Skip to main content

Advertisement

Log in

Genome-wide analysis of the heat shock transcription factors in Populus trichocarpa and Medicago truncatula

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Research has provided substantial evidences that heat shock proteins (HSPs) play essential roles in extreme physiological conditions. Heat shock transcription factors (HSFs) are important HSPs regulators, but their functions are poorly understood, particularly in Populus and Medicago. In this study, a comprehensive bioinformatics analysis of the HSFs was performed in Populus trichocarpa and Medicago truncatula. Twenty-eight Populus HSFs and 16 Medicago HSFs were identified, and comparative analyzes of the two plants were carried out subsequently. HSFs were divided into three different classes and they were diverse and complicated transcription factors. The results of semi-quantitative RT-PCR in Populus suggested six genes (PtHSF-03, PtHSF-13, PtHSF-15, PtHSF-21, PtHSF-22 and PtHSF-23) were markedly increased by heat stress. The results presented here provide an important clue for cloning, expression and functional studies of the HSFs in Populus and Medicago.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shinozaki K, Yamaguchi-Shinozaki K (1996) Molecular responses to drought and cold stress. Curr Opin Biotechnol 7(2):161–167

    PubMed  CAS  Google Scholar 

  2. Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599

    PubMed  CAS  Google Scholar 

  3. Merck KB, Horwitz J, Kersten M et al (1993) Comparison of the homologous carboxy-terminal domain and tail of alpha-crystallin and small heat shock protein. Mol Biol Rep 18(3):209–215

    PubMed  CAS  Google Scholar 

  4. Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295(5561):1852–1858

    PubMed  CAS  Google Scholar 

  5. Morimoto RI (2002) Dynamic remodeling of transcription complexes by molecular chaperones. Cell 110(3):281–284

    PubMed  CAS  Google Scholar 

  6. Drees BL, Grotkopp EK, Nelson HC (1997) The GCN4 leucine zipper can functionally substitute for the heat shock transcription factor’s trimerization domain. J Mol Biol 273(1):61–74

    PubMed  CAS  Google Scholar 

  7. Xiao H, Lis JT (1988) Germline transformation used to define key features of heat-shock response elements. Science 239(4844):1139–1142

    PubMed  CAS  Google Scholar 

  8. Amin J, Fernandez M, Ananthan J, Lis JT, Voellmy R (1994) Cooperative binding of heat shock transcription factor to the Hsp70 promoter in vivo and in vitro. J Biol Chem 269(7):4804–4811

    PubMed  CAS  Google Scholar 

  9. Sorger PK, Pelham HR (1987) Purification and characterization of a heat-shock element binding protein from yeast. EMBO J 6(10):3035–3041

    PubMed  CAS  Google Scholar 

  10. Wiederrecht G, Seto D, Parker CS (1988) Isolation of the gene encoding the S. cerevisiae heat shock transcription factor. Cell 54(6):841–853

    PubMed  CAS  Google Scholar 

  11. Clos J, Westwood JT, Becker PB et al (1990) Molecular cloning and expression of a hexameric Drosophila heat shock factor subject to negative regulation. Cell 63(5):1085–1097

    PubMed  CAS  Google Scholar 

  12. Sarge KD, Zimarino V, Holm K, Wu C, Morimoto RI (1991) Cloning and characterization of two mouse heat shock factors with distinct inducible and constitutive DNA-binding ability. Genes Dev 5(10):1902–1911

    PubMed  CAS  Google Scholar 

  13. Scharf KD, Rose S, Zott W, Schoffl F, Novel L (1990) Three tomato genes code for heat stress transcription factors with a region of remarkable homology to the DNA-binding domain of the yeast HSF. EMBO J 9(13):4495–4501

    PubMed  CAS  Google Scholar 

  14. Treuter E, Nover L, Ohme K, Scharf KD (1993) Promoter specificity and deletion analysis of three heat stress transcription factors of tomato. Mol Gen Genet 240(1):113–125

    PubMed  CAS  Google Scholar 

  15. Harrison CJ, Bohm AA, Nelson HC (1994) Crystal structure of the DNA binding domain of the heat shock transcription factor. Science 263(5144):224–227

    PubMed  CAS  Google Scholar 

  16. Littlefield O, Nelson HC (1999) A new use for the ‘wing’ of the ‘winged’ helix-turn-helix motif in the HSF-DNA cocrystal. Nat Struct Biol 6(5):464–470

    PubMed  CAS  Google Scholar 

  17. Nover L, Bharti K, Doring P et al (2001) Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? Cell Stress Chaperones 6(3):177–189

    PubMed  CAS  Google Scholar 

  18. Kotak S, Port M, Ganguli A et al (2004) Characterization of C-terminal domains of Arabidopsis heat stress transcription factors (Hsfs) and identification of a new signature combination of plant class A Hsfs with AHA and NES motif essential for activator function and intracellular localization. Plant J 39(1):98–112

    PubMed  CAS  Google Scholar 

  19. Nover L, Scharf KD, Gagliardi D et al (1996) The Hsf world: classification and properties of plant heat stress transcription factors. Cell Stress Chaperones 1(4):215–223

    PubMed  CAS  Google Scholar 

  20. Gorlich D, Kutay U (1999) Transport between the cell nucleus and the cytoplasm. Annu Rev Cell Dev Biol 15:607–660

    PubMed  CAS  Google Scholar 

  21. Heerklotz D, Doring P, Bonzelius F, Winkelhaus S, Nove L (2001) The balance of nuclear import and export determines the intracellular distribution and function of tomato heat stress transcription factor HsfA2. Mol Cell Biol 21(5):1759–1768

    PubMed  CAS  Google Scholar 

  22. Lyck R, Harmening U, Hohfeld I, Treuter E, Scharf KD, Nover L (1997) Intracellular distribution and identification of the nuclear localization signals of two plant heat-stress transcription factors. Planta 202(1):117–125

    PubMed  CAS  Google Scholar 

  23. Tuskan GA, Difazio S, Jansson S et al (2006) The genome of black cottwood, Populus trichocarpa (Torr. & Gray). Science 313(5793):1596–1604

    PubMed  CAS  Google Scholar 

  24. Cannon SB, Sterck L, Rombauts S et al (2006) Legume genome evolution viewed through the Medicago truncatula and Lotus japonicus genomes. Proc Natl Acad Sci USA 103(40):14959–14964

    PubMed  CAS  Google Scholar 

  25. Wistrand M, Sonnhammer EL (2005) Improved profile HMM performance by assessment of critical algorithmic features in SAM and HMMER. BMC Bioinformatics 6:99

    PubMed  Google Scholar 

  26. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680

    PubMed  CAS  Google Scholar 

  27. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599

    PubMed  CAS  Google Scholar 

  28. Felsenstein J (1989) Mathematics vs. evolution: mathematical evolutionary theory. Science 246(4932):941–942

    PubMed  CAS  Google Scholar 

  29. Schultz J, Milpetz F, Bork P, Ponting CP (1998) SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci USA 95(11):5857–5864

    PubMed  CAS  Google Scholar 

  30. Taylor JS, Raes J (2004) Duplication and divergence: the evolution of new genes and old ideas. Annu Rev Genet 38:615–643

    PubMed  CAS  Google Scholar 

  31. Gu Q, Ferrandiz C, Yanofsky MF, Martienssen R (1998) The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development 125(8):1509–1517

    PubMed  CAS  Google Scholar 

  32. Yang S, Zhang X, Yue JX, Tian D, Chen JQ (2008) Recent duplications dominate NBS-encoding gene expansion in two woody species. Mol Genet Genomics 280(3):187–198

    PubMed  CAS  Google Scholar 

  33. Kozik A, Kochetkova E, Michelmore R (2002) GenomePixelizer—a visualization program for comparative genomics within and between species. Bioinformatics 18(2):335–336

    PubMed  CAS  Google Scholar 

  34. Zhang XY, Wang S, Yan Z et al (2008) Molecular cloning, tissue distribution and bioinformatics analyses of the rabbit BK channel beta1 subunit gene. Mol Biol Rep 35(4):649–655

    PubMed  CAS  Google Scholar 

  35. Martinsohn JT, Radman M, Petit MA (2008) The lambda red proteins promote efficient recombination between diverged sequences: implications for bacteriophage genome mosaicism. PLoS Genet 4(5):e1000065

    PubMed  Google Scholar 

  36. Welch WJ, Suhan JP (1985) Morphological study of the mammalian stress response: characterization of changes in cytoplasmic organelles, cytoskeleton, and nucleoli, and appearance of intranuclear actin filaments in rat fibroblasts after heat-shock treatment. J Cell Biol 101(4):1198–1211

    PubMed  CAS  Google Scholar 

  37. Elizabeth Cha I, Rouchka EC (2005) Comparison of current BLAST software on nucleotide sequences. IPDPS 19:8

    PubMed  Google Scholar 

  38. Vision TJ, Brown DG, Tanksley SD (2000) The origins of genomic duplications in Arabidopsis. Science 290(5499):2114–2117

    PubMed  CAS  Google Scholar 

  39. Irish VF (2003) The evolution of floral homeotic gene function. Bioessays 25(7):637–646

    PubMed  CAS  Google Scholar 

  40. Zhao Y, Li XY, Chen WJ et al (2011) Whole-genome survey and characterization of MADS-box gene family in maize and sorghum. Plant Cell Tiss Organ Cult 105:159–173

    Google Scholar 

  41. Mishra SK, Tripp J, Winkelhaus S et al (2002) In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. Genes Dev 16(12):1555–1567

    PubMed  CAS  Google Scholar 

  42. Charng YY, Liu HC, Liu NY et al (2007) A heat-inducible transcription factor, Hsf2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiol 143(1):251–262

    PubMed  CAS  Google Scholar 

  43. Victor M, Benecke BJ (1998) Expression levels of heat shock factors are not functionally coupled to the rate of expression of heat shock genes. Mol Biol Rep 25(3):135–141

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science and Technology Support Program (No. 2009BADA6B06-1) and Anhui Major Science and Technology Project (No. 08010302073). We had to extend our thanks to Zhang Xin, Chen Yue and the members of the key Lab of Crop Biotechnology of Anhui Province for their assistance in our study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Xiang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, F., Dong, Q., Jiang, H. et al. Genome-wide analysis of the heat shock transcription factors in Populus trichocarpa and Medicago truncatula . Mol Biol Rep 39, 1877–1886 (2012). https://doi.org/10.1007/s11033-011-0933-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-0933-9

Keywords

Navigation