Skip to main content
Log in

Combining long- and short-term probabilistic volcanic hazard assessment with cost-benefit analysis to support decision making in a volcanic crisis from the Auckland Volcanic Field, New Zealand

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

By using BET_VH, we propose a quantitative probabilistic hazard assessment for base surge impact in Auckland, New Zealand. Base surges resulting from phreatomagmatic eruptions are among the most dangerous phenomena likely to be associated with the initial phase of a future eruption in the Auckland Volcanic Field. The assessment is done both in the long-term and in a specific short-term case study, i.e. the simulated pre-eruptive unrest episode during Exercise Ruaumoko, a national civil defence exercise. The most important factors to account for are the uncertainties in the vent location (expected for a volcanic field) and in the run-out distance of base surges. Here, we propose a statistical model of base surge run-out distance based on deposits from past eruptions in Auckland and in analogous volcanoes. We then combine our hazard assessment with an analysis of the costs and benefits of evacuating people (on a 1 × 1-km cell grid). In addition to stressing the practical importance of a cost-benefit analysis in creating a bridge between volcanologists and decision makers, our study highlights some important points. First, in the Exercise Ruaumoko application, the evacuation call seems to be required as soon as the unrest phase is clear; additionally, the evacuation area is much larger than what is recommended in the current contingency plan. Secondly, the evacuation area changes in size with time, due to a reduction in the uncertainty in the vent location and increase in the probability of eruption. It is the tradeoff between these two factors that dictates which cells must be evacuated, and when, thus determining the ultimate size and shape of the area to be evacuated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allen SR, Smith IEM (1994) Eruption styles and volcanic hazard in the Auckland Volcanic Field, New Zealand. Geosci Repts Shizuoka Univ 20:5–14

    Google Scholar 

  • Allen SR, Bryner VF, Smith IEM, Ballance PF (1996) Facies analysis of pyroclastic deposits within basaltic tuff-rings of the Auckland Volcanic Field, New Zealand. NZ J Geol Geophys 39:309–327

    Article  Google Scholar 

  • Aranda Gomez JJ, Luhr JF, Pier JG (1992) The La Brena—El Jaguee Maar Complex, Durango, Mexico; 1, geological evolution. Bull Volcanol 54:393–404

    Article  Google Scholar 

  • Aspinall WP, Woo G, Voight B, Baxter PJ (2003) Evidence-based volcanology: application to eruption crises. J Volcanol Geotherm Res 128:273–285. doi:10.1016/S0377-0273(03)00260-9

    Article  Google Scholar 

  • Baker EJ (1987) Warning and evacuation in hurricanes Elena and Kate. Sea Grant Project IR-85-11, Florida State University, Tallahassee

  • Baxter PJ, Neri A, Todesco M (1998) Physical modelling and human survival in pyroclastic flows. Nat Hazards 17:163–176

    Article  Google Scholar 

  • Bebbington MS, Cronin SJ (2010) Spatio-temporal hazard estimation in the Auckland Volcanic Field, New Zealand, with a new event-order model. Bull Volcanol 73(1):55–72. doi:10.1007/s00445-010-0403-6

    Article  Google Scholar 

  • Beca Carter Hollings Ferner (2002) Contingency plan for the Auckland Volcanic Field. Auckland Regional Council Technical Publication 165

  • Belousov A, Belousova M (2001) Eruptive process, effects and deposits of the 1996 and the ancient basaltic preatomagmatic eruptions in Karymskoye lake, Kamchatka, Russia. Spec Publ Int Assoc Sedimentol 30:35–60

    Google Scholar 

  • Cas R, Simpson C, Sato H (1993) Newer Volcanics Province—processes and products of phreatomagmatic activity. Report 1993/64, Australian Geological Survey Organisation

  • Chough SK, Sohn YK (1990) Depositional mechanics and sequences of base surges, Songaksan tuff ring, Cheju Island, Korea. Sedimentology 37(6):1115–1135

    Article  Google Scholar 

  • Connor CB, McBirney AR, Furlan C (2006) What is the probability of explosive eruption at a long-dormant volcano? In: Mader HM, Coles SG, Connor CB, Connor LJ (eds) Statistics in volcanology, 1st edn. Geological Society, London, pp 231–242

    Google Scholar 

  • Crowe BM, Fisher RV (1973) Sedimentary structures in base-surge deposits with special reference to cross-bedding, Ubehebe Craters, Death Valley, California. Geol Soc Amer Bull 84:663–682. doi:10.1130/0016-7606(1973)84663

    Article  Google Scholar 

  • Dellino P, Mele D, Sulpizio R, Volpe LL, Braia G (2008) A method for the calculation of the impact parameters of dilute pyroclastic density currents based on deposit particle characteristics. J Geophys Res 113:B07206. doi:10.1029/2007JB005365

    Article  Google Scholar 

  • Dow K, Cutter SL (2002) Emerging hurricane evacuation issues: hurricane Floyd and South Carolina. Nat Hazards Rev 3:12–18

    Article  Google Scholar 

  • Drabek TE (1969) Social processes in disaster: family evacuation. Soc Probl 16:336–349

    Article  Google Scholar 

  • Gençalioğlu-Kuşcu G, Atilla C, Cas R, Kuşcu I (2007) Base surge deposits, eruption history, and depositional processes of a wet phreatomagmatic volcano in Central Anatolia (Cora Maar). J Volcanol Geotherm Res 159:198–209. doi:10.1016/j.jvolgeores.2006.06.013

    Article  Google Scholar 

  • Gevrek AI, Kazanci N (2000) A Pleistocene, pyroclastic-poor maar from central Anatolia, Turkey: influence of a local fault on a phreatomagmatic eruption. J Volcanol Geotherm Res 95:309–317

    Article  Google Scholar 

  • Gutmann JT (1976) Geology of Crater Elegante, Sonora, Mexico. Geol Soc Amer Bull 87:1718–1728

    Article  Google Scholar 

  • Houghton BF, Wilson CJN, Smith IEM (1999) Shallow-seated controls on styles of explosive basaltic volcanism: a case study from New Zealand. J Volcanol Geotherm Res 91:97–120

    Article  Google Scholar 

  • Jaquet O, Carniel R, Sparks S, Thompson G, Namar R, Di Cecca M (2006) DEVIN: a forecasting approach using stochastic methods applied to the Soufriere Hills Volcano. J Volcanol Geotherm Res 153:97–111. doi:10.1016/j.jvolgeores.2005.08.013

    Article  Google Scholar 

  • Jaquet O, Connor C, Connor L (2008) Probabilistic modeling for long-term assessment of volcanic hazards. Nucl Technol 163:180–189

    Google Scholar 

  • Kalbfleisch JD (1985) Probability and statistical inference. Springer, New York

    Google Scholar 

  • Kienle J, Kyle PR, Self S, Motyka RJ, Lorenz V (1980) Ukinrek Maars, Alaska; I, April 1977 eruption sequence, petrology and tectonic setting. J Volcanol Geotherm Res 7:11–37

    Article  Google Scholar 

  • Lambeck K, Chappell J (2001) Sea level change through the last glacial cycle. Science 292:679–686. doi:10.1126/science.1059549

    Article  Google Scholar 

  • Lindsay J, Marzocchi W, Jolly G, Constantinescu R, Selva J, Sandri L (2010) Towards real-time eruption forecasting in the Auckland Volcanic Field: application of BET_EF during the New Zealand National Disaster Exercise Ruaumoko. Bull Volcanol 72:185–204. doi:10.1007/s00445-009-0311-9

    Article  Google Scholar 

  • Lindsay JM (2010) Volcanoes in the big smoke: a review of hazard and risk in the Auckland Volcanic Field. In: Williams et al (ed) Geologically active. Taylor and Francis, London, pp 63–72

    Google Scholar 

  • Magill CR, McAneney KJ, Smith IEM (2005) Probabilistic assessment of vent locations for the next Auckland Volcanic Field Event 1. Math Geol 37(3):227–242. doi:10.1007/s11004-005-1556-2

    Article  Google Scholar 

  • Marzocchi W, Woo G (2007) Probabilistic eruption forecasting and the call for an evacuation. Geophys Res Lett 34:L22310. doi:10.1029/2007GL031922

    Article  Google Scholar 

  • Marzocchi W, Woo G (2009) Principles of volcanic risk metrics: theory and the case study of Mount Vesuvius and Campi Flegrei, Italy. J Geophys Res 114:B03213. doi:10.1029/2008JB005908

    Article  Google Scholar 

  • Marzocchi W, Zaccarelli L (2006) A quantitative model for the time-size distribution of eruptions. J Geophys Res 111:B04204. doi:10.1029/2005JB003709

    Article  Google Scholar 

  • Marzocchi W, Sandri L, Gasparini P, Newhall CG, Boschi E (2004) Quantify- ing probabilities of volcanic events: the example of volcanic hazard at Mount Vesuvius. J Geophys Res 109:B11201. doi:10.1029/2004JB003155

    Article  Google Scholar 

  • Marzocchi W, Sandri L, Furlan C (2006) A quantitative model for volcanic hazard assessment. In: Mader HM, Coles SG, Connor CB, Connor LJ (eds) Statistics in volcanology, 1st edn. Geological Society, London, pp 31–37

    Google Scholar 

  • Marzocchi W, Sandri L, Selva J (2008) BET_EF: a probabilistic tool for long- and short-term eruption forecasting. Bull Volcanol 70:623–632. doi:10.1007/s00445-007-0157-y

    Article  Google Scholar 

  • Marzocchi W, Sandri L, Selva J (2010) BET_VH: a probabilistic tool for long-term volcanic hazard assessment. Bull Volcanol 72:705–716. doi:10.1007/s00445-010-0357-8

    Article  Google Scholar 

  • Mattson PH, Alvarez W (1974) Base surge deposits in Pleistocene volcanic ash near Rome. Bull Volcanol 37(4):553–572

    Article  Google Scholar 

  • Ministry-Of-Transport (2008) Transport monitoring. Strategy and sustainability. The social cost of road crashes and injuries. ANNUAL UPDATE, SEPTEM- BER 2008, June 2008 update ISSN 1173-1370, Ministry of transport

  • Moore JG (1967) Base surge in recent volcanic eruptions. Bull Volcanol 30:337–363

    Article  Google Scholar 

  • Newhall CG, Hoblitt RP (2002) Constructing event trees for volcanic crises. Bull Volcanol 64:3–20. doi:10.1007/s004450100173

    Article  Google Scholar 

  • Orsi G, Di Vito MA, Isaia R (2004) Volcanic hazard assessment at the restless Campi Flegrei caldera. Bull Volcanol 66:514–530. doi:10.1007/s00445-003-0336-4

    Article  Google Scholar 

  • Orsi G, Di Vito MA, Selva J, Marzocchi W (2009) Long-term forecast of eruption style and size at Campi Flegrei caldera (Italy). Earth Planet Sci Lett 287:265–276. doi:10.1016/j.epsl.2009.08.013

    Article  Google Scholar 

  • Self S, Kienle J, Huot Jp (1980) Ukinrek Maars, Alaska; II, deposits and formation of the 1977 craters. J Volcanol Geotherm Res 7:39–65

    Article  Google Scholar 

  • Selva J, Costa A, Marzocchi W, Sandri L (2010) BET VH: exploring the influence of natural uncertainties on long-term hazard from tephra fallout at Campi Flegrei (Italy). Bull Volcanol 72:717–733. doi:10.1007/s00445-010-0358-7

    Article  Google Scholar 

  • Selva J, Orsi G, Di Vito MA, Marzocchi W, Sandri L (2011) Probability hazard map for future vent opening at the Campi Flegrei caldera, Italy. Bull Volcanol. doi:10.1007/s00445-011-0528-2

  • Thorarinsson S, Steinthorsson S, Einarsson T, Kristmannsdottir H, Oskarsson N (1973) The eruption on Heimaey, Iceland. Nature 241:372–375

    Article  Google Scholar 

  • Valentine GA (1998) Damage to structures by pyroclastic flows and surges, inferred from nuclear weapons effects. J Volcanol Geotherm Res 87:117–140

    Article  Google Scholar 

  • Waters AC, Fisher RV (1971) Base surges and their deposits; Capelinhos and Taal volcanoes. J Geophys Res 76:5596–5614

    Article  Google Scholar 

  • Williams RS, Moore JG (1983) Man against volcano: the eruption on Heimaey, Vestmannaeyjar, Iceland. US Geological Survey General Interest Publication 1–27

  • Wohletz KH, Sheridan MF (1979) A model of pyroclastic surge. In: Chapin CE, Elston WE (eds) Ash-flow tuffs. Geol Soc Am Special Paper 180:177–194

  • Woo G (2008) Probabilistic criteria for volcano evacuation decisions. Nat Hazards 87–97. doi:10.1007/s11069-007-9171-9

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank Graham Leonard for providing the maps of the area investigated. This work was undertaken through the DEtermining VOlcanic Risk in Auckland (DEVORA) project co-funded by the NZ Earthquake Commission and the Auckland Council. GJ was supported by the NZ Foundation for Research Science and Technology (GHS-FRST) contract C05X0804 under the Natural Hazards Research Platform. JL was supported by a grant from the New Zealand Earthquake Commission EQC. We are grateful for the comments of two anonymous reviewers, which significantly improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Sandri.

Additional information

Editorial responsibility: B. van Wyk de Vries

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sandri, L., Jolly, G., Lindsay, J. et al. Combining long- and short-term probabilistic volcanic hazard assessment with cost-benefit analysis to support decision making in a volcanic crisis from the Auckland Volcanic Field, New Zealand. Bull Volcanol 74, 705–723 (2012). https://doi.org/10.1007/s00445-011-0556-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00445-011-0556-y

Keywords

Navigation