Skip to main content

Advertisement

Log in

A fast GIS-based risk assessment for tephra fallout: the example of Cotopaxi volcano, Ecuador

Part II: vulnerability and risk assessment

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

In order to develop efficient strategies for risk mitigation and emergency management, planners require the assessment of both the expected hazard (frequency and magnitude) and the vulnerability of exposed elements. This paper presents a GIS-based methodology to produce qualitative to semi-qualitative thematic risk assessments for tephra fallout around explosive volcanoes, designed to operate with datasets of variable precision and resolution depending on data availability. Due to the constant increase in population density around volcanoes and to the wide dispersal of tephra from volcanic plumes, a large range of threats, such as roof collapses, damage to crops, blockage of vital lifelines and health problems, concern even remote communities. To address these issues, we have assessed the vulnerability and the risk levels for five themes relevant to tephra fallout: (1) social, (2) economic, (3) environmental, (4) physical and (5) territorial. Risk and vulnerability indices for each theme are averaged to the fourth level of administrative unit (parroquia, parish). In a companion paper, Biass and Bonadonna (this volume) present a probabilistic hazard assessment for tephra fallout at Cotopaxi volcano (Ecuador) using the advection-diffusion model TEPHRA2, which is based on field investigations and a global eruption database (Global Volcanism Program, GVP). The scope of this paper is to present a new approach to risk assessment specifically designed for tephra fallout, based on a comprehensive hazard assessment of Cotopaxi volcano. Our results show that an eruption of moderate magnitude (i.e. VEI 4) would result in the possible collapse of ∼9,000 houses in the two parishes located close to the volcano. Our study also reveals a high risk on agriculture, closely linked to the economic sector, and a possible accessibility problem in case of an eruption of any size, as tephra is likely to affect the only major road running from Quito to Latacunga (Panamerican Highway). As a result, this method fits into the ongoing effort to better characterize and evaluate volcanic risk, and more specifically the risk associated with tephra fallout. Although this methodology relies on some assumptions, it can serve as a rapid and efficient starting point for further investigations of the risk level around explosive volcanoes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aceves-Quesada JF, Diaz-Salgado J, Lopez-Blanco J (2007) Vulnerability assessment in a volcanic risk evaluation in Central Mexico through a multi-criteria-GIS approach. Nat Hazards 40(2):339–356

    Article  Google Scholar 

  • Alberico I, Lirer L, Petrosino P, Scandone R (2008) Volcanic hazard and risk assessment from pyroclastic flows at Ischia island (southern Italy). J Volcanol Geotherm Res 171(1–2):118–136. doi:10.1016/j.jvolgeores.2007.11.014, URL http://www.sciencedirect.com/science/article/pii/S0377027307003757

    Google Scholar 

  • Annen C, Wagner JJ (2003) The impact of volcanic eruptions during the 1990s. Nat Hazard Rev 4:169

    Article  Google Scholar 

  • Aronoff S (1989) Geographic information systems: a management perspective. WDL Publications, Ottawa

    Google Scholar 

  • Barberi F, Macedonio G, Pareschi MT, Santacroce R (1990) Mapping the tephra fallout risk: an example from Vesuvius, Italy. Nature 344:142–144

    Article  Google Scholar 

  • Barberi F, Coltelli M, Frullani A, Rosi M, Almeida E (1995) Chronology and dispersal characteristics of recently (last 5000 years) erupted tephra of Cotopaxi (Ecuador): implications for long-term eruptive forecasting. J Volcanol Geotherm Res 69(3–4):217–239

    Article  Google Scholar 

  • Barsotti S, Andronico D, Neri A, Del Carlo P, Baxter PJ, Aspinall WP, Hincks T (2010) Quantitative assessment of volcanic ash hazards for health and infrastructure at Mt. Etna (Italy) by numerical simulation. J Volcanol Geotherm Res 192(1–2):85–96

    Article  Google Scholar 

  • Bebbington M, Cronin SJ, Chapman I, Turner MB (2008) Quantifying volcanic ash fall hazard to electricity infrastructure. J Volcanol Geotherm Res 177(4):1055–1062. doi:10.1016/j.jvolgeores.2008.07.023, URL http://www.sciencedirect.com/science/article/pii/S0377027308004423

    Google Scholar 

  • Biass S, Bonadonna C (2011) A quantitative uncertainty assessment of eruptive parameters derived from tephra deposits: the example of two large eruptions of Cotopaxi volcano, Ecuador. Bull Volcanol 73(1):73–90

    Article  Google Scholar 

  • Birkmann J (2007) Risk and vulnerability indicators at different scales: applicability, usefulness and policy implications. Environ Hazard 7(1):20–31

    Article  Google Scholar 

  • Blaikie P, Cannon T, Davis I, Wisner B (1994) At risk: natural hazards. People’s vulnerability, and disasters. Routledge, London

    Google Scholar 

  • Blong R (2003) Building damage in Rabaul, Papua New Guinea, 1994. Bull Volcanol 65(1):43–54

    Google Scholar 

  • Blong RJ (1984) Volcanic hazards. A sourcebook on the effects of eruptions. Academic Press, Orlando

    Google Scholar 

  • Bonadonna C (2006) Probabilistic modelling of tephra dispersion. In: Mader HM, Coles SG, Connor CB, Connor LJ (eds) Statistics in volcanology, special publications of IAVCEI, vol 1, Geological Society of London, London, pp 243–259

    Google Scholar 

  • Bonadonna C, Connor CB, Houghton BF, Connor L, Byrne M, Laing A, Hincks TK (2005) Probabilistic modeling of tephra dispersal: hazard assessment of a multiphase rhyolitic eruption at Tarawera, New Zealand. J Geophys Res 110(10.1029)

  • Borradaile GJ (2003) Statistics of earth science data: their distribution in time, space, and orientation. Springer, Berlin

    Google Scholar 

  • BSI (2004) Kritische Infrastrukturen in Staat und Gesellschaft. Bundesamt für Sicherheit in der Informationstechnik. https://www.bsi.bund.de/ContentBSI/Publikationen/Faltblaetter/F17KritischeInfrastruktur.html, Accessed 12 Jan 2011

  • Cardona OD (2003) The need for rethinking the concepts of vulnerability and risk from a holistic perspective: a necessary review and criticism for effective risk management. In: Mapping vulnerability: disasters, development and people. Earthscan Publishers, London, p 17

  • Cashman KV, Cronin SJ (2008) Welcoming a monster to the world: myths, oral tradition, and modern societal response to volcanic disasters. J Volcanol Geotherm Res 176(3):407–418. doi:10.1016/j.jvolgeores.2008.01.040, http://www.sciencedirect.com/science/article/pii/S037702730800190X

  • Cutter SL, Boruff BJ, Shirley WL (2003) Social vulnerability to environmental hazards*. Soc Sci Q 84(2):242–261

    Article  Google Scholar 

  • Dela Cruz-Reyna S (1993) Random patterns of occurrence of explosive eruptions at Colima Volcano, Mexico. J Volcanol Geotherm Res 55(1–2):51–68

    Article  Google Scholar 

  • D’Ercole R (1996) Représentations cartographiques des facteurs de vulnérabilité des populations exposées à une menace volcanique. Application à la région du volcan Cotopaxi (Equateur). Bull Inst Frétudes Andines 25(3):479–507

    Google Scholar 

  • D’Ercole R, Demoraes F (2003) Risques et réponses institutionnelles en Equateur–Cartes et méthodes. Cahiers Géogr Collect EDYTEM 1:157–168

    Google Scholar 

  • Dibben C, Chester DK (1999) Human vulnerability in volcanic environments: the case of Furnas, São Miguel, Azores. J Volcanol Geotherm Res 92(1–2):133–150

    Article  Google Scholar 

  • Dzierma Y, Wehrmann H (2010) Eruption time series statistically examined: probabilities of future eruptions at Villarrica and Llaima Volcanoes, Southern Volcanic Zone, Chile. J Volcanol Geotherm Res 193(1–2):82–92

    Article  Google Scholar 

  • Ebert A, Kerle N, Stein A (2009) Urban social vulnerability assessment with physical proxies and spatial metrics derived from air-and spaceborne imagery and GIS data. Nat Hazards 48(2):275–294

    Article  Google Scholar 

  • El Morjani ZEA, Ebener S, Boos J, Ghaffar A, Musani A (2007) Modelling the spatial distribution of five natural hazards in the context of the WHO/EMRO atlas of disaster risk as a step towards the reduction of the health impact related to disasters. Int J Health Geogr 6(1):8

    Article  Google Scholar 

  • Ellemor H (2005) Reconsidering emergency management and indigenous communities in australia. Environ Hazard 6(1):1–7. doi:10.1016/j.hazards.2004.08.001, URL http://www.sciencedirect.com/science/article/pii/S1464286704000294

    Google Scholar 

  • ESA (2006) ESA Ionia GlobCover Project, led by MEDIAS-France. http://ionia1.esrin.esa.int/. Accessed 3 Feb 2010

  • Fournier d’Albe EM (1979) Objectives of volcanic monitoring and prediction. J Geol Soc Lond 136:321–326

    Article  Google Scholar 

  • Frischknecht C, Wagner JJ, Romerio F (2010) Integrated risk analysis: how to consider coping capacity?. In: Menoni S (eds) Risk challengings publics, scientists and governments, CRC Press/Balkema, Leiden

    Google Scholar 

  • Gaillard JC (2007) Resilience of traditional societies in facing natural hazards. Disaster Prev Manag 16(4):522–544

    Article  Google Scholar 

  • Guffanti M, Mayberry GC, Casadevall TJ, Wunderman R (2009) Volcanic hazards to airports. Nat Hazards 51(2):287–302

    Article  Google Scholar 

  • Guillaumont P (2000) On the economic vulnerability of low income countries. Working papers 200016, CERDI. http://econpapers.repec.org/RePEc:cdi:wpaper:143. Accessed 12 Sept 2011

  • Hall M, Mothes P (2008) The rhyolitic–andesitic eruptive history of Cotopaxi volcano, Ecuador. Bull Volcanol 70(6):675–702

    Article  Google Scholar 

  • Handmer J, Milne J (1981) Flood maps as public education. In: Abstracts of the floodplain management conference, Australian Water Resources Council, Canberra, Australia, pp 1–26

  • Haynes K, Barclay J, Pidgeon N (2007) Volcanic hazard communication using maps: an evaluation of their effectiveness. Bull Volcanol 70(2):123–138. http://dx.doi.org/10.1007/s00445-007-0124-7

    Google Scholar 

  • Hellström T (2007) Critical infrastructure and systemic vulnerability: towards a planning framework. Saf Sci 45(3):415–430

    Article  Google Scholar 

  • Hincks TK, Aspinall WP, Baxter PJ, Searl A, Sparks RSJ, Woo G (2006) Long term exposure to respirable volcanic ash on Montserrat: a time series simulation. Bull Volcanol 68(3):266–284

    Article  Google Scholar 

  • Horwell CJ, Baxter PJ (2006) The respiratory health hazards of volcanic ash: a review for volcanic risk mitigation. Bull Volcanol 69(1):1–24

    Article  Google Scholar 

  • Inbar M, Ostera HA, Parica CA, Remesal MB, Salani FM (1995) Environmental assessment of 1991 Hudson volcano eruption ashfall effects on southern Patagonia region, Argentina. Environ Geol 25(2):119–125

    Article  Google Scholar 

  • INEC (2001) Censo de poblacion y vivienda. http://www.inec.gov.ec/

  • Jenks GF (1967) The data model concept in statistical mapping. Int Yearb Cartogr 7:186–190

    Google Scholar 

  • Joerin F, Theriault M, Musy A (2001) Using gis and outranking multicriteria analysis for land-use suitability assessment. Int J Geogr Inf Sci 15(2):153–174. doi:10.1080/13658810051030487, http://www.tandfonline.com/doi/pdf/10.1080/13658810051030487

    Google Scholar 

  • Johnston DM, Houghton BF, Neall VE, Ronan KR, Paton D (2000) Impacts of the 1945 and 1995–1996 Ruapehu eruptions, New Zealand: an example of increasing societal vulnerability. Geol Soc Am Bull 112(5):720–726

    Article  Google Scholar 

  • Kalnay EC, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–471

    Article  Google Scholar 

  • Lirer L, Vitelli L (1998) Volcanic risk assessment and mapping in the Vesuvian area using GIS. Nat Hazards 17(1):1–15

    Article  Google Scholar 

  • Lirer L, Petrosino P, Alberico I (2010) Hazard and risk assessment in a complex multi-source volcanic area: the example of the campania region, Italy. Bull Volcanol 72:411–429. http://dx.doi.org/10.1007/s00445-009-0334-2, 10.1007/s00445-009-0334-2

    Google Scholar 

  • Magill C, Blong R (2005a) Volcanic risk ranking for Auckland, New Zealand. I: methodology and hazard investigation. Bull Volcanol 67(4):331–339. http://dx.doi.org/10.1007/s00445-004-0374-6

    Google Scholar 

  • Magill C, Blong R (2005b) Volcanic risk ranking for Auckland, New Zealand. II: hazard consequences and risk calculation. Bull Volcanol 67(4):340–349. http://dx.doi.org/10.1007/s00445-004-0375-5

    Google Scholar 

  • Malczewski J (2006) GIS-based multicriteria decision analysis: a survey of the literature. Int J Geogr Inf Sci 20(7):703–726

    Article  Google Scholar 

  • Marti J, Spence R, Calogero E, Ordo ez A, Felpeto A, Baxter P (2008) Estimating building exposure and impact to volcanic hazards in Icod de los Vinos, Tenerife (Canary Islands). J Volcanol Geotherm Res 178(3):553–561

    Article  Google Scholar 

  • Martin RS, Watt SFL, Pyle DM, Mather TA, Matthews NE, Georg RB, Day JA, Fairhead T, Witt MLI, Quayle BM (2009) Environmental effects of ashfall in Argentina from the 2008 Chaitén volcanic eruption. J Volcanol Geotherm Res 184(3–4):462–472

    Article  Google Scholar 

  • Marzocchi W, Woo G (2009) Principles of volcanic risk metrics: theory and the case study of Mount Vesuvius and Campi Flegrei, Italy. J Geophys Res 114(B3):B03,213

    Article  Google Scholar 

  • Mendoza-Rosas AT, la Cruz-Reyna S (2008) A statistical method linking geological and historical eruption time series for volcanic hazard estimations: applications to active polygenetic volcanoes. J Volcanol Geotherm Res 176(2):277–290

    Article  Google Scholar 

  • Metzger P, D’Ercole R, Sierra A (1999) Political and scientific uncertainties in volcanic risk management: the yellow alert in Quito in October 1998. GeoJournal 49(2):213–221

    Article  Google Scholar 

  • Millard GA, Mather TA, Pyle DM, Rose WI, Thornton B (2006) Halogen emissions from a small volcanic eruption: modeling the peak concentrations, dispersion, and volcanically induced ozone loss in the stratosphere. Geophys Res Lett 33:33–34

    Article  Google Scholar 

  • Moteff J, Copeland C, Fischer J (2003) Critical infrastructures: what makes an infrastructure critical? Report for Congress RL31556, Congressional Research Service, Library of Congress, Washington, DC. Accessed 13 Feb 2011

  • Newhall C (2000) Volcano warnings. In: Sigurdsson H, Houghton BF, Ballard RD (eds) Encyclopedia of volcanoes, Academic Press, London, pp 263–269

    Google Scholar 

  • Newhall CG, Self S (1982) The volcanic explosivity index/VEI/- An estimate of explosive magnitude for historical volcanism. J Geophys Res 87(C2):1231–1238

    Article  Google Scholar 

  • O’Keefe P, Westgate K, Wisner B (1976) Taking the naturalness out of natural disasters. Nature 260:566–567

    Article  Google Scholar 

  • OpenStreetMap (2010) URL http://www.openstreetmap.org, Accessed 3 Feb 2010

  • Pomonis A, Spence R, Baxter P (1999) Risk assessment of residential buildings for an eruption of Furnas Volcano, Sao Miguel, the Azores. J Volcanol Geotherm Res 92(1–2):107–131

    Article  Google Scholar 

  • Potapov P, Yaroshenko A, Turubanova S, Dubinin M, Laestadius L, Thies C, Aksenov D, Egorov A, Yesipova Y, Glushkov I, Karpachevskiy M, Kostikova A, Manisha A, Tsybikova E, Zhuravleva I (2008) Mapping the world’s intact forest landscapes by remote sensing. Ecol Soc 13(2). Accessed 3 Feb 2010

  • Robock A (2000) Volcanic eruptions and climate. Rev Geophys 38(2):191–219

    Article  Google Scholar 

  • Saaty TL (1980) The analytical hierarchy process. McGraw-Hill, New York

    Google Scholar 

  • Saaty TL (2008) Decision making with the analytic hierarchy process. Int J Serv Sci 1(1):83–98

    Google Scholar 

  • Siebert L, Simkin T (2002) Volcanoes of the world: an illustrated catalog of holocene volcanoes and their eruptions. Smithsonian Institution, Global Volcanism Program Digital Information Series, GVP-3. http://www.volcano.si.edu/world

  • Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J, Ballard RD (2000) Encyclopedia of volcanoes. Academic press, London

    Google Scholar 

  • Simkin T, Siebert L, Blong R (2001) Volcano fatalities—lessons from the historical record. Science 291(5502):255

    Article  Google Scholar 

  • Spence RJS, Pomonis A, Baxter PJ, AW C (1996) Building damage caused by the Mount Pinatubo eruption of June 15, 1991. University of Washington Press, Seattle, pp 1053–1061

  • Spence RJS, Kelman I, Baxter PJ, Zuccaro G, Petrazzuoli S (2005) Residential building and occupant vulnerability to tephra fall. Nat Haz Earth Syst Sci 5(4):477–494

    Article  Google Scholar 

  • Stewart C, Johnston DM, Leonard GS, Horwell CJ, Thordarson T, Cronin SJ (2006) Contamination of water supplies by volcanic ashfall: a literature review and simple impact modelling. J Volcanol Geotherm Res 158(3–4):296–306

    Article  Google Scholar 

  • Stieltjes L, Mirgon C (1998) Approche méthodologique de la vulnérabilité aux phénomènes volcaniques. Rapport de synthèse R40098, Test d’application sur les réseaux de la Martinique

  • Thierry P, Stieltjes L, Kouokam E, Nguéya P, Salley P (2008) Multi-hazard risk mapping and assessment on an active volcano: the GRINP project at Mount Cameroon. Nat Hazards 45(3):429–456. http://dx.doi.org/10.1007/s11069-007-9177-3

  • Torrieri F (2002) Decision support tools for urban contingency policy. A scenario approach to risk management of the Vesuvio Area in Naples, Italy. J Conting Crisis Manage 10(2):95–112

    Article  Google Scholar 

  • UNDRO: (1991) Mitigating natural disasters: phenomena, effects and options, a manual for policy makers and planners. United Nations, New York

    Google Scholar 

  • UNESCO (1972) Reports of consultative meeting of experts on the statistical study of natural hazards and their consequences, Document SC/WS/500

  • UN/ISDR: (2004) Living with risk. A global review of disaster reduction initiatives. UN Publications, Geneva

    Google Scholar 

  • Villa F, McLeod H (2002) Environmental vulnerability indicators for environmental planning and decision-making: guidelines and applications. Environ Manage 29(3):335–348. http://dx.doi.org/10.1007/s00267-001-0030-2

  • Villagrán de León J (2006) Vulnerability. A conceptual and methodological review. UNU-EHS, Bonn

  • WDPA (2011) World database on protected areas. http://www.protectedplanet.net/, Accessed 12 Sept 2010

  • WHO (2011) Definition of an older or elderly person. http://www.who.int/healthinfo/survey/ageingdefnolder/en/index.html, Accessed: 12 September 2010

  • Williams LRR, Kapustka LA (2000) Ecosystem vulnerability: a complex interface with technical components. Environ Toxicol Chem 19(4):1055–1058. doi:10.1002/etc.5620190435, URL http://dx.doi.org/10.1002/etc.5620190435

  • Wilson T, Cole J, Cronin S, Stewart C, Johnston D (2011a) Impacts on agriculture following the 1991 eruption of Vulcan Hudson, Patagonia: lessons for recovery. Nat Hazards 57:185–212. http://dx.doi.org/10.1007/s11069-010-9604-8, 10.1007/s11069-010-9604-8

  • Wilson T, Cole J, Stewart C, Cronin S, Johnston D (2011b) Ash storms: impacts of wind-remobilised volcanic ash on rural communities and agriculture following the 1991 Hudson eruption, southern Patagonia, Chile. Bull Volcanol 73:223–239. http://dx.doi.org/10.1007/s00445-010-0396-1, 10.1007/s00445-010-0396-1

  • Wilson TM, Stewart C, Sword-Daniels V, Leonard GS, Johnston DM, Cole JW, Wardman J, Wilson G, Barnard ST (2011c) Volcanic ash impacts on critical infrastructure. Phys Chem Earth. doi:10.1016/j.pce.2011.06.006

  • Wisner B, Blaikie P, Cannon T, Davis I (2004) At risk: natural hazards, people’s vulnerability and disasters. 2nd edn. Routledge, London

    Google Scholar 

  • Zuccaro G, Cacace F, Spence RJS, Baxter PJ (2008) Impact of explosive eruption scenarios at Vesuvius. J Volcanol Geotherm Res 178(3):416–453

    Article  Google Scholar 

Download references

Acknowledgments

This research was possible thanks to the generous support of the Fondation Marc Birkigt, Geneva (S. Biass). The authors are grateful to Olivier Senegas, Luca dell’Oro and Ali Asgary for the invaluable scientific discussions, and to two anonymous reviewers for improving this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastien Biass.

Additional information

This article has been previously published in Natural Hazards 64:615-639. For referencing, please use this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

PDF (8041 KB)

Electronic supplementary material

Below is the link to the electronic supplementary material.

PDF (11947 KB)

Electronic supplementary material

Below is the link to the electronic supplementary material.

PDF (164 KB)

Electronic supplementary material

Below is the link to the electronic supplementary material.

PDF (174 KB)

Electronic supplementary material

Below is the link to the electronic supplementary material.

PDF (150 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biass, S., Frischknecht, C. & Bonadonna, C. A fast GIS-based risk assessment for tephra fallout: the example of Cotopaxi volcano, Ecuador. Nat Hazards 65, 497–521 (2013). https://doi.org/10.1007/s11069-012-0457-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-012-0457-1

Keywords

Navigation