Skip to main content

Advertisement

Log in

Long-term multi-hazard assessment for El Misti volcano (Peru)

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

We propose a long-term probabilistic multi-hazard assessment for El Misti Volcano, a composite cone located <20 km from Arequipa. The second largest Peruvian city is a rapidly expanding economic centre and is classified by UNESCO as World Heritage. We apply the Bayesian Event Tree code for Volcanic Hazard (BET_VH) to produce probabilistic hazard maps for the predominant volcanic phenomena that may affect c.900,000 people living around the volcano. The methodology accounts for the natural variability displayed by volcanoes in their eruptive behaviour, such as different types/sizes of eruptions and possible vent locations. For this purpose, we treat probabilistically several model runs for some of the main hazardous phenomena (lahars, pyroclastic density currents (PDCs), tephra fall and ballistic ejecta) and data from past eruptions at El Misti (tephra fall, PDCs and lahars) and at other volcanoes (PDCs). The hazard maps, although neglecting possible interactions among phenomena or cascade effects, have been produced with a homogeneous method and refer to a common time window of 1 year. The probability maps reveal that only the north and east suburbs of Arequipa are exposed to all volcanic threats except for ballistic ejecta, which are limited to the uninhabited but touristic summit cone. The probability for pyroclastic density currents reaching recently expanding urban areas and the city along ravines is around 0.05 %/year, similar to the probability obtained for roof-critical tephra loading during the rainy season. Lahars represent by far the most probable threat (around 10 %/year) because at least four radial drainage channels can convey them approximately 20 km away from the volcano across the entire city area in heavy rain episodes, even without eruption. The Río Chili Valley represents the major concern to city safety owing to the probable cascading effect of combined threats: PDCs and rockslides, dammed lake break-outs and subsequent lahars or floods. Although this study does not intend to replace the current El Misti hazard map, the quantitative results of this probabilistic multi-hazard assessment can be incorporated into a multi-risk analysis, to support decision makers in any future improvement of the current hazard evaluation, such as further land-use planning and possible emergency management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alberico I, Petrosino P, Lirer L (2011) Volcanic hazard and risk assessment in a multi-source volcanic area: the example of Napoli city (Southern Italy). Nat Hazards Earth Syst Sci 11:1057–1070. doi:10.5194/nhess-11.1057-2011

    Article  Google Scholar 

  • Aspinall W (2006) Structured elicitation of expert judgement for probabilistic hazard and risk assessment in volcanic eruptions, In H. M. Mader, S. G. Coles, C. B. Connor and L. J. Connor (eds), Statistics in Volcanology, Special Publications of IAVCEI, 1, Geological Society London, 15-30

  • Biass S, Bonadonna C (2013) A fast GIS-based risk assessment for tephra fallout: the example of Cotopaxi volcano, Ecuador-Part I: probabilistic hazard assessment. Nat Hazards 65(1):477–495. doi:10.1007/s11069-012-0378-z

    Article  Google Scholar 

  • Biass S, Frischknecht C, Bonadonna C (2013) A fast GIS-based risk assessment for tephra fallout: the example of Cotopaxi volcano, Ecuador-Part II: vulnerability and risk assessment. Nat Hazards 65(1):497–521. doi:10.1007/s11069-012-0457-1

    Article  Google Scholar 

  • Bonadonna C (2006) Probabilistic modelling of tephra dispersion. In: H. M. Mader, S. G. Coles, C. B. Connor and L. J. Connor (eds) Statistics in volcanology. Special Publications of IAVCEI, 1, Geological Society London, pp. 243–259

  • Bonadonna C, Macedonio G, Sparks RSJ (2002). Numerical modelling of tephra fallout associated with dome collapses and Vulcanian explosions: application to hazard assessment onMontserrat. In: Druitt T, Kokelaar BP (eds) The Eruption of Soufriere Hills Volcano, Montserrat, from 1995 to 1999. Geological Society, London, Memoirs, 21, 517–537

  • Bonadonna C, Connor CB, Houghton BF, Connor L, Byrne M, Laing A, Hincks TK (2005) Probabilistic modeling of tephra dispersal: hazard assessment of a multiphase rhyolitic eruption at Tarawera, New Zealand. J Geophys Res 110(10.1029)

  • Bourdier JL, Abdurachman EK (2001) Decoupling of small-volume pyroclastic flows and related hazards at Merapivolcano, Indonesia. Bull Volcanol 63(5):309–325

    Article  Google Scholar 

  • Cacya L, Mariño J, Rivera M, Thouret JC (2007) La erupcion pliniana “Autopista” del volcan Misti (21,000-11,000 años AP). Boletín Soc Geol del Perú 102:25–42

    Google Scholar 

  • Capra L, Manea VC, Manea M, Norini G (2010) The importance of digital elevation model resolution on granular flow simulations: a test case for Colima volcano using TITAN2D computational routine. Nat Hazards. doi:10.1007/s11069-011-9788-6

    Google Scholar 

  • Charbonnier SJ, Gertisser R (2009) Numerical simulations of block-and-ash flows using Titan2D flow model: examples from the 2006 eruption of Merapi Volcano, Java, Indonesia. Bull Volcanol 71:953–959

    Article  Google Scholar 

  • Charbonnier SJ, Gertisser R (2012) Evaluation of geophysical mass flow models using the 2006 block-and-ash flows of Merapi Volcano, Java, Indonesia: towards a short-term hazard assessment tool. J Volcanol Geotherm Res 231–232:87–108. doi:10.1016/j.jvolgeores.2012.02.015

    Article  Google Scholar 

  • Chávez Chávez, J.A. (1992) La erupción del volcán Misti. Pasado, presente, futuro: Impresiones Zenit, Arequipa, 158 pp.

  • Cioni R, Longo A, Macedonio G, Santacroce R, Sbrana A, Sulpizio R, Andronico D (2003) Assessing pyroclastic fall hazard through field data and numerical simulations: example from Vesuvius. J Geophys Res 108(B2):2063. doi:10.1029/2001JB000642

    Article  Google Scholar 

  • Cioni R, Bertagnini A, Santacroce R, Andronico D (2008) Explosive activity and eruption scenarios at Somma-Vesuvius (Italy): towards a new classification scheme. J Volcanol Geotherm Res 178:331–346. doi:10.1016/j.jvolgeores.2008.04.024

    Article  Google Scholar 

  • Cobeñas G, Thouret JC, Bonadonna C, Boivin P (2012) The c.2030 yr BP Plinian eruption of El Misti volcano, Peru: eruption dynamics and hazard implications. J Volcanol Geotherm Res 241–242:105–120. doi:10.1016/j.jvolgeores.2012.06.006

    Article  Google Scholar 

  • Connor CB, Sparks RSJ, Mason RM, Bonadonna C, Young SR (2003) Exploring links between physical and probabilistic models of volcanic eruptions: the Soufriere Hills Volcano, Montserrat. Geophys Res Lett 30(13):1701. doi:10.1029/2003GL017384

    Article  Google Scholar 

  • Costantini L, Bonadonna C, Houghton BF, Wehrmann H (2009) New physical characterization of the Fontana Lapilli basaltic Plinian eruption, Nicaragua. Bull Volcanol 71:337–355. doi:10.1007/s00445-008-0227-9

    Article  Google Scholar 

  • Delaite G, Thouret JC, Sheridan M, Labazuy P, Stinton A, Souriot T, Van Westen C (2005) Assessment of volcanic hazards of El Misti and in the city of Arequipa, Peru, based on GIS and simulations, with emphasis on lahars. Zeit für Geomor NF, Suppl 140:209–231

    Google Scholar 

  • Druitt TH, Young SR, Baptie B, Bonadonna C, Calder ES, Clarke AB, Cole PD, Harford CL, Herd RA, Luckett R, Ryan G, Voight B (2002) Periodic vulcanian explosions and fountain collapse at the Soufriere Hills Volcano, Montserrat, 1997. In: Druitt TH & Kokelaar, B.P., Eds., The eruption of the Soufriere Hills Volcano, Montserrat from 1995 to 1999. Geol Soc London Memoir 21:281-306

  • Esposti Ongaro T, Neri A, Menconi G, de’Michieli Vitturi M, Marianelli M, Cavazzoni C, Erbacci G, Baxter PJ (2008) Transient 3D numerical simulations of column collapse and pyroclastic density current scenarios at Vesuvius. J Volcanol Geotherm Res 178:378–396

    Article  Google Scholar 

  • Favalli M, Chirico GD, Papale P, Pareschi MT, Boschi E (2009) Lava flow hazard at Nyiragongo volcano, D.R.C. 1. Model calibration and hazard mapping. Bull Volcanol 71:363–374. doi:10.1007/s00445-008-0233-y

    Article  Google Scholar 

  • Finizola A, Lénat JF, Macedo O, Ramos D, Thouret JC, Sortino F (2004) Fluid circulation and structural discontinuities inside Misti volcano (Peru) inferred from self-potential measurements. J Volcanol Geotherm Res 135(4):343–360

    Article  Google Scholar 

  • Fudali RF, Melson WG (1972) Ejecta velocities, magma chamber pressure and kinetic energy associated with the 1968 eruption of Arenal volcano. Bull Volcanol 35:383–401

    Article  Google Scholar 

  • Gerbe MC, Thouret JC (2004) Role of magma mixing in the petrogenesis of tephra erupted during the 1990–98 explosive activity of Nevado Sabancaya, southern Peru. Bull Volcanol 66(6):541–561

    Article  Google Scholar 

  • Harpel CJ, de Silva S, Salas G (2011) The 2 ka eruption of El Misti volcano, southern Peru – The most recent Plinian eruption of Arequipa’s iconic volcano. Geol Soc Am Spec Pap 484:72

    Google Scholar 

  • Iverson RM, Schilling SP, Vallance JW (1998) Objective delineation of lahar-inundation hazard zones. Geol Soc Am Bull 110(8):972–984

    Article  Google Scholar 

  • Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Kelfoun K, Samaniego P, Palacios P, Barba D (2009) Testing the suitability of frictional behaviour for pyroclastic flow simulation by comparison with a well-constrained eruption at Tungurahua volcano (Ecuador). Bull Volcanol 71:1057–1075. doi:10.1007/s00445-009-0286-6

    Article  Google Scholar 

  • Legros F (2001) Tephra stratigraphy of Misti volcano, Peru. J South Am Earth Sci 14:15–29

    Article  Google Scholar 

  • Lirer L, Petrosino P, Alberico I (2010) Hazard and risk assessment in a complex multi-source volcanic area: the example of the Campania Region, Italy. Bull Volcanol. doi:10.1007/s00445-009-0334-2

    Google Scholar 

  • Magill CR, Blong R (2005a) Volcanic risk ranking for Auckland, New Zealand: I. Methodology and hazard investigation. Bull Volcanol 67:331–339. doi:10.1007/s00445-004-0374-6

    Article  Google Scholar 

  • Magill CR, Blong R (2005b) Volcanic risk ranking for Auckland, New Zealand. II: hazard consequences and risk calculation. Bull Volcanol 67:340–349. doi:10.1007/s00445-004-0375-5

    Article  Google Scholar 

  • Mariño J, Rivera M, Cacya L, Thouret JC, Macedo O, Salas G, Siebe C, Tilling RI, Sheridan MF, Chavez A, Zuñiga S (2007) Mapa de los peligros volcánicos del Misti. Ingemmet, Proyecto Multinacional Andino, IRD, LMV, UNAM, Instituto de Geofísica UNAM, UNSA, Universidad Católica de Santa Maria, INDECI, Gobierno regional de Arequipa, Municipalidad provincial de Arequipa, PREDES, SENAMHI, Lima

  • Martelli K (2011) The physical vulnerability of urban areas facing the threat of inundation from lahars and flash floods: application to the case study of Arequipa, Peru. Ph.D. thesis (unpublished, in English), Université Blaise Pascal Clermont. 312 pp (Appendix A, B, C)

  • Marti J, Aspinall W, Sobradelo R, Felpeto A, Geyer A, Ortiz R, Baxter P, Cole P, Pacheco J, Blanco MJ, Lopez C (2008) A long-term volcanic hazard event tree for Teide-Pico Viejo stratovolcanoes (Tenerife, Canary Islands). J Volcanol Geotherm Res 178:543–552. doi:10.1016/j.jvolgeores.2008.09.023

    Article  Google Scholar 

  • Marzocchi W, Woo G (2009) Principles of volcanic risk metrics: theory and the case study of Mount Vesuvius and Campi Flegrei, Italy. J Geophys Res 114, B03213. doi:10.1029/2008JB005908

    Google Scholar 

  • Marzocchi W, Sandri L, Gasparini P, Newhall C, Boschi E (2004) Quantifying probabilities of volcanic events: the example of volcanic hazard at Mt Vesuvius. J Geophys Res 109, B11201. doi:10.1029/2004JB003155

    Article  Google Scholar 

  • Marzocchi W, Sandri L, Selva J (2008) BET_EF: a probabilistic tool for long- and short-term eruption forecasting. Bull Volcanol 70:623–632. doi:10.1007/s00445-007-0157-y

    Article  Google Scholar 

  • Marzocchi W, Sandri L, Selva J (2010) BET_VH: a probabilistic tool for long-term volcanic hazard assessment. Bull Volcanol 72:705–716. doi:10.1007/s00445-010-0357-8

    Article  Google Scholar 

  • Mastin LG (1991) The roles of magma and groundwater in the phreatic eruptions at Inyo Craters, Long Valley Caldera, California. Bull Volcanol 53:579–596

    Article  Google Scholar 

  • Mastin, LG (2001) A simple calculator of ballistic trajectories for blocks ejected during volcanic eruptions. USGS open—file report 01-45, version 1.2

  • Moore JG (1967) Base surge in recent volcanic eruptions. Bull Volcanol 30:337–363

    Article  Google Scholar 

  • Mosquera-Machado S, Dilley M (2009) A comparison of selected global disaster risk assessment results. Nat Hazards 48:439–456. doi:10.1007/s11069-008-9272-0

    Article  Google Scholar 

  • Neri A, Macedonio G, Gidaspow D, Esposti Ongaro T (2001) Multiparticle simulation of collapsing volcanic columns and pyroclastic flows. Volcanic Simulation Group Report 2001-2. ETS, Pisa

  • Neri A, Aspinall WP, Cioni R, Bertagnini A, Baxter PJ, Zuccaro G, Andronico D, Barsotti S, Cole PD, Esposti Ongaro T, Hincks TK, Macedonio G, Papale P, Rosi M, Santacroce R, Woo G (2008) Developing an event tree for probabilistic hazard and risk assessment at Vesuvius. J Volcanol Geotherm Res 178:397–415. doi:10.1016/j. jvolgeores.2008.05.014

    Article  Google Scholar 

  • Newhall CG, Hoblitt RP (2002) Constructing event trees for volcanic crises. Bull Volcanol 64:3–20. doi:10.1007/s004450100173

    Article  Google Scholar 

  • Newhall CG, Punongbayan RS (eds) (1996) Fire and mud: eruptions and lahars of Mount Pinatubo, Philippines. Philippine Institute of Volcanology and Seismology, Quezon City, and University of Washington Press, Seattle and London

  • Orsi G, Di Vito MA, Isaia R (2004) Volcanic hazard assessment at the restless Campi Flegrei caldera. Bull Volcanol 66:514–530. doi:10.1007/s00445-003-0336-4

    Article  Google Scholar 

  • Pacheco J, Sykes LR (1992) Seismic moment catalog of large shallow earthquakes, 1900 to 1989. Bull Seismol Soc Am 82:1306–1349

    Google Scholar 

  • Patra AK, Bauer AC, Nichita C, Pitman EB, Sheridan MF, Bursik MI (2005) Parallel adaptive simulation of dry avalanches over natural terrain. J Volcanol Geotherm Res 139:1–21

    Article  Google Scholar 

  • Pitman EB, Patra A, Bauer A, Nichita C, Sheridan M, Bursik M (2003) Computing debris flows. Phys Fluids 15:3638–3646

    Article  Google Scholar 

  • Procter JN, Cronin SJ, Platz T, Patra A, Dalbey K, Sheridan MF, Vince VE (2010) Mapping block-and-ash flow hazard based on TITAN2D simulations: a case study from Mt. Taranaki, NZ. Nat Hazards 53:483–501

    Article  Google Scholar 

  • Rivera M, Thouret JC, Marino J, Berolatti R, Fuentes J (2010) Characteristics and management of the 2006–2008 volcanic crisis at the Ubinas volcano (Peru). J Volcanol Geotherm Res 198:19–34. doi:10.1016/j.jvolgeores.2010.07.020

    Article  Google Scholar 

  • Rupp B, Bursik MI, Namikawa L, Webb A, Patra AK, Saucedo R, Macías JL, Renschler CS (2006) Computational modeling of the 1991 block and ash flows at Colima Volcano, Mexico. In: Siebe et al. (ed) Neogene–quaternary continental margin volcanism: a perspective from México. Geol Soc Amer Spec Paper 402: 237–252

  • Sandri L, Jolly G, Lindsay J, Howe T, Marzocchi W (2012) Combining long- and short-term probabilistic volcanic hazard assessment with cost-benefit analysis to support decision making in a volcanic crisis from the Auckland Volcanic Field, New Zealand. Bull Volcanol 74:705–723. doi:10.1007/s00445-011-0556-y

    Article  Google Scholar 

  • Schilling SP (1998) LAHARZ: GIS program for automated mapping of lahar-inundation hazard zones. U.S. Geological Survey Open-File Report 98-638

  • Selva J, Costa A, Marzocchi W, Sandri L (2010) BET VH: exploring the influence of natural uncertainties on long-term hazard from tephra fallout at Campi Flegrei (Italy). Bull Volcanol 72:717–733. doi:10.1007/s00445-010-0358-7

    Article  Google Scholar 

  • Sheridan MF, Stinton AJ, Patra A, Pitman EB, Bauer A, Nichita CC (2005) Evaluating TITAN2D mass-flow model using 1963 Little Tahoma Peak avalanches, Mount Rainier, Washington. J Volcanol Geotherm Res 139(1–2):89–102

    Article  Google Scholar 

  • Sheridan MF, Patra A, Dalbey K, Hubbard B (2010) Probabilistic digital hazard maps for avalanches and massive pyroclastic flows using TITAN2D. Geol Soc Am Spec Pap 2010(464):281–291. doi:10.1130/2010.2464(14)

    Article  Google Scholar 

  • Sigurdsson H, Carey S, Fisher RV (1987) The 1982 eruption of El Chichón volcano, Mexico: physical properties of pyroclastic surges. Bull Volcanol 49:467–488

    Article  Google Scholar 

  • Steinberg GS, Lorenz V (1983) External ballistics of volcanic explosions. Bull Volcanol 46-4

  • Sulpizio R, Capra L, Sarocchi D, Saucedo R, Gavilanes-Ruiz JC, Varley NR (2010) Predicting the block-and-ash flow inundation areas at Volcan de Colima (Colima, Mexico) based on the present day (February 2010) status. J Volc Geotherm Res 193:43–66

    Google Scholar 

  • Thierry P, Stieltjes L, Kouokam E, Nguéya P, Salley PM (2008) Multi-hazard risk mapping and assessment on an active volcano: the GRINP project at Mount Cameroon. Nat Hazards 45:429–456. doi:10.1007/s11069-007-9177-3

    Article  Google Scholar 

  • Thouret JC, Suni J, Eissen JP, Navarro P (1999) Assessment of volcanic hazards in the Arequipa area based on the eruption history of Misti volcano, southern Peru. Zeit für Geomor Suppl-Bd 114:89–112

    Google Scholar 

  • Thouret JC, Finizola A, Fornari M, Suni J, Legeley-Padovani A, Frechen M (2001) Geology of El Misti volcano nearby the city of Arequipa, Peru. Geol Soc Am Bull 113(12):1593–1610

    Article  Google Scholar 

  • Thouret JC, Enjolras G, Martelli K, Santoni O, Luque JA, Nagata M, Arguedas A, Macedo Franco L (2013) Combining criteria for delineating lahar- and flood-flood-prone hazard and risk zones in the city of Arequipa, Peru. Nat Hazards Earth Sci Syst 13:339–360. doi:10.5194/nhess-13-1-2013

    Article  Google Scholar 

  • Tort A, Finizola A (2005) Structural survey of Misti volcanic cone (southern Peru) combining elliptical Fourier function analysis of the volcano morphology and self-potential measurements. J Volcanol Geotherm Res 141:283–297. doi:10.1016/j.jvolgeores.2004.11.005

    Article  Google Scholar 

  • Vargas Franco, R., Thouret, J.-C., Delaite, G., van Westen, C., Sheridan, M.F., Siebe, C., Mariño, J., Souriot, T., Stinton, A. (2010) Mapping and assessing volcanic hazards and risks in the city of Arequipa, Peru, based on GIS techniques. In: G Groppelli & L. Viereck-Goette (eds) Stratigraphy and geology of volcanic areas. Geol Soc Amer Special Paper 464: 265–280, doi: 10.1130/2010.2464(13)

  • Wadge G, Jackson P, Bower SM (1998) Computer simulations of pyroclastic flows from dome collapse. Geophys Res Lett 25(19):3677–3680

    Article  Google Scholar 

  • Waitt, R.B., Mastin, L.G., Miller, T.P. (1995) Ballistics showers during Crater Peak eruptions of Mount Spurr volcano, summer 1992. In: Keith T.E.C. (ed) The 1992 eruptions of Crater Peak vent, Mount Spurr volcano, Alaska. U.S. Geological Survey Bulletin 2139

  • Waters AC, Fisher RV (1971) Base surges and their deposits; Capelinhos and Taal volcanoes. J Geophys Res 76:5596–5614

    Article  Google Scholar 

  • Wilson L, Sparks RSJ, Walker GPL (1980) Explosive volcanic eruptions—IV. The control of magma properties and conduit geometry on eruption column behavior, Geophys. J R Astron Soc 63:117–148

    Article  Google Scholar 

  • Zamácola Y., Jaíreguí, J.D. (1804) Apuntes para la historia de Arequipa: primer festival del libro arequipeño, Edición 1958, Arequipa, 15 p.

Download references

Acknowledgments

For this article and research, RC received the support from the French National Research Agency within the project “Laharisk” (ANR-09-RISK-005). LS and RT were supported by project ByMuR from the Italian Ministry of Research and Education (FIRB “Futuro in Ricerca”). The manuscript is CLERVOLC contribution number 67.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Sandri.

Additional information

Editorial responsibility: S. De la Cruz-Reyna

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sandri, L., Thouret, JC., Constantinescu, R. et al. Long-term multi-hazard assessment for El Misti volcano (Peru). Bull Volcanol 76, 771 (2014). https://doi.org/10.1007/s00445-013-0771-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-013-0771-9

Keywords

Navigation