Skip to main content

Advertisement

Log in

Enhanced hydrogen production from glucose using ldh- and frd-inactivated Escherichiacoli strains

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

We improved the hydrogen yield from glucose using a genetically modified Escherichia coli. E. coli strain SR15 (ΔldhA, ΔfrdBC), in which glucose metabolism was directed to pyruvate formate lyase (PFL), was constructed. The hydrogen yield of wild-type strain of 1.08 mol/mol glucose, was enhanced to 1.82 mol/mol glucose in strain SR15. This figure is greater than 90 % of the theoretical hydrogen yield of facultative anaerobes (2.0 mol/mol glucose). Moreover, the specific hydrogen production rate of strain SR15 (13.4 mmol h−1 g−1 dry cell) was 1.4-fold higher than that of wild-type strain. In addition, the volumetric hydrogen production rate increased using the process where cells behaved as an effective catalyst. At 94.3 g dry cell/l, a productivity of 793 mmol h−1 l−1 (20.2 l h−1 l−1 at 37 °C) was achieved using SR15. The reported productivity substantially surpasses that of conventional biological hydrogen production processes and can be a trigger for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig 3

Similar content being viewed by others

References

  • Alam KY, Clark DP (1989) Anaerobic fermentation balance of Escherichia coli as observed by in vivo nuclear magnetic resonance spectroscopy. J Bacteriol 171:6213–6217

    Article  CAS  Google Scholar 

  • Benemann J (1996) Hydrogen biotechnology: progress and prospects. Nat Biotechnol 14:1101–1103

    Article  CAS  Google Scholar 

  • Chin HL, Chen ZS, Chou CP (2003) Fedbatch operation using Clostridium acetobutylicum suspension culture as biocatalyst for enhancing hydrogen production. Biotechnol Prog 19:383–388

    Article  CAS  Google Scholar 

  • Clark DP (1989) The fermentation pathways of Escherichia coli. FEMS Microbiol Rev 5:223–234

    CAS  PubMed  Google Scholar 

  • Inui M, Kawaguchi H, Murakami S, Vertès AA, Yukawa H (2004) Metabolic engineering of Corynebacterium glutamicum for fuel ethanol production under oxygen-deprivation conditions. J Mol Microbiol Biotechnol 8:243–254

    Article  Google Scholar 

  • Kawaguchi H, Hashimoto K, Hirata K, Miyamoto K (2001) H2 production from algal biomass by a mixed culture of Rhodobium marinum A-501 and Lactobacillus amylovorus 91:277–282

    CAS  Google Scholar 

  • Kim SH, Han SK, Shin HS (2004) Feasibility of biohydrogen production by anaerobic co-digestion of food waste and sewage sludge. Int J Hydrogen Energy 29:1607–1616

    Article  CAS  Google Scholar 

  • Kumar N, Das D (2001) Continuous hydrogen production by immobilized Enterobacter cloacae IIT-BT 08 using lignocellulosic materials as solid matrices. Enzyme Microb Technol 29:280–287

    Article  CAS  Google Scholar 

  • Lee KS, Lo YS, Lo YC, Lin PJ, Chang JS (2003) H2 production with anaerobic sludge using activated-carbon supported packed-bed bioreactors. Biotechnol Lett 25:133–138

    Article  CAS  Google Scholar 

  • Levin D, Pitt L, Love M (2004) Biohydrogen production: prospects and limitations to practical application. Int J Hydrogen Energy 29:173–185

    Article  CAS  Google Scholar 

  • Nandi R, Sengupta S (1998) Microbial production of hydrogen: an overview. Crit Rev Microbiol 24:61–84

    Article  CAS  Google Scholar 

  • Nath K, Das D (2004) Improvement of fermentative hydrogen production: various approaches. Appl Microbiol Biotechnol 65:520–529

    Article  CAS  Google Scholar 

  • Oh Y-K, Seol E-H, Yeol Lee E, Park S (2002) Fermentative hydrogen production by a new chemolithotrophic bacterium Rhodopseudomonas palustris P4. Int J Hydrogen Energy 27:1373–1379

    Article  CAS  Google Scholar 

  • Penfold DW, Macaskie LE (2004) Production of H2 from sucrose by Escherichia coli strains carrying the pUR400 plasmid, which encodes invertase activity. Biotechnol Lett 26:1879–1883

    Article  CAS  Google Scholar 

  • Rachman MA, Nakashimada Y, Kakizono T, Nishio N (1998) Hydrogen production with high yield and high evolution rate by self-flocculated cells of Enterobacter aerogenes in a packed-bed reactor. Appl Microbiol Biotechnol 49:450–454

    Article  CAS  Google Scholar 

  • Sauter M, Böhm R, Böck A (1992) Mutational analysis of the operon (hyc) determining hydrogenase 3 formation in Escherichia coli. Mol Microbiol 6:1523–1532

    Article  CAS  Google Scholar 

  • Sawers G (1994) The hydrogenases and formate dehydrogenases of Escherichia coli. Antonie Van Leeuwenhoek 66:57–88

    Article  CAS  Google Scholar 

  • Sode K, Watanabe M, Makimoto H, Tomiyama M (1998) Effect of hydrogenase 3 overexpression and disruption of nitrate reductase on fermamentive hydrogen production in Escherichia coli. In: Zaborsky OR, Benemann JR, Matsunaga T, Miyake J, San Pietro A (eds) Biohydrogen. Plenum, New York, pp 73–79

    Google Scholar 

  • Sode K, Watanabe M, Makimoto H, Tomiyama M (1999) Construction and characterization of fermentative lactate dehydrogenase Escherichia coli mutant and its potential for bacterial hydrogen production. Appl Biochem Biotechnol 77–79:317–323

    Article  Google Scholar 

  • Wu SY, Hung CH, Lin CN, Chen HW, Lee AS, Chang JS (2006) Fermentative hydrogen production and bacterial community structure in high-rate anaerobic bioreactors containing silicone-immobilized and self-flocculated sludge. Biotechnol Bioeng 93:934–946

    Article  CAS  Google Scholar 

  • Yoshida A, Nishimura T, Kawaguchi H, Inui M, Yukawa H (2005) Enhanced hydrogen production from formic acid by formate hydrogen lyase-overexpressing Escherichia coli strains. Appl Environ Microbiol 71:6762–6768

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. H. Doi (University of California, Davis) and C. A. Omumasaba (Research Institute of Innovative Technology for the Earth) for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideaki Yukawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshida, A., Nishimura, T., Kawaguchi, H. et al. Enhanced hydrogen production from glucose using ldh- and frd-inactivated Escherichiacoli strains. Appl Microbiol Biotechnol 73, 67–72 (2006). https://doi.org/10.1007/s00253-006-0456-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0456-9

Keywords

Navigation