Skip to main content
Log in

Ceboruco hazard map: part II—modeling volcanic phenomena and construction of the general hazard map

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Ceboruco volcano in the western Trans-Mexican Volcanic Belt is one of the eleven most active stratovolcanoes in Mexico. Due to its recent eruptive history including a large Plinian eruption ~ 1000 years ago, the AD 1870 eruption, and recurrent recent seismic activity, it seemed highly appropriate to construct a hazard map in order to be prepared for future eruptions and their associated hazards. Ceboruco volcano eruptions are predominantly effusive; however, it also has been characterized by a great variability of eruptive styles throughout its record of activity. In fact, some eruptions comprise a significant diversity of volcanic processes, including lava flows, tephra fallout, ballistic emission, pyroclastic flows and surges, and lahars. In this work, we present (1) an integrated and simplified hazard map and (2) more detailed scenario-based hazard maps showing the areas affected by the different expected volcanic phenomena attempting to account for this great diversity of eruptive processes. The maps represent the basis to identify the main hazard zones during a future eruption and the related impacts on population and infrastructure within the area of influence of Ceboruco (~ 700 km2), as well as for undertaking subsequent vulnerability and risk analyses. The maps provide a tool to develop measures of prevention and mitigation of volcanic hazards (preparedness of the population, establishment of evacuation routes and refuges, etc.), as well as for decision-making by authorities during territorial planning (urban expansion for example). The integrated simplified hazard map can also be a tool for dissemination purposes, in order to create awareness of associated hazards derived from a possible future activity of the volcano among the public in general. This is important because in the western sector of the Trans-Mexican Volcanic Belt (and specifically in the State of Nayarit) most volcanic edifices (with the exception of Colima volcano) are closed-vent volcanoes (sealed volcanic vent vs. open-vent systems) with long repose periods (up to ~ 16,000 years for example in the case of San Juan volcano 60 km to the W), a situation that consequently and unfortunately has led to a practically nonexistent volcanic risk perception.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alatorre-Ibargüengoitia MA, Delgado-Granados H, Farraz-Montes IA (2006) Hazard zoning for ballistic impact during volcanic explosions at Volcán de Fuego de Colima (Mexico). Geol Soc Am Spec Pap 402:209–216. https://doi.org/10.1130/2006.2402(09)

    Article  Google Scholar 

  • Alberico I, Lirer L, Petrosino P, Scandone R (2002) A methodology for the evaluation of long-term volcanic risk from pyroclastic flows in Campi Flegrei (Italy). J Volcanol Geotherm Res 116(1):63–78

    Article  Google Scholar 

  • Alberico I, Lirer L, Petrosino P, Scandone R (2008) Volcanic hazard and risk assessment from pyroclastic flows at Ischia island (southern Italy). J Volcanol Geotherm Res 171(1):118–136

    Article  Google Scholar 

  • Aldighieri B, Groppelli G, Norini G, Bertino E, Borgonovo S, Comoglio F, Pasquaré G (2007) Proposta di una metodología per la valutazione della pericolositá vulcanica del Monte Etna. Rend Soc Geol Ital 4:23–25

    Google Scholar 

  • Barberi F, Ghigliotti M, Macedonio G, Orellana H, Pareschi M, Rosi M (1992) Volcanic hazard assessment of Guagua Pichincha (Ecuador) based on past behaviour and numerical models. J Volcanol Geotherm Res 49(1):53–68

    Article  Google Scholar 

  • Becker J, Smith R, Jonston D, Munro A (2001) Effects of the 1995–1996 Ruapehu eruptions on communities in central North Island, New Zealand, and people`s perceptions of volcanic hazards after the event. Aust J Disaster Trauma Stud 2001–1. https://www.massey.ac.nz/~trauma/issues/2001-1/becker.htm. Accessed 22 May 2001

  • Bertino E, Damiani ML, Groppelli G, Norini G, Aldighieri B, Borgonovo S, Comoglio F, Pasquaré G (2006) Modelling lava flow to assess hazard on Mount Etna (Italy). From geological data to a preliminary hazard map. In: Voinov A, Jakeman AJ, Rizzoli AE (eds) Proceedings of the iEMSs third biennial meeting: summit on environmental modelling and software, International Environmental Modelling and Software Society, Burlington, USA. http://www.iemss.org/iemss2006/sessions/all.html; ISBN 1-4243-0852-6978-1-4243-0852-1, pp 1-8

  • Beverage JP, Culbertson JK (1964) Hyperconcentrations of suspended sediment. J Hydraul Div 90(6):117–128

    Google Scholar 

  • Biass S, Bonadonna C (2011) A quantitative uncertainty assessment of eruptive parameters derived from tephra deposits: the example of two large eruptions of Cotopaxi volcano, Ecuador. Bull Volcanol 73(1):73–90

    Article  Google Scholar 

  • Böhnel H, Pavón-Carrasco FJ, Sieron K, Mahgoub AN (2016) Palaeomagnetic dating of two recent lava flows from Ceboruco volcano, western Mexico. Geophys J Int 207(2):1203–1215

    Article  Google Scholar 

  • Bonadonna C, Connor CB, Houghton BF, Connor L, Byrne M, Laing A, Hincks TK (2005) Probabilistic modeling of tephra dispersal: hazard assessment of a multiphase rhyolitic eruption at Tarawaera, New Zealand. J Geophys Res (Solid Earth) 110(B3):1–21. https://doi.org/10.1029/2003JB002896

    Article  Google Scholar 

  • Bonadonna C, Connor L, Connor CB, Courtland LM (2014) Tephra2. https://vhub.org/resources/tephra2. Accessed 10 Dec 2018

  • Breard EC, Lube G (2017) Inside pyroclastic density currents—uncovering the enigmatic flow structure and transport behaviour in large-scale experiments. Earth Planet Sci Lett 458:22–36

    Article  Google Scholar 

  • Browne BL, Gardner JE (2004) The nature and timing of caldera collapse as indicated by accidental lithic fragments from the ~ 1000 A.D. eruption of Volcán Ceboruco, Mexico. J Volcanol Geotherm Res 130:93–105

    Article  Google Scholar 

  • Caballero L, Capra L (2014) The use of FLO2D numerical code in lahar hazard evaluation at Popocatépetl volcano: a 2001 lahar scenario. Nat Hazards Earth Syst Sci 14:3345–3355

    Article  Google Scholar 

  • Caballero L, Capra L, Vázquez R (2017) Evaluating the performance of FLO2D for simulating past lahar events at the most active Mexican volcanoes: Popocatépetl and Volcán de Colima. In: Riley K, Webley P, Thompson M (eds) Natural hazard uncertainty assessment: modeling and decision support. Geophys Monograph 223:179–189

  • Calder ES, Wagner K, Ogburn SE (2015) Volcanic hazard maps. In: Loughlin SC, Sparks S, Brown S, Jenkins SF, Vye-Brown C (eds) Global volcanic hazards and risk. Cambridge University Press, Cambridge, pp 335–342. https://doi.org/10.1017/CBO9781316276273.022

    Chapter  Google Scholar 

  • Capra L, Norini G, Groppelli G, Macías JL, Arce JL (2008) Volcanic hazard zonation of Nevado de Toluca Volcano. J Volcanol Geotherm Res 176:469–484

    Article  Google Scholar 

  • Capra L, Manea VC, Manea M, Norini G (2011) The importance of digital elevation model resolution on granular flow simulations: a test case for Colima volcano using TITAN2D computational routine. Nat Hazards 59:665–680

    Article  Google Scholar 

  • Capra L, Gavilanes-Ruiz JC, Bonasia R, Saucedo-Girón R, Sulpizio R (2015) Re-assessing volcanic hazard zonation of Volcán de Colima, México. Nat Hazard 76(1):41–61. https://doi.org/10.1007/s11069-014-1480-1

    Article  Google Scholar 

  • Capra L, Coviello V, Borselli L, Márquez-Ramírez VH, Arámbula-Mendoza R (2018) Hydrological control of large hurricane-induced lahars: evidence from rainfall-runoff modeling, seismic and video monitoring. Nat Hazards Earth Syst Sci 18(3):781–794. https://doi.org/10.5194/nhess-18-781-2018

    Article  Google Scholar 

  • Carey S, Sparks RSJ (1986) Quantitative models of the fallout and dispersal of tephra from volcanic eruption columns. Bull Volcanol 48(2–3):109–125

    Article  Google Scholar 

  • CENAPRED-Centro Nacional de Prevención de Desastres (2001) Diagnóstico de peligros e identificación de riesgos de desastres en México. Atlas Nacional de Riesgos de la República Mexicana. Coordinación Nacional de Protección Civil, Secretaría de Gobernación, México

  • Charbonnier SJ, Gertisser R (2012) Evaluation of geophysical mass flow models using the 2006 block-and-ash flows of Merapi Volcano, Java, Indonesia: towards a short-term hazard assessment tool. J Volcanol Geotherm Res 231:87–108

    Article  Google Scholar 

  • Charbonnier SJ, Connor CB, Connor LJ, Sheridan MF, Hernández JO, Richardson JA (2018) Modeling the October 2005 lahars at Panabaj (Guatemala). Bull Volcanol 80(1):4. https://doi.org/10.1007/s00445-017-1169-x

    Article  Google Scholar 

  • Chertkoff DG, Gardner JE (2004) Nature and timing of magma interactions before, during, and after the caldera-forming eruption of volcán Ceboruco, Mexico. Contrib Miner Petrol 146:715–735

    Article  Google Scholar 

  • Claessens L, Heuvelink GBM, Schoorl JM, Veldkamp A (2005) DEM resolution effects on shallow landslide hazard and soil redistribution modeling. Earth Surf Proc Land. https://doi.org/10.1002/esp.1155

    Article  Google Scholar 

  • Connor L, Connor CB (2006) Inversion is the key to dispersion: understanding eruption dynamics by inverting tephra fallout. In: Mader H, Coles SC, Connor CB, Connor LJ (eds) Statistics in volcanology, IAVCEI Publications, Geol. Soc. London, ISBN 9781862392083. 5, pp 231–242

  • Connor CB, Hill BE, Winfrey B, Franklin NM, Femina PCL (2001) Estimation of volcanic hazards from tephra fallout. Nat Hazards Rev 2(1):33–42

    Article  Google Scholar 

  • Connor L, Connor CB, Meliksetian K, Savov I (2012) Probabilistic approach to modeling lava flow inundation: a lava flow hazard assessment for a nuclear facility in Armenia. J Appl Volcanol Soc Volcanoes 1:3. https://doi.org/10.1186/2191-5040-1-3

    Article  Google Scholar 

  • Constantinescu R (2012) Methods for quantitative hazard assessment in densely populated areas, with emphasis on pyroclastic flows case study: El Misti and Arequipa, South–Western Peru. Unpublished PhD thesis. Babes-Bolyai University, Cluj-Napoca, Romania

  • Constantinescu R, Thouret JC, Irimus IA (2011) Computer modeling as tool for volcanic hazards assessment: an example of pyroclastic flow modeling at El Misti volcano, Southern Peru. Geogr Tech 14(2):1–14

    Google Scholar 

  • Costa A, Dell’Erba F, Di Vito MA, Isaia R, Macedonio G, Orsi G, Pfeiffer T (2009) Tephra fallout hazard assessment at the Campi Flegrei caldera (Italy). Bull Volcanol 71(3):259–273

    Article  Google Scholar 

  • Damiani ML, Groppelli G, Norini G, Bertino E, Gigliuto A, Nucita A (2006) A lava flow simulation model for the development of volcanic hazard maps for Mount Etna (Italy). Comput Geosci 32(4):512–526

    Article  Google Scholar 

  • Dartevelle S (2004) Numerical modeling of geophysical granular flows: 1. A comprehensive approach to granular rheologies and geophysical multiphase flows. Geochem Geophys Geosyst. https://doi.org/10.1029/2003gc000636

    Article  Google Scholar 

  • De la Cruz-Reyna S, Tilling RI (2015) Risk management of El Chichón and Tacaná volcanoes: lessons learned from past volcanic crises. In: Scolamacchia T, Macías JL (eds) Active Volcanoes of Chiapas (Mexico): El Chichón and Tacaná. Springer, Berlin, pp 155–174

    Chapter  Google Scholar 

  • Dioguardi F, Dellino PF (2014) PYFLOW: a computer code for the calculation of the impact parameters of dilute pyroclastic density currents (DPDC) based on field data. Comput Geosci 66:200–2010. https://doi.org/10.1016/j.cageo.2014.01.013

    Article  Google Scholar 

  • Druitt TH (1998) Pyroclastic density currents. In: Gilbert JS, Sparks RSJ (eds) The physics of explosive volcanic eruptions, vol 145. Geological Society London Special Publications, London, pp 145–182

    Google Scholar 

  • Druitt TH, Young SR, Baptie B, Bonadonna C, Calder ES, Clarke A, Voight B (2002) Episodes of cyclic Vulcanian explosive activity with fountain collapse at Soufrière Hills Volcano, Montserrat. Geol Soc Mem 21(1):281–306. https://doi.org/10.1144/GSL.MEM.2002.021.01.13

    Article  Google Scholar 

  • Dufek J (2016) The fluid mechanics of pyroclastic density currents. Ann Rev Fluid Mech 48:459–485

    Article  Google Scholar 

  • Espinasa-Pereña R (2018) Evaluación del riesgo relativo de los volcanes en México. Abstract in VIII Foro Internacional: Los volcanes y su impacto, Arequipa (Perú). http://repositorio.ingemmet.gob.pe/handle/ingemmet/1441. Accessed 7 Jan 2018

  • Felpeto A, Araña V, Ortiz R, Astiz M, García A (2001) Assessment and modelling of lava flow hazard on Lanzarote (Canary Islands). Nat Hazards 23:247–257

    Article  Google Scholar 

  • Ferrés D, Delgado-Granados H, Gutiérrez E, Farraz IA, Hernández W, Pullinger CR, Escobar CD (2013) Explosive volcanic history and hazard zonation maps of Boquerón Volcano (San Salvador Volcanic Complex, El Salvador). In: Rose WI, Palma JL, Delgado-Granados H, Varley N (eds) Understanding open-vent volcanism and related hazards. Geol Soc Am Spec Pap 498:201–230

  • Fitzgerald RH, Tsunematsu K, Kennedy BM, Breard ECP, Lube G, Wilson TM, Jolly AD, Pawson J, Rosenberg MD, Cronin SJ (2014) The application of a calibrated 3D ballistic trajectory model to ballistic hazard assessments at Upper Te Maari, Tongariro. J Volcanol Geotherm Res 286:248–262

    Article  Google Scholar 

  • Folch A, Cavazzoni C, Costa A, Macedonio G (2008) An automatic procedure to forecast tephra fallout. J Volcanol Geotherm Res 177:767–777

    Article  Google Scholar 

  • Franco-Ramos O, Stoffel M, Vázquez-Selem L, Capra L (2013) Spatio-temporal reconstruction of lahars on the southern slopes of Colima volcano, Mexico—a dendrogeomorphic approach. J Volcanol Geotherm Res 267:30–38

    Article  Google Scholar 

  • Fudali RF, Melson WG (1972) Ejecta velocities, magma chamber pressure and kinetic energy associated with the 1968 eruption of Arenal volcano. Bull Volcanol 35:383–401

    Article  Google Scholar 

  • García S (1875) Una visita al pueblo de S. Cristóbal., Viaje al Ceboruco. In: Edición oficial., Informe y colección de artículos relativos a los fenómenos geológicos verificados en Jalisco en el presente año y en épocas anteriores, Tomo II, tipografía de S. Banda, Guadalajara, p 354

  • Gardner JE, Tait S (2000) The caldera-forming eruption of Volcán Ceboruco, Mexico. Bull Volcanol 62:20–33

    Article  Google Scholar 

  • Geophysical Mass Flow Group (GMFG) (2007) Titan2D user guide. University at Buffalo, NY, USA. http://www.gmfg.buffalo.edu/software/titan_userguide.pdf. Accessed 25 July 2018

  • Giordano G, Doronzo DM (2017) Sedimentation and mobility of PDCs: a reappraisal of ignimbrites’aspect ratio. Open Sci Rep 7:4444. https://doi.org/10.1038/s41598-017-04880-6

    Article  Google Scholar 

  • Grupo para la actualización del mapa de peligros del volcán Popocatépetl (2017) Estudios geológicos y actualización del mapa de peligros del volcán Popocatépetl. Memoria técnica del mapa de peligros del volcán Popocatépetl. Monografías del Instituto de Geofísica, Universidad Nacional Autónoma de México 22, p 166. http://www.geofisica.unam.mx/assets/monografias22.pdf. Accessed 3 Jan 2019

  • Haynes K, Barclay J, Pidgeon N (2007) Volcanic hazard communication using maps: an evaluation of their effectiveness. Bull Volcanol 70:123–138

    Article  Google Scholar 

  • Hill BE (2018) Recent publication of the international atomic energy agency technical document on “Volcanic hazard assessments for nuclear installations: methods and examples in site evaluation”. Stat Volcanol 4:1–3. https://doi.org/10.5038/2163-338X.4.1

    Article  Google Scholar 

  • Houghton BF, Bonadonna C, Gregg CE, Johnston DM, Cousins WJ, Cole JW, Del Carlo P (2006) Proximal tephra hazards: recent eruption studies applied to volcanic risk in the Auckland volcanic field, New Zealand. J Volcanol Geotherm Res 155(1–2):138–149

    Article  Google Scholar 

  • Hsu KJ (1975) Catastrophic debris streams (sturzstroms) generated by rockfalls. Geol Soc Am Bull 86(1):129–140

    Article  Google Scholar 

  • IAEA (2016) Volcanic hazard assessments for nuclear installations: methods and examples in site evaluation. International Atomic Energy Agency, Vienna. IAEA Techdoc Series No. 1795

  • Iglesias M, Bárcena M, Matute JI (1877) El Ceboruco. Anales del Ministerio de Fomento, México 1:168–196

    Google Scholar 

  • INEGI (2009a) Prontuario de información geográfica municipal de los Estados Unidos Mexicanos: Ixtlán del Río, Nayarit. http://www.beta.inegi.org.mx/contenidos/app/mexicocifras/datos_geograficos/18/18006.pdf. Accessed 20 Jan 2018

  • INEGI (2009b) Prontuario de información geográfica municipal de los Estados Unidos Mexicanos: Jala, Nayarit. http://www.beta.inegi.org.mx/contenidos/app/mexicocifras/datos_geograficos/18/18007.pdf. Accessed 20 Jan 2018

  • INEGI (2009c) Prontuario de información geográfica municipal de los Estados Unidos Mexicanos: Ahuacatlán, Nayarit. http://www.beta.inegi.org.mx/contenidos/app/mexicocifras/datos_geograficos/18/18002.pdf. Accessed 20 Jan 2018

  • INEGI (2009d) Prontuario de información geográfica municipal de los Estados Unidos Mexicanos: San Pedro Lagunillas, Nayarit. http://www.beta.inegi.org.mx/contenidos/app/mexicocifras/datos_geograficos/18/18013.pdf. Accessed 20 Jan 2018

  • INEGI (2009e) Prontuario de información geográfica municipal de los Estados Unidos Mexicanos: Santa María de Oro, Nayarit. http://www.beta.inegi.org.mx/contenidos/app/mexicocifras/datos_geograficos/18/18014.pdf. Accessed 20 Jan 2018

  • INEGI (2010) Censo de Población y Vivienda 2010. https://www.inegi.org.mx/programas/ccpv/2010/. Accessed 20 Jan 2018

  • INEGI (2017) Continuo de Elevaciones Mexicano. http://www.beta.inegi.org.mx/temas/mapas/relieve/continental/. Accessed 20 Jan 2018

  • Jenkins SF, Komorowski J-C, Baxter PJ, Charbonnier, SJ, Surono NC (2016) The devastating impact of the 2010 eruption of Merapi Volcano, Indonesia. In: Duarte JC, Schellart WP (eds) Plate boundaries and natural hazards, pp 259–269. https://doi.org/10.1002/9781119054146.ch12

  • Kelfoun K (2009) VolcFlow: simulation of volcanic flows. Observatoire de Physique du Globe de Clermont-Fd (OPGC), Université Blaise Pascal, Francia. http://wwwobs.univ-bpclermont.fr/lmv/pperm/kelfoun_k/VolcFlow/VolcFlow.html. Accessed: 10 Aug 2018

  • Kelfoun K, Druitt TH (2005) Numerical modelling of the emplacement of the 7500 BP Socompa rock avalanche, Chile. J Geophys Res. https://doi.org/10.1029/2005JB003758

    Article  Google Scholar 

  • Kereszturi G, Procter J, Cronin JS, Németh K, Bebbington M, Lindsay J (2012) LiDAR-based quantification of lava flow hazard in the City of Auckland (New Zealand). Remote Sens Environ 125:198–213. https://doi.org/10.1016/j.rse.2012.07.015

    Article  Google Scholar 

  • Kerle N, de Vries BVW, Oppenheimer C (2003) New insight into the factors leading to the 1998 flank collapse and lahar disaster at Casita volcano, Nicaragua. Bull Volcanol 65(5):331–345

    Article  Google Scholar 

  • Lube G, Breard ECPS, Cronin J, Jones J (2015) Synthesizing large-scale pyroclastic flows: experimental design, scaling, and first results from PELE. J Geophys Res Solid Earth 120:1487–1502. https://doi.org/10.1002/2014JB011666

    Article  Google Scholar 

  • Macedonio G, Costa A (2014) HAZMAP-2.4.2 User Manual. Istituto Nazionale di Geofisica e Vulcanologia, Italia. http://datasim.ov.ingv.it/download/hazmap/manual-hazmap-2.4.2.pdf. Accessed 15 June 2018

  • Macedonio G, Costa A, Longo A (2005) A computer model for volcanic ash fallout and assessment of subsequent hazard. Comput Geosci 31(7):837–845

    Article  Google Scholar 

  • Macías JL, Capra L, Scott KM, Espíndola JM, García-Palomo A, Costa JE (2004) The 26 May 1982 breakout flows derived from failure of a volcanic dam at El Chichón, Chiapas, Mexico. Geol Soc Am Bull 116(1/2):233–246. https://doi.org/10.1130/B25318.1

    Article  Google Scholar 

  • Macías JL, Capra L, Arce JL, Espíndola JM, García-Palomo A, Sheridan MF (2008) Hazard map of El Chichón volcano, Chiapas, Mexico: constraints posed by eruptive history and computer simulations. J Volcanol Geotherm Res 175(4):444–458

    Article  Google Scholar 

  • Magill C, Mannen K, Connor L, Bonadonna C, Connor C (2015) Simulating a multi-phase tephra fall event: inversion modelling for the 1707 Hoei eruption of Mount Fuji, Japan. Bull Volcanol 77(9):81. https://doi.org/10.1007/s00445-015-0967-2

    Article  Google Scholar 

  • Malin MC, Sheridan MF (1982) Computer-assisted mapping of pyroclastic surges. Science 217:637–639

    Article  Google Scholar 

  • Manville V, Németh K, Kano K (2009) Source to sink: a review of three decades of progress in the understanding of volcaniclastic processes, deposits, and hazards. Sediment Geol 220(3–4):136–161

    Article  Google Scholar 

  • Mastin LG (1991) The roles of magma and groundwater in the phreatic eruptions at Inyo Craters, Long Valley Caldera, California. Bull Volcanol 53:579–596

    Article  Google Scholar 

  • Mastin LG (2001) A simple calculator of ballistic trajectories for blocks ejected during volcanic eruptions: Unite States Geological Survey, Open-File Report 01-45, p 16. http://pubs.usgs.gov/of/2001/0045. Accessed 3 Jan 2019

  • Misión ERMEX (Monitoreo Satelital) (2015) Imagen satelital SPOT6. En Portal Nacional de Información. http://www.gob.mx/siap/acciones-y-programas/ermex-monitoreo-satelital. Accessed 15 Dec 2018

  • Mossoux S, Saey M, Bartolini S, Poppe S, Canters F, Kervyn M (2016) Q-LAVHA: a flexible GIS plugin to simulate lava flows. Comput Geosci 97:98–109. https://doi.org/10.1016/j.cageo.2016.09.003

    Article  Google Scholar 

  • Murcia HF, Sheridan MF, Macías JL, Cortés GP (2010) TITAN2D simulations of pyroclastic flows at Cerro Machín Volcano, Colombia: hazard implications. J South Am Earth Sci 29:161–170

    Article  Google Scholar 

  • Nelson SA (1980) Geology and petrology of Volcán Ceboruco, Nayarit, Mexico. Geol Soc Am Bull 91:2290–2431

    Article  Google Scholar 

  • Nelson SA (1986) Geología del Volcán Ceboruco, con una estimación de riesgos de erupciones futuras. Rev Mex Cienc Geol UNAM 6:243–258

    Google Scholar 

  • Newhall CG (ed) (1997) Fire and mud: eruptions and lahars of Mount Pinatubo, Philippines. Univ of Washington Pr; Har/Dskt edition, p 1126

  • O’Brien J (2001) FLO2D users manual, Nutrioso Arizona. https://www.flo-2d.com/download/. Accessed 10 Aug 2018

  • O’Brien J, Julien P, Fullerton W (1993) Two-dimensional water flood and mudflow simulation. J Hydraul Eng ASCE 119:244–261

    Article  Google Scholar 

  • Patra A, Bauer A, Nichita CC, Pitman EB, Sheridan MF, Bursik MI, Rupp B, Webber A, Stinton AJ, Namikawa L, Renschler C (2005) Parallel adaptive numerical simulation of dry avalanches over natural terrain. J Volcanol Geotherm Res 139:1–21

    Article  Google Scholar 

  • Pfeiffer T, Costa A, Macedonio G (2005) A model for the numerical simulation of tephra fall deposits. J Volcanol Geotherm Res 140:273–294

    Article  Google Scholar 

  • Rivera M, Thouret JC, Marino J, Berolatti R, Fuentes J (2010) Characteristics and management of the 2006–2008 volcanic crisis at the Ubinas volcano (Peru). J Volcanol Geotherm Res 198:19–34

    Article  Google Scholar 

  • Rodríguez MC, Núñez-Cornú FJ, Nava FA, Suárez-Placencia C (2013) Some insights about the activity of the Ceboruco Volcano (Nayarit, Mexico) from recent seismic low-frequency activity. Bull Volcanol 75:755–767

    Article  Google Scholar 

  • Sánchez JJ, Núñez-Cornú FJ, Suárez-Plascencia C, Trejo-Gómez E (2009) Seismicity at Ceboruco Volcano, México. Seism Res Lett 80:823–830

    Article  Google Scholar 

  • Sandri L, Thouret JC, Constantinescu R, Biass S, Tonini R (2014) Long-term multi-hazard assessment for El Misti volcano, Peru. Bull Volcanol 76:771

    Article  Google Scholar 

  • Schilling SP (1998) GIS programs for automated mapping of lahar-inundation hazard zones. USGS Open-files, 98-638. Vancouver, Washington, USA. https://pubs.er.usgs.gov/publication/ofr98638. Accessed 10 Aug 2018

  • Sheridan MF (1979) Emplacement of pyroclastic flows: a review. In: Chapin CE, Elston WE (eds) Ash-flow tuffs. Geol Soc Am Spec Pap 180:125–136

  • Sheridan MF, Macías JL (1995) Estimation of risk probability for gravity-driven pyroclastic flows at Volcan Colima, Mexico. J Volcanol Geotherm Res 66:251–256

    Article  Google Scholar 

  • Sheridan MF, Malin MC (1983) Application of computer-assisted mapping to volcanic hazard evaluation of surge eruptions: vulcano, Lipari and Vesuvius. J Volcanol Geotherm Res 17:187–202

    Article  Google Scholar 

  • Sheridan MF, Carrasco-Nuñez G, Hubbard BE, Siebe C, Rodríguez-Elizarrarás S (2001) Mapa de Peligros del Volcán Citlaltépetl (Pico de Orizaba). Instituto de Geología, UNAM, México

    Google Scholar 

  • Sheridan MF, Carrasco-Nuñez G, Hubbard BE, Siebe C (2004) Pyroclastic flow hazards at Volcán Citlaltépetl, México. Nat Hazards 33:209–221

    Article  Google Scholar 

  • Sheridan MF, Stinton AJ, Patra AK, Bauer AC, Nichita CC, Pitman EB (2005) Evaluating TITAN2D mass-flow model using the 1963 Little Tahoma Peak avalanches, Mount Rainier, Washington. J Volcanol Geotherm Res 139(1–2):89–102

    Article  Google Scholar 

  • Sieron K (2009) Historia eruptiva, volúmenes emitidos y composición geoquímica e isotópica (sistemas Nd, Sr y Pb) del Volcán Ceboruco y edificios monogenéticos contiguos, Estado de Nayarit, México. PhD thesis, UNAM, Mexico, p 152

  • Sieron K, Siebe C (2008) Revised stratigraphy and eruption rates of Ceboruco volcano and surrounding monogenetic vents (Nayarit, Mexico) from historical documents and new radiocarbon dates. J Volcanol Geotherm Res 176:241–264

    Article  Google Scholar 

  • Sieron K, Capra L, Rodríguez-Elizarrás S (2014) Hazard assessment at San Martín volcano based on geological record, numerical modelling, and spatial analysis. Nat Hazards 70:275–297

    Article  Google Scholar 

  • Sieron K, Ferres D, Siebe C, Capra L, Connor C, Connor L, Gropelli G, Constantinescu R, Böhnel H, Agustín-Flores J, González-Zuccolotto K (2019) (submitted August 03, 2018): Ceboruco hazard map. Part 1: definition of hazard scenarios based on the eruptive history. Nat Hazards

  • Sparks RSJ, Bursik MI, Carey SN, Gilbert J, Glaze LS, Sigurdsson H, Woods AW (1997) Volcanic plumes. Wiley, New York, p 574

    Google Scholar 

  • Spence RJS, Pomonis A, Baxter PJ, Coburn AW, White M, Dayrit M, Field Epidemiology Training Program Team (1996) Building damage caused by the mount pinatubo eruption of 15 June 1991. In: Newhall CG, Punongbayan RS (eds) Fire and mud: eruptions and lahars of mount pinatubo, Philippines. University of Washington Press, London, pp 1055–1061

    Google Scholar 

  • Steinberg GS, Lorenz V (1983) External ballistics of volcanic explosions. Bull Volcanol 46(4):333–348

    Article  Google Scholar 

  • Stevens NF, Manville V, Heron DW (2002) The sensitivity of a volcanic flow model to digital elevation model accuracy: experiments with digitized map contours and interferometric SAR at Ruapehu and Taranaki volcanoes, New Zealand. J Volcanol Geotherm Res 119:89–105

    Article  Google Scholar 

  • Stinton AJ, Sheridan MF, Patra A, Dalbey K, Namikawa L (2004) Integrating variable bed friction into Titan2D mass-flow model: application to the Little Tahoma Peak avalanches, Washington. Acta Vulcanol 16(1–2):153–163

    Google Scholar 

  • Sulpizio R, Capra L, Sarocchi D, Saucedo R, Gavilanes-Ruiz J, Varley N (2010) Predicting the block-and-ash flow inundation areas at Volcán de Colima (Colima, Mexico) based on the present day (February 2010) status. J Volcanol Geotherm Res 193(1):49–66

    Article  Google Scholar 

  • Sulpizio R, Dellino P, Doronzo D, Sarocchi D (2014) Pyroclastic density currents: state of the art and perspectives. J Volcanol Geotherm Res 283:36–64

    Article  Google Scholar 

  • Thompson MA, Lindsay JM, Leonard GS (2017) More than meets the eye: volcanic hazard map design and visual communication. In: Fearnley CJ, Bird DK, Haynes K, McGuire WJ, Jolly G (eds) Observing the volcano world. Advances in volcanology (An Official Book Series of the International Association of Volcanology and Chemistry of the Earth’s Interior – IAVCEI, Barcelona, Spain). Springer, Cham

  • Thouret JC, Lavigne F, Kelfoun K, Bronto S (2000) Toward a revised hazard assessment at Merapi volcano, Central Java. J Volcanol Geotherm Res 100(1):479–502

    Article  Google Scholar 

  • Wadge G, Isaacs M (1988) Mapping the volcanic hazards from Soufriere Hills volcano, Montserrat, West Indies using an image processor. J Geol Soc 145(4):541–551

    Article  Google Scholar 

  • Waitt RB, Mastin LG, Miller TP (1995) Ballistics showers during Crater Peak eruptions of Mount Spurr volcano, summer 1992. In: The 1992 eruptions of Crater Peak vent, Mount Spurr volcano, Alaska, U.S. Geological Survey Bulletin 2139:89–106

  • Walker G, Huntingdon A, Sanders A, Dinsdale J (1973) Lengths of lava flows [and discussion]. Philos Trans R Soc Lond Ser A 274:107–118

    Article  Google Scholar 

  • White JT, Connor CB, Connor L, Hasenaka T (2017) Efficient inversion and uncertainty quantification of a tephra fallout model. J Geophys Res Solid Earth 122(1):281–294

    Article  Google Scholar 

  • Wilson TM, Stewart C, Sword-Daniels V, Leonard GS, Johnston DM, Cole JW, Wardman J, Wilson G, Barnard ST (2012) Volcanic ash impacts on critical infrastructure. Phys Chem Earth (Parts A/B/C) 45:5–23. https://doi.org/10.1016/i.pce.2011.06.006

    Article  Google Scholar 

  • Wilson G, Wilson TM, Deligne NI, Cole JW (2014) Volcanic hazard impacts to critical infrastructure: a review. J Volcanol Geotherm Res 286:148–182

    Article  Google Scholar 

Download references

Acknowledgements

This work is part of the project “Evaluación del peligro volcánico del volcán Ceboruco (Nayarit), con énfasis en su posible impacto sobre la infraestructura de la Comisión Federal de Electricidad” (Convenio CFE-800720929), funded by the Comisión Federal de Electricidad. R. Constantinescu was financed through a DGAPA-UNAM postdoctoral fellowship. Numerical modeling of pyroclastic flows took place at the Computational Geodynamics Laboratory at the Geoscience Center of UNAM-Juriquilla (Querétaro, Mexico). SPOT satellite images were obtained through the collaborative project between the Universidad Autónoma del Estado de México and the Mexican Service of Agriculture and Fishing (SIAP)-ERMEX through the “Airbus Defense & Space” license. We thank Saskia Siebe for illustrations (insets in Figs. 8, 9, 10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sieron.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11069_2019_3577_MOESM1_ESM.tif

Supplementary material A1. Isoline maps of the probability of roof collapse due to volcanic ash load (HAZMAP software simulation) during wet and dry seasons of varying prevailing winds: Isolines of the probability of roof collapse during a Vulcanian eruption (case of intermediate scenario) are shown in the column on the left, and in the right column are shown the isolines of probability of roof collapse due to ash load during a Plinian eruption considered for the scenario of greatest hazard magnitude (TIFF 15310 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sieron, K., Ferrés, D., Siebe, C. et al. Ceboruco hazard map: part II—modeling volcanic phenomena and construction of the general hazard map. Nat Hazards 96, 893–933 (2019). https://doi.org/10.1007/s11069-019-03577-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-019-03577-5

Keywords

Navigation