltd Chichester, UK, p 1–44. https://doi.org/10.1002/9781119176817.ecm2104

  15. Chen J-S, Pan C, Wu C-T, Liu WK (1996) Reproducing kernel particle methods for large deformation analysis of non-linear structures. Comput Methods Appl Mech Eng 139(1–4):195–227

    Article  MathSciNet  MATH  Google Scholar 

  16. Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Meth Eng 37(2):229–256

    Article  MathSciNet  MATH  Google Scholar 

  17. Chapelle D, Bathe K-J (2010) The finite element analysis of shells-fundamentals. Springer, Berlin

    MATH  Google Scholar 

  18. Wang D, Chen J-S (2004) Locking-free stabilized conforming nodal integration for meshfree Mindlin-Reissner plate formulation. Comput Methods Appl Mech Eng 193(12–14):1065–1083

    MATH  Google Scholar 

  19. Chen J-S, Wang D (2006) A constrained reproducing kernel particle formulation for shear deformable shell in Cartesian coordinates. Int J Numer Meth Eng 68(2):151–172

    Article  MATH  Google Scholar 

  20. Wang D, Chen J-S (2008) A hermite reproducing kernel approximation for thin-plate analysis with sub-domain stabilized conforming integration. Int J Numer Meth Eng 74(3):368–390

    Article  MATH  Google Scholar 

  21. Garcia O, Fancello EA, De Barcellos CS, Duarte CA (2000) hp-clouds in Mindlin’s thick plate model. Int J Numer Meth Eng 47(8):1381–1400

    Article  MATH  Google Scholar 

  22. Choi YJ, Kim SJ (2003) Bending analysis of Mindlin-Reissner plates by the element free Galerkin method with penalty technique. KSME Int J 17(1):64–76

    Article  Google Scholar 

  23. Cho J, Atluri S (2001) Analysis of shear flexible beams, using the meshless local Petrov-Galerkin method, based on a locking-free formulation. Eng Comput 18(1–2):215–240

    Article  MATH  Google Scholar 

  24. Donning BM, Liu WK (1998) Meshless methods for shear-deformable beams and plates. Comput Methods Appl Mech Eng 152(1–2):47–71

    Article  MATH  Google Scholar 

  25. Hale J, Baiz P (2012) A locking-free meshfree method for the simulation of shear-deformable plates based on a mixed variational formulation. Comput Methods Appl Mech Eng 241:311–322

    Article  MathSciNet  MATH  Google Scholar 

  26. Hillman MC (2013) An arbitrary order variationally consistent integration method for Galerkin meshfree methods, Los Angeles: UCLA

  27. Zhang Q, Li S, Zhang A-M, Peng Y, Yan J (2021) A peridynamic Reissner-Mindlin shell theory. Int J Numer Meth Eng 122(1):122–147

    Article  MathSciNet  Google Scholar 

  28. Chen J-S, Wu C-T, Yoon S, You Y (2001) A stabilized conforming nodal integration for Galerkin mesh-free methods. Int J Numer Meth Eng 50(2):435–466

    Article  MATH  Google Scholar 

  29. Chen J-S, Yoon S, Wu C-T (2002) Non-linear version of stabilized conforming nodal integration for Galerkin mesh-free methods. Int J Numer Meth Eng 53(12):2587–2615

    Article  MATH  Google Scholar 

  30. Wang D, Sun Y (2011) A Galerkin meshfree method with stabilized conforming nodal integration for geometrically nonlinear analysis of shear deformable plates. Int J Comput Methods 8(04):685–703

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang B, Lu C, Fan C, Zhao M (2020) A stable and efficient meshfree Galerkin method with consistent integration schemes for strain gradient thin beams and plates. Thin Walled Struct 153:106791

    Article  Google Scholar 

  32. Yoshida K, Sadamoto S, Setoyama Y, Tanaka S, Bui T, Murakami C, Yanagihara D (2017) Meshfree flat-shell formulation for evaluating linear buckling loads and mode shapes of structural plates. J Mar Sci Technol 22(3):501–512

    Article  Google Scholar 

  33. Dai M-J, Tanaka S, Sadamoto S, Yu T, Bui TQ (2020) Advanced reproducing kernel meshfree modeling of cracked curved shells for mixed-mode stress resultant intensity factors. Eng Fract Mech 233:107012

    Article  Google Scholar 

  34. Sadamoto S, Ozdemir M, Tanaka S, Bui T, Okazawa S (2020) Finite rotation meshfree formulation for geometrically nonlinear analysis of flat, curved and folded shells. Int J Non Linear Mech 119:103300

    Article  Google Scholar 

  35. Wang D, Peng H (2013) A Hermite reproducing kernel Galerkin meshfree approach for buckling analysis of thin plates. Comput Mech 51(6):1013–1029

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang D, Lin Z (2010) Free vibration analysis of thin plates using Hermite reproducing kernel Galerkin meshfree method with sub-domain stabilized conforming integration. Comput Mech 46(5):703–719

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang D, Lin Z (2011) Dispersion and transient analyses of Hermite reproducing kernel Galerkin meshfree method with sub-domain stabilized conforming integration for thin beam and plate structures. Comput Mech 48(1):47–63

    Article  MathSciNet  MATH  Google Scholar 

  38. Thai CH, Ferreira A, Nguyen-Xuan H (2017) Naturally stabilized nodal integration meshfree formulations for analysis of laminated composite and sandwich plates. Compos Struct 178:260–276

    Article  Google Scholar 

  39. Thai CH, Ferreira A, Wahab MA, Nguyen-Xuan H (2018) A moving Kriging meshfree method with naturally stabilized nodal integration for analysis of functionally graded material sandwich plates. Acta Mech 229(7):2997–3023

    Article  MathSciNet  MATH  Google Scholar 

  40. Thai CH, Nguyen-Xuan H (2019) A moving Kriging interpolation meshfree method based on naturally stabilized nodal integration scheme for plate analysis. Int J Comput Methods 16(04):1850100

    Article  MathSciNet  MATH  Google Scholar 

  41. Hillman M, Chen J-S (2016) An accelerated, convergent, and stable nodal integration in Galerkin meshfree methods for linear and nonlinear mechanics. Int J Numer Meth Eng 107(7):603–630

    Article  MathSciNet  MATH  Google Scholar 

  42. Huang T-H (2022) A variational multiscale stabilized and locking-free meshfree formulation for Reissner-Mindlin plate problems. Comput Mech 69:59–93

    Article  MathSciNet  MATH  Google Scholar 

  43. Guan P-C, Chi S-W, Chen J-S, Slawson T, Roth MJ (2011) Semi-Lagrangian reproducing kernel particle method for fragment-impact problems. Int J Impact Eng 38(12):1033–1047

    Article  Google Scholar 

  44. Huang T-H, Wei H, Chen J-S, Hillman MC (2020) RKPM2D: an open-source implementation of nodally integrated reproducing kernel particle method for solving partial differential equations. Comput Part Mech 7(2):393–433

    Article  Google Scholar 

  45. You Y, Chen J-S, Lu H (2003) Filters, reproducing kernel, and adaptive meshfree method. Comput Mech 31(3):316–326

    Article  MATH  Google Scholar 

  46. Rosolen A, Millan D, Arroyo M (2010) On the optimum support size in meshfree methods: a variational adaptivity approach with maximum-entropy approximants. Int J Numer Meth Eng 82(7):868–895

    Article  MATH  Google Scholar 

  47. Quaglino A, Krause R (2018) kFEM: Adaptive meshfree finite-element methods using local kernels on arbitrary subdomains. Int J Numer Meth Eng 114(6):581–597

    Article  MathSciNet  Google Scholar 

  48. Zhang L, Tang S, Liu WK (2020) Analytical expression of RKPM shape functions. Comput Mech 66(6):1343–1352

    Article  MathSciNet  MATH  Google Scholar 

  49. Yreux E, Chen J-S (2017) A quasi-linear reproducing kernel particle method. Int J Numer Meth Eng 109(7):1045–1064

    Article  MathSciNet  Google Scholar 

  50. Chen J-S, Hillman M, Ruter M (2013) An arbitrary order variationally consistent integration for Galerkin meshfree methods. Int J Numer Meth Eng 95(5):387–418

    Article  MathSciNet  MATH  Google Scholar 

  51. Hillman M, Lin K-C (2021) Nodally integrated thermomechanical RKPM: part I - thermoelasticity. Comput Mech 68(4):795–820

    Article  MathSciNet  MATH  Google Scholar 

  52. Li S, Liu WK (2007) Meshfree particle methods. Springer, Berlin

    MATH  Google Scholar 

  53. Du Q, Faber V, Gunzburger M (1999) Centroidal Voronoi tessellations: applications and algorithms. SIAM Rev 41(4):637–676

    Article  MathSciNet  MATH  Google Scholar 

  54. Shestakov A, Kershaw D, Zimmerman G (1990) Test problems in radiative transfer calculations. Nucl Sci Eng 105(1):88–104

    Article  Google Scholar 

  55. Chen J-S, Zhang X, Belytschko T (2004) An implicit gradient model by a reproducing kernel strain regularization in strain localization problems. Comput Methods Appl Mech Eng 193(27–29):2827–2844

    Article  MATH  Google Scholar 

  56. Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh Math Semin Univ Hambg 36:9–15. https://doi.org/10.1007/BF02995904

  57. Ruter M, Hillman M and Chen J-S (2013) Corrected stabilized non-conforming nodal integration in meshfree methods, Meshfree methods for partial differential equations VI, pp 75–92

  58. Chinwuba Ike C (2018) Mathematical solutions for the flexural analysis of Mindlin’s first order shear deformable circular plates. Math Models Eng 4(2):50–72

    Article  Google Scholar 

  59. Timoshenko SP, Woinowsky-Krieger S (1959) Theory of plates and shells. McGraw-hill, New York, USA

    MATH  Google Scholar 

  60. Ferreira A, Batra R, Roque C, Qian L, Jorge R (2006) Natural frequencies of functionally graded plates by a meshless method. Compos Struct 75(1–4):593–600

    Article  Google Scholar 

  61. Roque C, Cunha D, Shu C, Ferreira A (2011) A local radial basis functions-finite differences technique for the analysis of composite plates. Eng Anal Boundary Elem 35(3):363–374

    Article  MathSciNet  MATH  Google Scholar 

  62. Thai CH, Nguyen-Xuan H, Bordas SPA, Nguyen-Thanh N, Rabczuk T (2015) Isogeometric analysis of laminated composite plates using the higher-order shear deformation theory. Mech Adv Mater Struct 22(6):451–469

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Science and Technology Council (NSTC, previously termed Ministry of Science and Technology, MOST), Taiwan, under project contract number 111-2628-E-007-016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsung-Hui Huang.

Ethics declarations

Conflict of interest

The corresponding author reports no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Variational multiscale stabilization for the Reissner-Midndlin plate

Appendix A: Variational multiscale stabilization for the Reissner-Midndlin plate

In this study, the stabilization method in our earlier work [42] is employed. The variational multiscale stabilized Galerkin weak form for Reissner-Midndlin Plate reads: find \(\left({w}^{h},{{\varvec{\theta}}}^{h}\right)\in {{\overline{\mathcal{S}} }^{w}}^{^h}\times {{\overline{\mathcal{S}} }^{\theta }}^{^h}\) such that \(\forall \left(\delta {w}^{h},\delta {{\varvec{\theta}}}^{^h}\right)\in {{\mathcal{V}}^{w}}^{^h}\times {{\mathcal{V}}^{\theta }}^{^h}\), where:

$$\begin{aligned} & a\left(\delta {w}^{h},\delta {{\varvec{\theta}}}^{h};{w}^{h},{{\varvec{\theta}}}^{h}\right)+{a}_{VMS}\left(\delta {w}^{h},\delta {{\varvec{\theta}}}^{h};{w}^{h},{{\varvec{\theta}}}^{h}\right)\\&\quad = L\left(\delta {w}^{h},\delta {{\varvec{\theta}}}^{h}\right)+{L}_{VMS}\left(\delta {w}^{h},\delta {{\varvec{\theta}}}^{h}\right)\end{aligned}$$
(71)

where \(a\left(\delta {w}^{h},\delta {{\varvec{\theta}}}^{h};{w}^{h},{{\varvec{\theta}}}^{h}\right)\) and \(L\left(\delta {w}^{h},\delta {{\varvec{\theta}}}^{h}\right)\) are respectively the standard plate bilinear form and linear functional that can be computed by SCNI (see Eq. (38)) or proposed BCI (See Eq. (64)); \({a}_{VMS}\) and \({L}_{VMS}\) are stabilization terms expressed as

$$\begin{aligned} & {a}_{VMS}\left(\delta {w}^{h},\delta {{\varvec{\theta}}}^{h};{w}^{h},{{\varvec{\theta}}}^{h}\right)\\&\quad =\underset{\Omega }{\overset{}{\int }}{\left(\nabla \cdot \left({{\varvec{D}}}^{s}\delta {{\varvec{\gamma}}}^{h}\right)\right)}^{T}{\tau }_{w}\left(\nabla \cdot \left({{\varvec{D}}}^{s}\delta {{\varvec{\gamma}}}^{h}\right)\right)d\Omega\\&\quad +\underset{\Omega }{\overset{}{\int }}{\left(\nabla \cdot \left({{\varvec{D}}}^{b}\delta {{\varvec{\kappa}}}^{h}\right)\right)}^{T}{\tau }_{\theta }\left(\nabla \cdot \left({{\varvec{D}}}^{b}\delta {{\varvec{\kappa}}}^{h}\right)\right)d\Omega\end{aligned}$$
(72)
$${L}_{VMS}\left(\delta {w}^{h},\delta {{\varvec{\theta}}}^{h}\right)=-\underset{\Omega }{\overset{}{\int }}{\left(\nabla \cdot \left({{\varvec{D}}}^{s}\delta {{\varvec{\gamma}}}^{h}\right)\right)}^{T}{\tau }_{w}qd\Omega $$
(73)

where \({\tau }_{w}\) and \({\tau }_{\theta }\) are stabilization parameters and their values are picked based on a dimensional analysis (see [42]):

$${\tau }_{w}={c}_{w}\left(\frac{{h}^{2}}{k\mu }+\frac{{h}^{3}}{E}\right)$$
(74)
$${\tau }_{\theta }={c}_{\theta }\left(\frac{{h}^{2}}{E}+\frac{{t}^{*}}{k\mu }\right)$$
(75)

where \(h\) is the nodal distance, \({t}^{*}=t/l\) with \(l\) the dimension of the plate. The parameters \({c}_{w}\in \left[\mathrm{0,1}\right]\) and \({c}_{\theta }\in \left[\mathrm{0,1}\right]\) are stabilization control parameters and usually a value of 0.1 or lower can effectively controls the instability without locking occuring. For details in deriving the stabilization, readers may refer to [42] for more details.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, TH., Wei, YL. A stabilized quasi and bending consistent meshfree Galerkin formulation for Reissner–Mindlin plates. Comput Mech 70, 1211–1239 (2022). https://doi.org/10.1007/s00466-022-02222-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-022-02222-6

Keywords

Navigation