Skip to main content

Advertisement

Log in

Optimization of dark fermentative biohydrogen production from rice starch by Enterobacter aerogenes MTCC 2822 and Clostridium acetobutylicum MTCC 11274

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Dark fermentative biohydrogen production (DFBHP) has potential for utilization of rice starch wastewater (RSWW) as substrate. The hydrogen production of Enterobacter aerogenes MTCC 2822 and Clostridium acetobutylicum MTCC 11274, in pure culture and co-culture modes, was evaluated. The experiments were performed in a 2 L bioreactor, for a batch time of 120 h. The co-culture system resulted in highest cumulative hydrogen (1.13 L H2/L media) and highest yield (1.67 mol H2/mol glucose). Two parameters were optimized through response surface methodology (RSM)—substrate concentration (3.0–5.0 g/L) and initial pH (5.5–7.5), in a three-level factorial design. A total of 11 runs were performed in duplicate, which revealed that 4.0 g/L substrate concentration and 6.5 initial pH were optimal in producing hydrogen. The metabolites produced were acetic, butyric, propionic, lactic and isobutyric acids. The volumetric H2 productions, without and with pH adjustments, were 1.24 L H2/L media and 1.45 L H2/L media, respectively.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

DFBHP:

Dark fermentative biohydrogen production

RSWW:

Rice starch wastewater

RSM:

Response surface methodology

CCD:

Central composite design

COD:

Chemical oxygen demand

VHPR:

Volumetric hydrogen production rate

HY:

Hydrogen yield

TDS:

Total dissolved solids

TSS:

Total suspended solids

FS:

Fixed solids

VS:

Volatile solids

References

  1. Basak N, Jana AK, Das D, Saikia D (2014) Photofermentative molecular biohydrogen production by purple-non-sulfur (PNS) bacteria in various modes: the present progress and future perspective. Int J Hydrogen Energy 39:6853–6871. https://doi.org/10.1016/j.ijhydene.2014.02.093

    Article  CAS  Google Scholar 

  2. Basak N, Das D (2006) The prospect of purple non-sulfur (PNS) photosynthetic bacteria for hydrogen production: the present state of the art. World J Microbiol Biotechnol 23:31–42. https://doi.org/10.1007/s11274-006-9190-9

    Article  CAS  Google Scholar 

  3. Rao R, Basak N (2020) Development of novel strategies for higher fermentative biohydrogen recovery along with novel metabolites from organic wastes: the present state of the art. Biotechnol Appl Biochem 68:421–444. https://doi.org/10.1002/bab.1964

    Article  CAS  PubMed  Google Scholar 

  4. Rao R, Basak N (2021) Fermentative molecular biohydrogen production from cheese whey: present prospects and future strategy. Appl Biochem Biotechnol 193:2297–2330. https://doi.org/10.1007/s12010-021-03528-6

    Article  CAS  PubMed  Google Scholar 

  5. Jayachandran V, Basak N, De Philippis R, Adessi A (2022) Novel strategies towards efficient molecular biohydrogen production by dark fermentative mechanism: present progress and future perspective. Bioprocess Biosyst Eng. https://doi.org/10.10007/s00449-022-02738-4

    Article  PubMed  Google Scholar 

  6. Lin C-Y, Chang C-C, Hung C-H (2008) Fermentative hydrogen production from starch using natural mixed cultures. Int J Hydrogen Energy 33:2445–2453. https://doi.org/10.1016/j.ijhydene.2008.02.069

    Article  CAS  Google Scholar 

  7. Reginatto V, Antônio RV (2015) Fermentative hydrogen production from agroindustrial lignocellulosic substrates. Braz J Microbiol 46:323–335. https://doi.org/10.1590/S1517-838246220140111

    Article  PubMed  PubMed Central  Google Scholar 

  8. Das SR, Basak N (2020) Molecular biohydrogen production by dark and photo fermentation from wastes containing starch: recent advancement and future perspective. Bioprocess Biosyst Eng 44:1–25. https://doi.org/10.1007/s00449-020-02422-5

    Article  CAS  PubMed  Google Scholar 

  9. Shahbandeh M (2022) Rice consumption worldwide in 2021/2022, by country (in 1000 metric tons). Statista. https://www.statista.com/statistics/255971/top-countries-based-on-rice-consumption-2012-2013/. Accessed 27 July 2022

  10. Castelló E, Ferraz-Junior ADN, Andreani C, Anzola-Rojas MdP, Borzacconi L, Buitrón G, Carrillo-Reyes J, Gomes SD, Maintinguer SI, Moreno-Andrade I, Palomo-Briones R, Razo-Flores E, Schiappacasse-Dasati M, Tapia-Venegas E, Valdez-Vazquez I, Vesga-Baron A, Etchebehere MZC (2020) Stability problems in the hydrogen production by dark fermentation: possible causes and solutions. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2019.109602

    Article  Google Scholar 

  11. Cardoso V, Romao BB, Silva FTM, Santos JG, Batista FRX (2014) Hydrogen production by dark fermentation. Chem Eng Trans 38:481–486. https://doi.org/10.3303/CET1438081

    Article  Google Scholar 

  12. Jing Y, Li F, Li Y, Jin P, Zhu S, He C, Zhao J, Zhang Z, Zhang Q (2020) Statistical optimization of simultaneous saccharification fermentative hydrogen production from corn stover. Bioengineered 11:428–438. https://doi.org/10.1080/21655979.2020.1739405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yoshida A, Nishimura T, Kawaguchi H, Inui M, Yukawa H (2006) Enhanced hydrogen production from glucose using ldh- and frd-inactivated Escherichia coli strains. Appl Microbiol Biotechnol 73:67–72. https://doi.org/10.1007/s00253-006-0456-9

    Article  CAS  PubMed  Google Scholar 

  14. Maru BT, López F, Kengen SWM, Constantí M, Medina F (2016) Dark fermentative hydrogen and ethanol production from biodiesel waste glycerol using a co-culture of Escherichia coli and Enterobacter sp. Fuel 186:375–384. https://doi.org/10.1016/j.fuel.2016.08.043

    Article  CAS  Google Scholar 

  15. Zhang S-C, Lai Q-H, Lu Y, Liu Z-D, Wang T-M, Zhang C, Xing X-H (2016) Enhanced biohydrogen production from corn stover by the combination of Clostridium cellulolyticum and hydrogen fermentation bacteria. J Biosci Bioeng 122:482–487. https://doi.org/10.1016/j.jbiosc.2016.03.014

    Article  CAS  PubMed  Google Scholar 

  16. Patel SKS, Kumar P, Mehariya S, Purohit HJ, Lee J-K, Kalia VC (2014) Enhancement in hydrogen production by co-cultures of Bacillus and Enterobacter. Int J Hydrogen Energy 39:14663–14668. https://doi.org/10.1016/j.ijhydene.2014.07.084

    Article  CAS  Google Scholar 

  17. Pachapur VL, Sarma SJ, Brar SK, Bihan YL, Buelna G, Verma M (2016) Hydrogen production from biodiesel industry waste by using a co-culture of Enterobacter aerogenes and Clostridium butyricum. Biofuels 8:651–662. https://doi.org/10.1080/17597269.2015.1122471

    Article  CAS  Google Scholar 

  18. Li Q, Liu C-Z (2012) Co-culture of Clostridium thermocellum and Clostridium thermosaccharolyticum for enhancing hydrogen production via thermophilic fermentation of cornstalk waste. Int J Hydrogen Energy 37:10648–10654. https://doi.org/10.1016/j.ijhydene.2012.04.115

    Article  CAS  Google Scholar 

  19. Tondro H, Musivand S, Zilouei H, Bazarganipour M, Zargoosh K (2020) Biological production of hydrogen and acetone- butanol-ethanol from sugarcane bagasse and rice straw using co-culture of Enterobacter aerogenes and Clostridium acetobutylicum. Biomass Bioenerg. https://doi.org/10.1016/j.biombioe.2020.105818

    Article  Google Scholar 

  20. Ebrahimian F, Karimi K, Angelidaki I (2022) Coproduction of hydrogen, butanol, butanediol, ethanol, and biogas from the organic fraction of municipal solid waste using bacterial cocultivation followed by anaerobic digestion. Renewable Energy 194:552–560. https://doi.org/10.1016/j.renene.2022.05.067

    Article  CAS  Google Scholar 

  21. Ozyurt B, Soysal F, Hitit ZY, Camcioglu S, Akay B, Ertunc S (2019) An efficient dark fermentative hydrogen production by GMV control of pH. Int J Hydrogen Energy 44:19709–19718. https://doi.org/10.1016/j.ijhydene.2019.06.048

    Article  CAS  Google Scholar 

  22. Abd-Alla MH, Gabra FA, Danial AW, Abdel-Wahab AM (2018) Enhancement of biohydrogen production from sustainable orange peel wastes using Enterobacter species isolated from domestic wastewater. Int J Energy Res 43:391–404. https://doi.org/10.1002/er.4273

    Article  CAS  Google Scholar 

  23. Iyyappan J, Bharathiraja B, Varjani S, PraveenKumar R, Kumar SM (2022) Anaerobic biobutanol production from black strap molasses using Clostridium acetobutylicum MTCC11274: media engineering and kinetic analysis. Biores Technol. https://doi.org/10.1016/j.biortech.2021.126405

    Article  Google Scholar 

  24. Li Z, Wang H, Tang Z, Wang X, Bai J (2008) Effects of pH value and substrate concentration on hydrogen production from the anaerobic fermentation of glucose. Int J Hydrogen Energy 33:7413–7418. https://doi.org/10.1016/j.ijhydene.2008.09.048

    Article  CAS  Google Scholar 

  25. Wang J, Wan W (2009) Optimization of fermentative hydrogen production process using genetic algorithm based on neural network and response surface methodology. Int J Hydrogen Energy 34:255–261. https://doi.org/10.1016/j.ijhydene.2008.10.010

    Article  CAS  Google Scholar 

  26. Sriyod K, Reungsang A, Plangklang P (2021) One-step multi enzyme pretreatment and biohydrogen production from Chlorella sp. biomass. Int J Hydrogen Energy 46:39675–39687. https://doi.org/10.1016/j.ijhydene.2021.09.232

    Article  CAS  Google Scholar 

  27. Derde LJ, Gomand SV, Courtin CM, Delcour JA (2012) Characterisation of three starch degrading enzymes: thermostable β-amylase, maltotetraogenic and maltogenic α-amylases. Food Chem 135:713–721. https://doi.org/10.1016/j.foodchem.2012.05.031

    Article  CAS  PubMed  Google Scholar 

  28. Ramprakash B, Muthukumar K (2014) Comparative study on the production of biohydrogen from rice mill wastewater. Int J Hydrogen Energy 39:14613–14621. https://doi.org/10.1016/j.ijhydene.2014.06.029

    Article  CAS  Google Scholar 

  29. Puad NIM, Rahim NFA, Azmi AS (2018) Acid Pretreatment of Sago Wastewater for Biohydrogen Production. International Conference on Civil & Environmental Engineering (CENVIRON 2017) 34. https://doi.org/10.1051/e3sconf/20183402012

  30. Leaño EP, Babel S (2012) Effects of pretreatment methods on cassava wastewater for biohydrogen production optimization. Renewable Energy 39:339–346. https://doi.org/10.1016/j.renene.2011.08.030

    Article  CAS  Google Scholar 

  31. Orozco RL, Redwood MD, Leeke GA, Bahari A, Santos RCD, Macaskie LE (2012) Hydrothermal hydrolysis of starch with CO2 and detoxification of the hydrolysates with activated carbon for bio-hydrogen fermentation. Int J Hydrogen Energy 37:6545–6553. https://doi.org/10.1016/j.ijhydene.2012.01.047

    Article  CAS  Google Scholar 

  32. Rao R, Basak N (2021) Optimization and modelling of dark fermentative hydrogen production from cheese whey by Enterobacter aerogenes 2822. Int J Hydrogen Energy 46:1777–1800. https://doi.org/10.1016/j.ijhydene.2020.10.142

    Article  CAS  Google Scholar 

  33. Sengupta S, Jana ML, Sengupta D, Naskar AK (2000) A note on the estimation of microbial glycosidase activities by dinitrosalicylic acid reagent. Appl Microbiol Biotechnol 53:732–735. https://doi.org/10.1007/s002530000327

    Article  CAS  PubMed  Google Scholar 

  34. Nielsen SS (2009) Phenol-sulfuric acid method for total carbohydrates. In: Coupland J, Ferruzzi M, Hartel RW, Morawicki RM, Nielsen SS, Silva JL (eds) Food analysis laboratory manual. Springer. https://doi.org/10.1007/978-1-4419-1463-7_6

  35. Gilcreas FW (1966) Standard methods for the examination of water and waste water. Am Public Health Assoc. https://doi.org/10.2105/AJPH.56.3.387

    Article  Google Scholar 

  36. Hu Y, Zhao N, Gan T, Duan J, Yu HJ, Meng D, Liu J, Liu W (2017) Analytic method on characteristic parameters of bacteria in water by multiwavelength transmission spectroscopy. J Spectrosc 2017:7. https://doi.org/10.1155/2017/4039048

    Article  CAS  Google Scholar 

  37. Tao Y, Chen Y, Wu Y, He Y, Zhou Z (2007) High hydrogen yield from a two-step process of dark- and photo-fermentation of sucrose. Int J Hydrogen Energy 32:200–206. https://doi.org/10.1016/j.ijhydene.2006.06.034

    Article  CAS  Google Scholar 

  38. Chen C-C, Lin C-Y, Lin M-C (2002) Acid–base enrichment enhances anaerobic hydrogen production process. Appl Microbiol Biotechnol 58:224–228. https://doi.org/10.1007/s002530100814

    Article  PubMed  Google Scholar 

  39. Malik SN, Pugalenthi V, Vaidya AN, Ghosh PC, Mudliar SN (2013) Kinetics of nano-catalysed dark fermentative hydrogen production from distillery wastewater. Energy Procedia 54:417–430. https://doi.org/10.1016/j.egypro.2014.07.284

    Article  CAS  Google Scholar 

  40. Chaitanya N, Kumar BS, Himabindu V, Lakshminarasu M, Vishwanadham M (2017) Strategies for enhancement of bio-hydrogen production using mixed cultures from starch effluent as substrate. Biofuels 9:341–352. https://doi.org/10.1080/17597269.2016.1271626

    Article  CAS  Google Scholar 

  41. Singh N, Rai P, Pandey A, Pandey A (2022) Exploring the potential of Bacillus licheniformis AP1 for fermentive biohydrogen production using starch substrate: BBD based process parameter optimization. Fuel. https://doi.org/10.1016/j.fuel.2022.123668

    Article  Google Scholar 

  42. Hossain MS, Rahim NA, Aman MM, Selvaraj J (2019) Application of ANOVA method to study solar energy for hydrogen production. Int J Hydrogen Energy 44:14571–14579. https://doi.org/10.1016/j.ijhydene.2019.04.028

    Article  CAS  Google Scholar 

  43. Miao M, Jiang B, Zhang T, Jin Z, Mu W (2011) Impact of mild acid hydrolysis on structure and digestion properties of waxy maize starch. Food Chem 126:506–513. https://doi.org/10.1016/j.foodchem.2010.11.031

    Article  CAS  Google Scholar 

  44. Das SR, Basak N (2022) Optimization of process parameters for enhanced biohydrogen production using potato waste as substrate by combined dark and photo fermentation. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-022-02588-w

    Article  Google Scholar 

  45. Ulhiza TA, Puad NIM, Azmi AS (2018) Optimization of culture conditions for biohydrogen production from sago wastewater by Enterobacter aerogenes using response surface methodology. Int J Hydrogen Energy 43:22148–22158. https://doi.org/10.1016/j.ijhydene.2018.10.057

    Article  CAS  Google Scholar 

  46. Stavropoulos KP, Kopsahelis A, Zafiri C, Kornaros M (2016) Effect of pH on continuous biohydrogen production from end-of-life dairy products (EoL-DPs) via dark fermentation. Waste Biomass Valorization 7:753–764. https://doi.org/10.1007/s12649-016-9548-7

    Article  CAS  Google Scholar 

  47. Mitra R, Balachandar G, Singh V, Sinha P, Das D (2017) Improvement in energy recovery by dark fermentative biohydrogen followed by biobutanol production process using obligate anaerobes. Int J Hydrogen Energy 42:4880–4892. https://doi.org/10.1016/j.ijhydene.2017.01.183

    Article  CAS  Google Scholar 

  48. Bagy MMK, Abd-Alla MH, Morsy FM, Hassan EA (2014) Two stage biodiesel and hydrogen production from molasses by oleaginous fungi and Clostridium acetobutylicum ATCC 824. Int J Hydrogen Energy 39:3185–3197. https://doi.org/10.1016/j.ijhydene.2013.12.106

    Article  CAS  Google Scholar 

  49. Cappelletti BM, Reginatto V, Amante ER, Antônio RV (2011) Fermentative production of hydrogen from cassava processing wastewater by Clostridium acetobutylicum. Renewable Energy 36:3367–3372. https://doi.org/10.1016/j.renene.2011.05.015

    Article  CAS  Google Scholar 

  50. Avcı A, Kılıç NK, Dönmez G, Dönmez S (2013) Evaluation of hydrogen production by Clostridium strains on beet molasses. Environ Technol 35:278–285. https://doi.org/10.1080/09593330.2013.826251

    Article  CAS  Google Scholar 

  51. Sharma Y, Li B (2009) Optimizing hydrogen production from organic wastewater treatment in batch reactors through experimental and kinetic analysis. Int J Hydrogen Energy 34:6171–6180. https://doi.org/10.1016/j.ijhydene.2009.06.031

    Article  CAS  Google Scholar 

  52. Khamaiseh EI, Hamid AA, Abdeshahian P, Yusoff WMW, Kalil MS (2014) Enhanced butanol production by Clostridium acetobutylicum NCIMB 13357 grown on date fruit as carbon source in P2 medium. Sci World J 2014:7. https://doi.org/10.1155/2014/395754

    Article  Google Scholar 

  53. Geng A, He Y, Qian C, Yan X, Zhou Z (2010) Effect of key factors on hydrogen production from cellulose in a co-culture of Clostridium thermocellum and Clostridium thermopalmarium. Biores Technol 101:4029–4033. https://doi.org/10.1016/j.biortech.2010.01.042

    Article  CAS  Google Scholar 

  54. Ramprakash B, Muthukumar K (2018) Influence of sulfuric acid concentration on biohydrogen production from rice mill wastewater using pure and coculture of Enterobacter aerogenes and Citrobacter freundii. Int J Hydrogen Energy 43:9254–9258. https://doi.org/10.1016/j.ijhydene.2018.03.198

    Article  CAS  Google Scholar 

  55. Pachapur VL, Sarma SJ, Brar SK, Bihan YL, Buelna G, Verma M (2015) Biohydrogen production by co-fermentation of crude glycerol and apple pomace hydrolysate using co-culture of Enterobacter aerogenes and Clostridium butyricum. Biores Technol 193:297–306. https://doi.org/10.1016/j.biortech.2015.06.095

    Article  CAS  Google Scholar 

  56. Fabiano B, Perego P (2002) Thermodynamic study and optimization of hydrogen production by Enterobacter aerogenes. Int J Hydrogen Energy 27:149–156. https://doi.org/10.1016/S0360-3199(01)00102-1

    Article  CAS  Google Scholar 

  57. Choonut A, Saejong M, Sangkharak K (2014) The production of ethanol and hydrogen from pineapple peel by Saccharomyces cerevisiae and Enterobacter aerogenes. Energy Procedia 52:242–249. https://doi.org/10.1016/j.egypro.2014.07.075

    Article  CAS  Google Scholar 

  58. Ren Y, Wang J, Liu Z, Ren Y, Li G (2009) Hydrogen production from the monomeric sugars hydrolyzed from hemicellulose by Enterobacter aerogenes. Renewable Energy 34:2774–2779. https://doi.org/10.1016/j.renene.2009.04.011

    Article  CAS  Google Scholar 

  59. Hasibar B, Ergal İ, Moser S, Bochmann G, Rittmann SK-MR, Fuchs W (2020) Increasing biohydrogen production with the use of a co-culture inside a microbial electrolysis cell. Biochem Eng J. https://doi.org/10.1016/j.bej.2020.107802

    Article  Google Scholar 

  60. Mishra P, Roy S, Das D (2015) Comparative evaluation of the hydrogen production by mixed consortium, synthetic co-culture and pure culture using distillery effluent. Biores Technol 198:593–602. https://doi.org/10.1016/j.biortech.2015.09.074

    Article  CAS  Google Scholar 

  61. Cheng J, Zhu M (2013) A novel anaerobic co-culture system for bio-hydrogen production from sugarcane bagasse. Biores Technol 144:623–631. https://doi.org/10.1016/j.biortech.2013.07.018

    Article  CAS  Google Scholar 

  62. Mu Y, Zheng X-J, Yu H-Q (2009) Determining optimum conditions for hydrogen production from glucose by an anaerobic culture using response surface methodology (RSM). Int J Hydrogen Energy 34:7959–7963. https://doi.org/10.1016/j.ijhydene.2009.07.093

    Article  CAS  Google Scholar 

  63. Abdeshahian P, Al-Shorgani NKN, Salih NKM, Shukor H, Kadier A, Hamid AA, Kalil MS (2014) The production of biohydrogen by a novel strain Clostridium sp. YM1 in dark fermentation process. Int J Hydrogen Energy 39:12524–12531. https://doi.org/10.1016/j.ijhydene.2014.05.081

    Article  CAS  Google Scholar 

  64. Fan Y, Li C, Lay J-J, Hou H, Zhang G (2004) Optimization of initial substrate and pH levels for germination of sporing hydrogen-producing anaerobes in cow dung compost. Biores Technol 91:189–193. https://doi.org/10.1016/S0960-8524(03)00175-5

    Article  CAS  Google Scholar 

  65. Bao H, Chen C, Jiang L, Liu Y, Shen M, Liu W, Wang A (2015) Optimization of key factors affecting biohydrogen production from microcrystalline cellulose by the co-culture of Clostridium acetobutylicum X9 + Ethanoigenens harbinense B2. RSC Adv 6:3421–3427. https://doi.org/10.1039/C5RA14192C

    Article  CAS  Google Scholar 

  66. Wang S, Ma Z, Zhang T, Bao M, Su H (2017) Optimization and modeling of biohydrogen production by mixed bacterial cultures from raw cassava starch. Front Chem Sci Eng 11:100–106. https://doi.org/10.1007/s11705-017-1617-3

    Article  CAS  Google Scholar 

  67. Islam MS, Zhang C, Sui K-Y, Guo C, Liu C-Z (2017) Coproduction of hydrogen and volatile fatty acid via thermophilic fermentation of sweet sorghum stalk from co-culture of Clostridium thermocellum and Clostridium thermosaccharolyticum. Int J Hydrogen Energy 42:830–837. https://doi.org/10.1016/j.ijhydene.2016.09.117

    Article  CAS  Google Scholar 

  68. Rao R, Basak N (2022) Sequential dark-photo batch fermentation and kinetic modelling for biohydrogen production using cheese whey as a feedstock. Appl Biochem Biotechnol. https://doi.org/10.1007/s12010-022-03958-w

    Article  PubMed  PubMed Central  Google Scholar 

  69. Zhang H, Wang X (2016) Modular co-culture engineering, a new approach for metabolic engineering. Metab Eng 37:114–121. https://doi.org/10.1016/j.ymben.2016.05.007

    Article  CAS  PubMed  Google Scholar 

  70. Rao R, Basak N (2021) Process optimization and mathematical modelling of photo-fermentative hydrogen production from dark fermentative cheese whey effluent by Rhodobacter sphaeroides O.U.001 in 2-L cylindrical bioreactor. Biomass Conv Bioref. https://doi.org/10.1007/s13399-021-01377-1

    Article  Google Scholar 

  71. Basak N, Jana AK, Das D (2021) Photofermentative biohydrogen generation from organic acids by Rhodobacter sphaeroides O.U.001: Computational fluid dynamics modeling of hydrodynamics and temperature. Biotechnol Appl Biochem 69:783–797. https://doi.org/10.1002/bab.2151

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Ministry of Education (MoE), Government of India, for providing post-graduation fellowship to the first author. The authors are extremely grateful to the facilities and support provided by the Department of Biotechnology, Dr. B R Ambedkar National Institute of Technology, Jalandhar, India, for the conduct of experiments and completion of this work.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Investigation, Validation of results and Writing—original draft: VJ. Conceptualization, Validation of results and interpreted data, Writing—review and editing, and overall supervision of study: NB. All authors have reviewed and approved the final version of the manuscript for submission.

Corresponding author

Correspondence to Nitai Basak.

Ethics declarations

Conflict of interest

The authors declare that there are no competing financial interests or personal relationship that influence the work in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayachandran, V., Basak, N. Optimization of dark fermentative biohydrogen production from rice starch by Enterobacter aerogenes MTCC 2822 and Clostridium acetobutylicum MTCC 11274. Bioprocess Biosyst Eng 46, 535–553 (2023). https://doi.org/10.1007/s00449-022-02838-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-022-02838-1

Keywords

Navigation