Skip to main content
Log in

The heat stress transcription factor family in Aegilops tauschii: genome-wide identification and expression analysis under various abiotic stresses and light conditions

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Heat stress transcription factors (Hsfs) are known to play a vital role in protecting plants against various abiotic stresses. Among the wild wheat relatives, Aegilops tauschii offers an excellent source of abiotic stress tolerance genes for improvement of bread wheat. However, little is known about its stress tolerance mechanisms. In this study, 22 AetHsf genes were identified in the genome of Aegilops tauschii and their chromosomal location, exon–intron structures, sub-cellular localization, phylogenetic and syntenic relationship were analyzed. Based on the conserved motif analysis, these Hsfs were further divided into group A, B and C. The interaction network analysis and expression profile of AetHsfs in different tissues predicted their interaction with diverse types of proteins and suggested their involvement in different developmental processes of the plant. The promoter analysis of AetHsfs showed the presence of abiotic stress-responsive, phytohormone-responsive, plant development-related and light-related cis-elements. Thus, we investigated the expression of Hsfs in Aegilops tauchii seedlings under various abiotic stress conditions and irradiated with different monochromatic lights. Most of the AetHsfs were found to be upregulated by heat stress, while some showed expression in drought, salinity and high light stress as well. Notably, the expression pattern of various AetHsfs showed their responsiveness toward dark and various light conditions (blue red and far-red) as well. Thus, this study provides novel insights into the potential role of AetHsfs in stress and light signaling pathways, which can further facilitate understanding of the stress tolerance mechanisms in Aegilops tauschii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Agarwal P, Mitra M, Banerjee S, Roy S (2020) MYB4 transcription factor, a member of R2R3-subfamily of MYB domain protein, regulates cadmium tolerance via enhanced protection against oxidative damage and increases expression of PCS1 and MT1C in Arabidopsis. Plant Sci 297:110501

    Article  CAS  PubMed  Google Scholar 

  • Almoguera C, Rojas A, Díaz-Martín J, Prieto-Dapena P, Carranco R, Jordano J (2002) A seed-specific heat-shock transcription factor involved in developmental regulation during embryogenesis in sunflower. J Biol Chem 277:43866–43872

    Article  CAS  PubMed  Google Scholar 

  • Alptekin B, Budak H (2017) Wheat miRNA ancestors: evident by transcriptome analysis of A, B, and D genome donors. Funct Integr Genomics 17:171–187

    Article  CAS  PubMed  Google Scholar 

  • Andrási N, Pettkó-Szandtner A, Szabados L (2021) Diversity of plant heat shock factors: regulation, interactions, and functions. J Exp Bot 72:1558–1575

    Article  PubMed  Google Scholar 

  • Arico D, Legris M, Castro L, Garcia CF, Laino A, Casal JJ, Mazzella MA (2019) Neighbour signals perceived by phytochrome B increase thermotolerance in Arabidopsis. Plant Cell Environ 42:2554–2566

    Article  CAS  PubMed  Google Scholar 

  • Balfagón D, Sengupta S, Gómez-Cadenas A, Fritschi FB, Azad RK, Mittler R, Zandalinasc SI (2019) Jasmonic acid is required for plant acclimation to a combination of high light and heat stress. Plant Physiol 181:1668–1682

    Article  PubMed  PubMed Central  Google Scholar 

  • Baniwal SK, Bharti K, Chan KY, Fauth M, Ganguli A, Kotak S, Mishra SK, Nover L, Port M, Scharf K-D et al (2004) Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors. J Biosci 29:471–487

    Article  CAS  PubMed  Google Scholar 

  • Bechtold U, Albihlal WS, Lawson T, Fryer MJ, Sparrow PAC, Richard F, Persad R, Bowden L, Hickman R, Martin C et al (2013) Arabidopsis Heat shock transcription factora1b overexpression enhances water productivity, resistance to drought, and infection. J Exp Bot 64:3467–3481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Begum T, Reuter R, Schöffl F (2013) Overexpression of AtHsfB4 induces specific effects on root development of Arabidopsis. Mech Dev 130:54–60

    Article  CAS  PubMed  Google Scholar 

  • Bharti S, Kumar P, Tintschl-ko A, Bharti K, Treuter E, Nover L (2004) Tomato heat stress transcription factor HsfB1 represents a novel type of general transcription coactivator with a histone-like motif interacting with the plant CREB binding protein ortholog HAC1. Plant Cell 16:1521–1535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boscheinen O, Lyck R, Queitsch C, Treuter E, Zimarino V, Scharf KD (1997) Heat stress transcription factors from tomato can functionally replace HSF1 in the yeast Saccharomyces cerevisiae. Mol Gen Genet 255:322–331

    Article  CAS  PubMed  Google Scholar 

  • Casal JJ, Balasubramanian S (2019) Thermomorphogenesis. Annu Rev Plant Biol 70:321–346

    Article  CAS  PubMed  Google Scholar 

  • Charng YY, Liu HC, Liu NY, Chi WT, Wang CN, Chang SH, Wang TT (2007) A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiol 143:251–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chauhan H, Khurana N, Agarwal P, Khurana P (2011a) Heat shock factors in rice (Oryza sativa L.): Genome-wide expression analysis during reproductive development and abiotic stress. Mol Genet Genomics 286:171–187

    Article  CAS  PubMed  Google Scholar 

  • Chauhan H, Khurana N, Tyagi AK, Khurana JP, Khurana P (2011b) Identification and characterization of high temperature stress responsive genes in bread wheat (Triticum aestivum L.) and their regulation at various stages of development. Plant Mol Biol 75:35–51

    Article  CAS  PubMed  Google Scholar 

  • Cohen-Peer R, Schuster S, Meiri D, Breiman A, Avni A (2010) Sumoylation of Arabidopsis heat shock factor A2 (HsfA2) modifies its activity during acquired thermotholerance. Plant Mol Biol 74:33–45

    Article  CAS  PubMed  Google Scholar 

  • Czarnecka-Verner E, Pan S, Salem T, Gurley WB (2004) Plant class B HSFs inhibit transcription and exhibit affinity for TFIIB and TBP. Plant Mol Biol 56:57–75

    Article  CAS  PubMed  Google Scholar 

  • Duan S, Liu B, Zhang Y, Li G, Guo X (2019) Genome-wide identification and abiotic stress-responsive pattern of heat shock transcription factor family in Triticum aestivum L. BMC Genomics 20:1–20

    Article  Google Scholar 

  • El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, Qureshi M, Richardson LJ, Salazar GA, Smart A et al (2019) The Pfam protein families database in 2019. Nucleic Acids Res 47:D427–D432

    Article  CAS  PubMed  Google Scholar 

  • Eremina M, Rozhon W, Yang S, Poppenberger B (2015) ENO2 activity is required for the development and reproductive success of plants, and is feedback-repressed by AtMBP-1. Plant J 81:895–906

    Article  CAS  PubMed  Google Scholar 

  • Evrard A, Kumar M, Lecourieux D, Lucks J, von Koskull-Döring P, Hirt H (2013) Regulation of the heat stress response in arabidopsis by MPK6-targeted phosphorylation of the heat stress factor HsfA2. PeerJ 2013:1–21

    Google Scholar 

  • Fan J, Lou Y, Shi H, Chen L, Cao L (2019) Transcriptomic analysis of dark-induced senescence in bermudagrass (Cynodon dactylon). Plants 8:1–17

    Article  CAS  Google Scholar 

  • Fragkostefanakis S, Mesihovic A, Simm S, Paupière MJ, Hu Y, Paul P, Mishra SK, Tschiersch B, Theres K, Bovy A et al (2016) HsfA2 controls the activity of developmentally and stress-regulated heat stress protection mechanisms in tomato male reproductive tissues. Plant Physiol 170:2461–2477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giesguth M, Sahm A, Simon S, Dietz KJ (2015) Redox-dependent translocation of the heat shock transcription factor AtHSFA8 from the cytosol to the nucleus in Arabidopsis thaliana. FEBS Lett 589:718–725

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Wu J, Ji Q, Wang C, Luo L, Yuan Y, Wang Y, Wang J (2008) Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis. J Genet Genomics 35:105–118

    Article  CAS  PubMed  Google Scholar 

  • Guo M, Liu J-H, Ma X, Luo D-X, Gong Z-H, Lu M-H (2016) The plant heat stress transcription factors (Hsfs): structure, regulation, and function in response to abiotic stresses. Front Plant Sci 7:114

    Article  PubMed  PubMed Central  Google Scholar 

  • Hahn A, Bublak D, Schleiff E, Scharf K-D (2011) Crosstalk between Hsp90 and Hsp70 chaperones and heat stress transcription factors in tomato. Plant Cell 23:741–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hairat S, Khurana P (2015) Evaluation of Aegilops tauschii and Aegilops speltoides for acquired thermotolerance: Implications in wheat breeding programmes. Plant Physiol Biochem 95:65–74

    Article  CAS  PubMed  Google Scholar 

  • Han SH, Park YJ, Park CM (2019) Light primes the thermally induced detoxification of reactive oxygen species during development of thermotolerance in Arabidopsis. Plant Cell Physiol 60:230–241

    Article  PubMed  Google Scholar 

  • Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 80(295):1852–1858

    Article  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam M, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14:9643–9684

    Article  PubMed  PubMed Central  Google Scholar 

  • Hayes S, Sharma A, Fraser DP, Trevisan M, Cragg-Barber CK, Tavridou E, Fankhauser C, Jenkins GI, Franklin KA (2017) UV-B perceived by the UVR8 photoreceptor inhibits plant thermomorphogenesis. Curr Biol 27:120–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35:585–587

    Article  Google Scholar 

  • Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G (2015) GSDS 2.0: An upgraded gene feature visualization server. Bioinformatics 31:1296–1297

    Article  PubMed  Google Scholar 

  • Hu X-J, Chen D, Lynne Mclntyre C, Fernanda Dreccer M, Zhang Z-B, Drenth J, Kalaipandian S, Chang H, Xue G-P (2018) Heat shock factor C2a serves as a proactive mechanism for heat protection in developing grains in wheat via an ABA-mediated regulatory pathway. Plant Cell Environ 41:79–98

    Article  CAS  PubMed  Google Scholar 

  • Huang YC, Niu CY, Yang CR, Jinn TL (2016) The heat stress factor HSFA6b connects ABA signaling and ABA-mediated heat responses. Plant Physiol 172:1182–1199

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang SM, Kim DW, Woo MS, Jeong HS, Son YS, Akhter S, Choi GJ, Bahk JD (2014) Functional characterization of Arabidopsis HsfA6a as a heat-shock transcription factor under high salinity and dehydration conditions. Plant, Cell Environ 37:1202–1222

    Article  CAS  Google Scholar 

  • Jin GH, Gho HJ, Jung KH (2013) A systematic view of rice heat shock transcription factor family using phylogenomic analysis. J Plant Physiol 170:321–329

    Article  CAS  PubMed  Google Scholar 

  • Jung HS, Crisp PA, Estavillo GM, Cole B, Hong F, Mockler TC, Pogson BJ, Chory J (2013) Subset of heat-shock transcription factors required for the early response of Arabidopsis to excess light. Proc Natl Acad Sci USA 110:14474–14479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung JH, Domijan M, Klose C, Biswas S, Ezer D, Gao M, Khattak AK, Box MS, Charoensawan V, Cortijo S et al (2016) Phytochromes function as thermosensors in Arabidopsis. Science 354:886–889

    Article  CAS  PubMed  Google Scholar 

  • Kilian B, Mammen K, Millet E, Sharma R, Graner A, Salamini F, Hammer K, Hakan O (2011) Wild crop relatives: genomic and breeding resources. Springer, Heidelberg. https://doi.org/10.1007/978-3-642-14228-4

    Book  Google Scholar 

  • Kim T, Samraj S, Jiménez J, Gómez C, Liu T, Begcy K (2021) Genome-wide identification of heat shock factors and heat shock proteins in response to UV and high intensity light stress in lettuce. BMC Plant Biol 21:1–20

    Article  CAS  Google Scholar 

  • Kishii M (2019) An update of recent use of Aegilops Species in Wheat Breeding. Front Plant Sci 10:585

    Article  PubMed  PubMed Central  Google Scholar 

  • Kotak S, Vierling E, Bäumlein H, Von Koskull-Dörlng P (2007) A novel transcriptional cascade regulating expression of heat stress proteins during seed development of Arabidopsis. Plant Cell 19:182–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legris M, Klose C, Burgie ES, Rojas CC, Neme M, Hiltbrunner A, Wigge PA, Schäfer E, Vierstra RD, Casal JJ (2016) Phytochrome B integrates light and temperature signals in Arabidopsis. Science 80(354):897–900

    Article  Google Scholar 

  • Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van De Peer Y, Rouzé P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li PS, Yu TF, He GH, Chen M, Bin ZY, Chai SC, Xu ZS, Ma YZ (2014) Genome-wide analysis of the Hsf family in soybean and functional identification of GmHsf-34 involvement in drought and heat stresses. BMC Genomics 15:1–16

    Article  Google Scholar 

  • Lin YX, Jiang HY, Chu ZX, Tang XL, Zhu SW, Cheng BJ (2011) Genome-wide identification, classification and analysis of heat shock transcription factor family in maize. BMC Genomics 12:1–14

    Article  Google Scholar 

  • Liu B, Hu J, Zhang J (2019a) Evolutionary divergence of duplicated hsf genes in Populus. Cells 8:438

    Article  CAS  PubMed Central  Google Scholar 

  • Liu M, Huang Q, Sun W, Ma Z, Huang L, Wu Q, Tang Z, Bu T, Li C, Chen H (2019b) Genome-wide investigation of the heat shock transcription factor (Hsf) gene family in Tartary buckwheat (Fagopyrum tataricum). BMC Genomics 20:1–17

    Article  Google Scholar 

  • Liu X, Panpan M, Guiyan Y, Mengyan Z, Shaobing P, Zhai MZ (2020) Genome-wide identification and transcript profiles of walnut heat stress transcription factor involved in abiotic stress. BMC Genomics 21:474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Luo M-C, Gu YQ, Puiu D, Wang H, Twardziok SO, Deal KR, Huo N, Zhu T, Wang L, Wang Y et al (2017) Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature 551:498–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma D, Li X, Guo Y, Chu J, Fang S, Yan C, Noel JP, Liu H (2016) Cryptochrome 1 interacts with PIF4 to regulate high temperature-mediated hypocotyl elongation in response to blue light. Proc Natl Acad Sci USA 113:224–229

    Article  CAS  PubMed  Google Scholar 

  • Mansouri M, Naghavi MR, Alizadeh H, Mohammadi-Nejad G, Mousavi SA, Salekdeh GH, Tada Y (2019) Transcriptomic analysis of Aegilops tauschii during long-term salinity stress. Funct Integr Genomics 19:13–28

    Article  CAS  PubMed  Google Scholar 

  • Nishizawa A, Yabuta Y, Yoshida E, Maruta T, Yoshimura K, Shigeoka S (2006) Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress. Plant J 48:535–547

    Article  CAS  PubMed  Google Scholar 

  • Nover L, Bharti K, Döring P, Mishra SK, Ganguli A, Scharf KD (2001) Arabidopsis and the heat stress transcription factor world: How many heat stress transcription factors do we need? Cell Stress Chaperones 6:177–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogawa D, Yamaguchi K, Nishiuchi T (2007) High-level overexpression of the Arabidopsis HsfA2 gene confers not only increased themotolerance but also salt/osmotic stress tolerance and enhanced callus growth. J Exp Bot 58:3373–3383

    Article  CAS  PubMed  Google Scholar 

  • Peng Z, Wang M, Li F, Lv H, Li C, Xia G (2009) A proteomic study of the response to salinity and drought stress in an introgression strain of bread wheat. Mol Cell Proteomics 8:2676–2686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Salamó I, Papdi C, Rigó G, Zsigmond L, Vilela B, Lumbreras V, Nagy I, Horváth B, Domoki M, Darula Z et al (2014) The heat shock factor A4A confers salt tolerance and is regulated by oxidative stress and the mitogen-activated protein kinases MPK3 and MPK6. Plant Physiol 165:319–334

    Article  PubMed  PubMed Central  Google Scholar 

  • Pierleoni A, Martelli PL, Fariselli P, Casadio R (2006) BaCelLo: a balanced subcellular localization predictor. Bioinformatics 22:408–416

    Article  Google Scholar 

  • Quail PH (2002) Phytochrome photosensory signalling networks. Nat Rev Mol Cell Biol 3:85–93

    Article  CAS  PubMed  Google Scholar 

  • Queitsch C, Hong SW, Vierling E, Lindquist S (2000) Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. Plant Cell 12:479–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruelland E, Zachowski A (2010) How plants sense temperature. Environ Exp Bot 69:225–232

    Article  Google Scholar 

  • Sakuma Y, Maruyama K, Qin F, Osakabe Y, Shinozaki K, Yamaguchi-Shinozaki K (2006) Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proc Natl Acad Sci USA 103:18822–18827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samtani H, Sharma A, Khurana P (2022a) Overexpression of HVA1 enhances drought and heat stress tolerance in Triticum aestivum doubled haploid plants. Cells 11:912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samtani H, Sharma A, Khurana P (2022b) Wheat ocs-element binding factor 1enhances thermotolerance by modulating the heat stress response pathway. Frontiers in Plant Sciences 13:914363

    Article  Google Scholar 

  • Scharf K-D, Heider H, Höhfeld I, Lyck R, Schmidt E, Nover L (1998) The tomato Hsf system: HsfA2 needs interaction with HsfA1 for efficient nuclear import and may be localized in cytoplasmic heat stress granules. Mol Cell Biol 18:2240–2251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scharf K-D, Berberich T, Ebersberger I, Nover L (2012) The plant heat stress transcription factor (Hsf) family: structure, function and evolution. Biochim Biophys Acta 1819:104–119

    Article  CAS  PubMed  Google Scholar 

  • Schramm F, Ganguli A, Kiehlmann E, Englich G, Walch D, Von Koskull-Döring P (2006) The heat stress transcription factor HsfA2 serves as a regulatory amplifier of a subset of genes in the heat stress response in Arabidopsis. Plant Mol Biol 60:759–772

    Article  CAS  PubMed  Google Scholar 

  • Schubert R, Dobritzsch S, Gruber C, Hause G, Athmer B, Schreiber T, Marillonnet S, Okabe Y, Ezura H, Acosta IF et al (2019) Tomato MYB21 acts in ovules to mediate jasmonate-regulated fertility. Plant Cell 31:1043–1062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh V, Singh G, Singh V (2020) TulsiPIN: An interologous protein interactome of Ocimum tenuiflorum. J Proteome Res 19:884–899

    Article  CAS  PubMed  Google Scholar 

  • Song S, Qi T, Huang H, Ren Q, Wu D, Chang C, Peng W, Liu Y, Peng J, Xie D (2011) The Jasmonate-ZIM domain proteins interact with the R2R3-MYB transcription factors MYB21 and MYB24 to affect Jasmonate-regulated stamen development in Arabidopsis. Plant Cell 23:1000–1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorger PK, Pelham HR (1988) Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylation. Cell 54:855–864

    Article  CAS  PubMed  Google Scholar 

  • Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P et al (2019) STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47:D607–D613

    Article  CAS  PubMed  Google Scholar 

  • Tang M, Xu L, Wang Y, Cheng W, Luo X, Xie Y, Fan L, Liu L (2019) Genome-wide characterization and evolutionary analysis of heat shock transcription factors (HSFs) to reveal their potential role under abiotic stresses in radish (Raphanus sativus L.). BMC Genomics 20:1–13

    Article  Google Scholar 

  • von Koskull-Döring P, Scharf KD, Nover L (2007) The diversity of plant heat stress transcription factors. Trends Plant Sci 12:452–457

    Article  Google Scholar 

  • Wang F, Dong Q, Jiang H, Zhu S, Chen B, Xiang Y (2012) Genome-wide analysis of the heat shock transcription factors in Populus trichocarpa and Medicago truncatula. Mol Biol Rep 39:1877–1886

    Article  PubMed  Google Scholar 

  • Wang N, Liu W, Yu L, Guo Z, Chen Z, Jiang S, Xu H, Fang H, Wang Y, Zhang Z et al (2020a) Heat shock factor A8a modulates flavonoid synthesis and drought tolerance. Plant Physiol 184:1273–1290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X-C, Wu J, Guan M-L, Zhao C-H, Geng P, Zhao Q (2020b) Arabidopsis MYB4 plays dual roles in flavonoid biosynthesis. Plant J 101:637–652

    Article  CAS  PubMed  Google Scholar 

  • Wei Y, Cao L, Huang X, Wang X, Wang H, Song Y, He Q, Lyu M, Hu X, Liu J (2020) Genome-wide characterization of early response genes to abscisic acid coordinating multiple pathways in Aegilops tauschii. Crop J 9:934–944

    Article  Google Scholar 

  • Xue GP, Sadat S, Drenth J, McIntyre CL (2014) The heat shock factor family from Triticum aestivum in response to heat and other major abiotic stresses and their role in regulation of heat shock protein genes. J Exp Bot 65:539–557

    Article  CAS  PubMed  Google Scholar 

  • Xue GP, Drenth J, McIntyre CL (2015) TaHsfA6f is a transcriptional activator that regulates a suite of heat stress protection genes in wheat (Triticum aestivum L.) including previously unknown Hsf targets. J Exp Bot 66:1025–1039

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Li J, Liu D, Sun J, He L, Zhang A (2014) Genome-wide analysis of the heat shock transcription factor family in Triticum urartu and Aegilops tauschii. Plant Omi J 7:291–297

    Google Scholar 

  • Yee D, Goring DR (2009) The diversity of plant U-box E3 ubiquitin ligases: from upstream activators to downstream target substrates. J Exp Bot 60:1109–1121

    Article  CAS  PubMed  Google Scholar 

  • Yu C-S, Chen Y-C, Lu C-H, Hwang J-K (2006) Prediction of protein subcellular localization. Proteins Struct Funct Bioinforma 64:643–651

    Article  CAS  Google Scholar 

  • Zang D, Wang J, Zhang X, Liu Z, Wang Y (2019) Arabidopsis heat shock transcription factor HSFA7b positively mediates salt stress tolerance by binding to an E-box-like motif to regulate gene expression. J Exp Bot 70:5355–5374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Li Y, Jia H, Li J, Huang J, Lu M, Rhoads DM, Sun T, Gong Z (2015) The heat shock factor gene family in Salix Suchowensis : a genome-wide survey and expression profiling during development and abiotic stresses. Front Plant Sci 6:1–14

    Article  Google Scholar 

  • Zhang D, Zhou Y, Zhao X, Lv L, Zhang C, Li J, Sun G, Li S, Song C (2018) Development and utilization of introgression lines using synthetic octaploid wheat (Aegilops tauschii × hexaploid wheat) as Donor. Front Plant Sci 9:1113

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang K, Wang X, Cheng F (2019) Plant Polyploidy: Origin, evolution, and its influence on crop domestication. Hortic Plant J 5:231–239

    Article  Google Scholar 

  • Zhao X, Bai S, Li L, Han X, Li J, Zhu Y, Fang Y, Zhang D, Li S (2020) Comparative transcriptome analysis of two Aegilops tauschii with contrasting drought tolerance by RNA-Seq. Int J Mol Sci 21:1–20

    Google Scholar 

  • Zhou M, Zheng S, Liu R, Lu J, Lu L, Zhang C, Liu Z, Luo C, Zhang L, Yant L et al (2019) Genome-wide identification, phylogenetic and expression analysis of the heat shock transcription factor family in bread wheat (Triticum aestivum L.). BMC Genomics 20:505

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu JK (2016) Abiotic stress signaling and responses in plants. Cell 167:313–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

HS and AS are thankful to University Grant Commission (UGC) for fellowships. This work has been supported by a grant from JC Bose fellowship award, Science and Engineering Research Board, Government of India, for research support to JPK and PK.

Author information

Authors and Affiliations

Authors

Contributions

PK, JPK and HS conceptualized the idea of the research. HS and AS performed the experiments. PK and JPK provided all the facilities for the experiments. HS and AS wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Paramjit Khurana.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationship that could be construed as a potential conflict of interest.

Additional information

Communicated by Bing Yang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLS 34 KB)

Supplementary file2 (DOC 298 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samtani, H., Sharma, A., Khurana, J.P. et al. The heat stress transcription factor family in Aegilops tauschii: genome-wide identification and expression analysis under various abiotic stresses and light conditions. Mol Genet Genomics 297, 1689–1709 (2022). https://doi.org/10.1007/s00438-022-01952-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-022-01952-9

Keywords

Navigation