Skip to main content
Log in

A moving Kriging meshfree method with naturally stabilized nodal integration for analysis of functionally graded material sandwich plates

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper presents a moving Kriging meshfree method based on a naturally stabilized nodal integration (NSNI) for bending, free vibration and buckling analyses of isotropic and sandwiched functionally graded plates within the framework of higher-order shear deformation theories. A key feature of the present formulation is to develop a NSNI technique for the moving Kriging meshfree method. Using this scheme, the strains are directly evaluated at the same nodes as the direct nodal integration (DNI). Importantly, the computational approach alleviates instability solutions in the DNI and significantly decreases the computational cost from using the traditional high-order Gauss quadrature. Being different from the stabilized conforming nodal integration scheme which uses the divergence theorem to evaluate the strains by boundary integrations, the NSNI adopts a naturally implicit gradient expansion. The NSNI is then integrated into the Galerkin weak form for deriving the discrete system equations. Due to satisfying the Kronecker delta function property of the moving Kriging integration shape function, the enforcement of essential boundary conditions in the present method is similar to the finite element method. Through numerical examples, the effects of geometries, stiffness ratios, volume fraction and boundary conditions are studied to prove the efficiency of the present approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brischetto, S., Tornabene, F., Fantuzzi, N., Viola, E.: 3D exact and 2D generalized differential quadrature models for free vibration analysis of functionally graded plates and cylinders. Meccanica 51, 2059–2098 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Swaminathan, K., Naveenkumar, D.T., Zenkour, A.M., Carrera, E.: Stress, vibration and buckling analyses of FGM plates—a state-of-the-art review. Compos. Struct. 120, 10–31 (2015)

    Article  Google Scholar 

  3. Pan, E.: Exact solution for functionally graded anisotropic elastic composite laminates. J. Compos. Mater. 37, 1903–1920 (2003)

    Article  Google Scholar 

  4. Pagano, N.J.: Exact solutions for rectangular bidirectional composites and sandwich plates. J. Compos. Mater. 4, 20–34 (1970)

    Article  Google Scholar 

  5. Vel, S.S., Batra, R.C.: Three-dimensional exact solution for the vibration of functionally graded rectangular plates. J. Sound Vib. 272, 703–730 (2004)

    Article  Google Scholar 

  6. Kashtalyan, M.: Three-dimensional elasticity solution for bending of functionally graded rectangular plates. Eur. J. Mech. A. Solids 23, 853–864 (2004)

    Article  MATH  Google Scholar 

  7. Zenkour, A.M.: Benchmark trigonometric and 3-D elasticity solutions for an exponentially graded thick rectangular plate. Arch. Appl. Mech. 77, 197–214 (2006)

    Article  MATH  Google Scholar 

  8. Reddy, J.N., Cheng, Z.Q.: Three-dimensional thermomechanical deformations of functionally graded rectangular plates. Eur. J. Mech. A. Solids 20, 841–855 (2001)

    Article  MATH  Google Scholar 

  9. Cheng, Z.Q., Batra, R.C.: Deflection relationships between the homogeneous Kirchhoff plate theory and different functionally graded plate theories. Arch. Mech. 52, 143–158 (2000)

    MATH  Google Scholar 

  10. Natarajan, S., Baiz, P.M., Bordas, S.P.A., Rabczuk, T., Kerfriden, P.: Natural frequencies of cracked functionally graded material plates by the extended finite element method. Compos. Struct. 93, 3082–3092 (2011)

    Article  Google Scholar 

  11. Natarajan, S., Ferreira, A.J.M., Bordas, S.P.A., Carrera, E., Cinefra, M.: Analysis of composite plates by a unified formulation-cell based smoothed finite element method and field consistent elements. Compos. Struct. 105, 75–81 (2013)

    Article  Google Scholar 

  12. Rodrigues, J.D., Natarajan, S., Ferreira, A.J.M., Carrera, E., Cinefra, M., Bordas, S.P.A.: Analysis of composite plates through cell-based smoothed finite element and 4-noded mixed interpolation of tensorial components techniques. Comput. Struct. 135, 83–87 (2014)

    Article  Google Scholar 

  13. Nguyen-Xuan, H., Tran, V.L., Nguyen-Thoi, T., Vu-Do, H.C.: Analysis of functionally graded plates using an edge-based smoothed finite element method. Compos. Struct. 93, 3019–3039 (2011)

    Article  Google Scholar 

  14. Do, V.V.N., Thai, C.H.: A modified Kirchhoff plate theory for analyzing thermo-mechanical static and buckling responses of functionally graded material plates. Thin Walled Struct. 117, 113–126 (2017)

    Article  Google Scholar 

  15. Nguyen, N.T., Hui, D., Lee, J., Nguyen-Xuan, H.: An efficient computational approach for size-dependent analysis of functionally graded nanoplates. Comput. Methods Appl. Mech. Eng. 297, 191–218 (2015)

    Article  MathSciNet  Google Scholar 

  16. Ambartsumian, S.A.: On the theory of bending plates. Izv Otd Tech Nauk ANSSSR 5, 269–277 (1958)

    Google Scholar 

  17. Reddy, J.N.: Analysis of functionally graded plates. Int. J. Numer. Methods Eng. 684, 663–684 (2000)

    Article  MATH  Google Scholar 

  18. Nguyen-Xuan, H., Thai, H.C., Nguyen-Thoi, T.: Isogeometric finite element analysis of composite sandwich plates using a higher order shear deformation theory. Compos. Part B: Eng. 55, 558–574 (2013)

    Article  Google Scholar 

  19. Nguyen, N.T., Thai, H.C., Nguyen-Xuan, H.: On the general framework of high order shear deformation theories for laminated composite plate structures: a novel unified approach. Int. J. Mech. Sci. 110, 242–255 (2016)

    Article  Google Scholar 

  20. Soldatos, K.P.: A transverse shear deformation theory for homogenous monoclinic plates. Acta Mech. 94, 195–220 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Touratier, M.: An efficient standard plate theory. Int. J. Eng. Sci. 29, 745–752 (1991)

    Article  MATH  Google Scholar 

  22. Thai, H.C., Ferreira, A.J.M., Rabczuk, T., Bordas, S.P.A., Nguyen-Xuan, H.: Isogeometric analysis of laminated composite and sandwich plates using a new inverse trigonometric shear deformation theory. Eur. J. Mech. A. Solids 43, 89–108 (2014)

    Article  Google Scholar 

  23. Thai, H.C., Kulasegaram, S., Tran, V.L., Nguyen-Xuan, H.: Generalized shear deformation theory for functionally graded isotropic and sandwich plates based on isogeometric approach. Comput. Struct. 141, 94–112 (2014)

    Article  Google Scholar 

  24. Karama, M., Afaq, K.S., Mistou, S.: Mechanical behavior of laminated composite beam by new multi-layered laminated composite structures model with transverse shear stress continuity. Int. J. Solids Struct. 40, 1525–1546 (2003)

    Article  MATH  Google Scholar 

  25. Aydogdu, M.: A new shear deformation theory for laminated composite plates. Compos. Struct. 89, 94–101 (2009)

    Article  Google Scholar 

  26. Zenkour, A.M.: A comprehensive analysis of functionally graded sandwich plates: part 1 deflection and stresses. Int. J. Solids Struct. 42, 5224–5242 (2005)

    Article  MATH  Google Scholar 

  27. Zenkour, A.M.: A comprehensive analysis of functionally graded sandwich plates: part 2 buckling and free vibration. Int. J. Solids Struct. 42, 5243–5258 (2005)

    Article  MATH  Google Scholar 

  28. Nguyen, T.N., Thai, C.H., Nguyen-Xuan, H.: A novel computational approach for functionally graded isotropic and sandwich plate structures based on a rotation-free meshfree method. Thin Walled Struct. 107, 473–488 (2016)

    Article  Google Scholar 

  29. Tran, V.L., Thai, H.C., Nguyen-Xuan, H.: An isogeometric finite element formulation for thermal buckling analysis of functionally graded plates. Finite Elem. Anal. Des. 73, 65–76 (2013)

    Article  Google Scholar 

  30. Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Roque, C.M.C., Cinefra, M., Jorge, R.M.N., Soares, C.M.M.: A quasi-3D sinusoidal shear deformation theory for the static and free vibration analysis of functionally graded plates. Compos. Part B: Eng. 43, 711–725 (2012)

    Article  MATH  Google Scholar 

  31. Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Cinefra, M., Roque, C.M.C., Jorge, R.M.N., Soares, C.M.M.: Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique. Compos. Part B: Eng. 44, 657–674 (2013)

    Article  MATH  Google Scholar 

  32. Zenkour, A.M.: Bending analysis of functionally graded sandwich plates using a simple four-unknown shear and normal deformations theory. J. Sandw. Struct. Mater. 15, 629–656 (2013)

    Article  Google Scholar 

  33. Zenkour, A.M.: A simple four-unknown refined theory for bending analysis of functionally graded plates. Appl. Math. Model. 37, 9041–9051 (2013)

    Article  MathSciNet  Google Scholar 

  34. Thai, H.C., Zenkour, A.M., Wahab, M.A., Nguyen-Xuan, H.: A simple four unknown shear and normal deformations theory for functionally graded isotropic and sandwich plates based on isogeometric analysis. Compos. Struct. 139, 77–95 (2016)

    Article  Google Scholar 

  35. Thai, H.T., Kim, S.E.: A simple quasi-3D sinusoidal shear deformation theory for functionally graded plates. Compos. Struct. 99, 172–180 (2013)

    Article  Google Scholar 

  36. Mantari, J.L., Soares, C.G.: A trigonometric plate theory with 5-unknowns and stretching effect for advanced composite plates. Compos. Struct. 107, 396–405 (2014)

    Article  Google Scholar 

  37. Nguyen-Thanh, N., Rabczuk, T., Nguyen-Xuan, H., Bordas, S.P.A.: A smoothed finite element method for shell analysis. Comput. Methods Appl. Mech. Eng. 198, 165–177 (2008)

    Article  MATH  Google Scholar 

  38. Nguyen-Xuan, H., Rabczuk, T., Nguyen-Thanh, N., Nguyen-Thoi, T., Bordas, S.P.A.: A node-based smoothed finite element method with stabilized discrete shear gap technique for analysis of Reissner–Mindlin plates. Comput. Mech. 46, 679–701 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Nguyen-Thanh, N., Rabczuk, T., Nguyen-Xuan, H., Bordas, S.P.A.: An alternative alpha finite element method with discrete shear gap technique for analysis of isotropic Mindlin–Reissner plates. Finite Elem. Anal. Des. 47, 519–535 (2011)

    Article  Google Scholar 

  40. Thai, C.H., Tran, L.V., Tran, D.T., Nguyen-Thoi, T., Nguyen-Xuan, H.: Analysis of laminated composite plates using higher-order shear deformation plate theory and node-based smoothed discrete shear gap method. Appl. Math. Model. 36, 5657–5677 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Natarajan, S., Ferreira, A.J.M., Bordas, S.P.A., Carrera, E., Cinefra, M., Zenkour, A.M.: Analysis of functionally graded material plates using triangular elements with cell-based smoothed discrete shear gap method. Math. Probl. Eng. 2014, 247932 (2014)

    Article  MathSciNet  Google Scholar 

  42. Nguyen-Thanh, N., Kiendl, J., Nguyen-Xuan, H., Wüchner, R., Bletzinger, K.U., Bazilevs, Y., Rabczuk, T.: Rotation free isogeometric thin shell analysis using PHT-splines. Comput. Methods Appl. Mech. Eng. 200, 3410–3424 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  43. Gu, L.: Moving Kriging interpolation and element-free Galerkin method. Int. J. Numer. Methods Eng. 56, 1–11 (2003)

    Article  MATH  Google Scholar 

  44. Chen, J.S., Wu, C.T., Yoon, S., You, Y.: A stabilized conforming nodal integration for Galerkin mesh-free methods. Int. J. Numer. Methods Eng. 50, 435–466 (2001)

    Article  MATH  Google Scholar 

  45. Puso, M., Chen, J.S., Zywicz, E., Elmer, W.: Meshfree and finite element nodal integration methods. Int. J. Numer. Methods Eng. 74, 416–446 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  46. Hillman, M., Chen, J.S., Chi, S.W.: Stabilized and variationally consistent nodal integration for meshfree modeling of impact problems. Comput. Part. Mech. 1, 245–256 (2014)

    Article  Google Scholar 

  47. Beissel, S., Belytschko, T.: Nodal integration of the element-free Galerkin method. Comput. Methods Appl. Mech. Eng. 139, 49–74 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  48. Nagashima, T.: Node-by-node meshless approach and its applications to structural analyses. Int. J. Numer. Methods Eng. 46, 341–385 (1999)

    Article  MATH  Google Scholar 

  49. Liu, G.R., Zhang, G.Y., Wang, Y.Y., Zhong, Z.H., Li, G.Y., Han, X.: A nodal integration technique for meshfree radial point interpolation method (NI-RPIM). Int. J. Solids Struct. 44, 3840–3890 (2007)

    Article  MATH  Google Scholar 

  50. Wu, C.T., Koishi, M., Hu, W.: A displacement smoothing induced strain gradient stabilization for the meshfree Galerkin nodal integration method. Comput. Mech. 56, 19–37 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  51. Hillman, M., Chen, J.S.: An accelerated, convergent, and stable nodal integration in Galerkin meshfree methods for linear and nonlinear mechanics. Int. J. Numer. Methods Eng. 107, 603–630 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  52. Li, Q., Lu, V., Kou, K.: Three-dimensional vibration analysis of functionally graded material sandwich plates. J. Sound Vib. 311, 498–515 (2008)

    Article  Google Scholar 

  53. Thai, H.C., Do, N.V.V., Nguyen-Xuan, H.: An improved moving Kriging meshfree method for analysis of isotropic and sandwich functionally graded material plates using higher-order shear deformation theory. Eng. Anal. Bound. Elem. 64, 122–136 (2016)

    Article  MathSciNet  Google Scholar 

  54. Thai, H.C., Nguyen, N.T., Rabczuk, T., Nguyen-Xuan, H.: An improved moving Kriging meshfree method for plate analysis using a refined plate theory. Comput. Struct. 176, 34–49 (2016)

    Article  Google Scholar 

  55. Liu, G.R.: Meshfree Methods: Moving Beyond the Finite Element Method. CRC Press, Boca Raton (2003)

    Google Scholar 

  56. Thai, C.H., Ferreira, A.J.M., Nguyen-Xuan, H.: Naturally stabilized nodal integration meshfree formulations for analysis of laminated composite and sandwich plates. Compos. Struct. 178, 260–276 (2017)

    Article  Google Scholar 

  57. Thai, C.H., Ferreira, A.J.M., Rabczuk, T., Nguyen-Xuan, H.: A naturally stabilized nodal integration meshfree formulation for carbon nanotube-reinforced composite plate analysis. Eng. Anal. Bound. Elem. (2017). https://doi.org/10.1016/j.enganabound.2017.10.018

    Google Scholar 

  58. Liu, W.K., Ong, J.S., Uras, R.A.: Finite element stabilization matrices—a unification approach. Comput. Methods Appl. Mech. Eng. 53, 13–46 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  59. Koko, J.: A Matlab mesh generator for the two-dimensional finite element method. Appl. Math. Comput. 250, 650–664 (2015)

    MathSciNet  MATH  Google Scholar 

  60. Carrera, E., Brischetto, S., Cinefra, M., Soave, M.: Effects of thickness stretching in functionally graded plates and shells. Compos. Part B: Eng. 42, 123–133 (2011)

    Article  Google Scholar 

  61. Li, X.Y., Ding, H.J., Chen, W.Q.: Elasticity solutions for a transversely isotropic functionally graded circular plate subject to an axisymmetric transverse load qr\(^{k}\). Int. J. Solids Struct. 45, 191–210 (2008)

    Article  MATH  Google Scholar 

  62. Reddy, J.N., Wang, C.M., Kitipornchai, S.: Axisymmetric bending of functionally graded circular and annular plates. Eur. J. Mech. A. Solids 18, 185–199 (1999)

    Article  MATH  Google Scholar 

  63. Yin, S., Hale, J.S., Yu, T., Bui, T.Q., Bordas, S.P.A.: Isogeometric locking-free plate element: a simple first order shear deformation theory for functionally graded plates. Compos. Struct. 118, 121–138 (2014)

    Article  Google Scholar 

  64. Reddy, J.N.: Theory and Analysis of Elastic Plates and Shells. CRC Press, Boca Raton (2007)

    Google Scholar 

  65. Nguyen, K.D., Nguyen-Xuan, H.: An isogeometric finite element approach for three-dimensional static and dynamic analysis of functionally graded material plate structures. Compos. Struct. 132, 423–439 (2015)

    Article  Google Scholar 

  66. Natarajan, S., Manickam, G.: Bending and vibration of functionally graded material sandwich plates using an accurate theory. Finite Elem. Anal. Des. 57, 32–42 (2012)

    Article  Google Scholar 

  67. Tornabene, F.: Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution. Comput. Methods Appl. Mech. Eng. 198, 2911–2935 (2009)

    Article  MATH  Google Scholar 

  68. Ma, L.S., Wang, T.J.: Relationship between axisymmetric bending and buckling solutions of FGM circular plates based on third-order plate theory and classical plate theory. Int. J. Solids Struct. 41, 85–101 (2004)

    Article  MATH  Google Scholar 

  69. Saidi, A.R., Rasouli, A., Sahraee, S.: Axisymmetric bending and buckling analysis of thick functionally graded circular plates using unconstrained third-order shear deformation plate theory. Compos. Struct. 89, 110–119 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant No. 107.02-2016.19.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chien H. Thai or H. Nguyen-Xuan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thai, C.H., Ferreira, A.J.M., Wahab, M.A. et al. A moving Kriging meshfree method with naturally stabilized nodal integration for analysis of functionally graded material sandwich plates. Acta Mech 229, 2997–3023 (2018). https://doi.org/10.1007/s00707-018-2156-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-018-2156-9

Navigation