Skip to main content
Log in

Genome-wide identification, classification and expression analysis of the heat shock transcription factor family in Chinese cabbage

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The Hsf gene family, one of the most important transcription factor families, plays crucial roles in regulating heat resistance. However, a systematic and comprehensive analysis of this gene family has not been reported in Chinese cabbage. Therefore, systematic analysis of the Hsf gene family in Chinese cabbage has profound significance. In this study, 35 BrHsf genes were identified from Chinese cabbage, which could be classified into three groups according to their structural characteristics and phylogenetic comparisons with Arabidopsis and rice. Thirty-three BrHsf genes mapped on chromosomes were further assigned to three subgenomes and eight ancestral karyotypes. Distribution mapping showed that BrHsf genes were non-randomly localized on chromosomes. Chinese cabbage and Arabidopsis shared 22 orthologous gene pairs. The expansion of BrHsf genes mainly resulted from genome triplication. Comparative analysis showed that the most Hsf genes were in Chinese cabbage among the five species analyzed. Interestingly, the number of Hsf genes of heat-resistant plants (Theobroma cacao and Musa acuminata) was fewer than that in Chinese cabbage. The expression patterns of BrHsf genes were different in six tissues, based on RNA-seq. Quantitative real-time-PCR analysis showed that the expression level of BrHsf genes varied under various abiotic stresses. In conclusion, this comprehensive analysis of BrHsf genes will provide rich resources, aiding the determination of Hsfs functions in plant heat resistance. Furthermore, the comparative genomics analysis deepened our understanding of Hsf genes’ evolution accompanied by the polyploidy event of Chinese cabbage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baniwal SK, Bharti K, Chan KY, Fauth M, Ganguli A, Kotak S, Mishra SK, Nover L, Port M, Scharf KD, Tripp J, Weber C, Zielinski D, von Koskull-Doring P (2004) Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors. J Biosci. 29:471–487

    Article  CAS  PubMed  Google Scholar 

  • Chawade A, Brautigam M, Lindlof A, Olsson O, Olsson B (2007) Putative cold acclimation pathways in Arabidopsis thaliana identified by a combined analysis of mRNA co-expression patterns, promoter motifs and transcription factors. BMC Genomics 8:304

    Article  PubMed Central  PubMed  Google Scholar 

  • Cheng F, Liu S, Wu J, Fang L, Sun S, Liu B, Li P, Hua W, Wang X (2011) BRAD, the genetics and genomics database for Brassica plants. BMC Plant Biol 11:136

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng F, Mandakova T, Wu J, Xie Q, Lysak MA, Wang X (2013) Deciphering the diploid ancestral genome of the mesohexaploid Brassica rapa. Plant Cell 25:1541–1554

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chung E, Kim KM, Lee JH (2013) Genome-wide analysis and molecular characterization of heat shock transcription factor family in Glycine max. J Genet Genomics 40:127–135

    Article  CAS  PubMed  Google Scholar 

  • D′Hont A, Denoeud F, Aury JM, Baurens FC, Carreel F, Garsmeur O (2012) The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488:213–217

    Article  PubMed  Google Scholar 

  • Damberger FF, Pelton JG, Harrison CJ, Nelson HC, Wemmer DE (1994) Solution structure of the DNA-binding domain of the heat shock transcription factor determined by multidimensional heteronuclear magnetic resonance spectroscopy. Protein Sci 3:1806–1821

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Giorno F, Guerriero G, Baric S, Mariani C (2012) Heat shock transcriptional factors in Malus domestica: identification, classification and expression analysis. BMC Genomics 13:639

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Glazebrook J (2001) Genes controlling expression of defense responses in Arabidopsis–2001 status. Curr Opin Plant Biol 4:301–308

    Article  CAS  PubMed  Google Scholar 

  • Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:D1178–D1186

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guo J, Wu J, Ji Q, Wang C, Luo L, Yuan Y, Wang Y, Wang J (2008) Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis. J Genet Genomics 35:105–118

    Article  CAS  PubMed  Google Scholar 

  • Kotak S, Port M, Ganguli A, Bicker F, von Koskull-Doring P (2004) Characterization of C-terminal domains of Arabidopsis heat stress transcription factors (Hsfs) and identification of a new signature combination of plant class A Hsfs with AHA and NES motifs essential for activator function and intracellular localization. Plant J 39:98–112

    Article  CAS  PubMed  Google Scholar 

  • Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • la Cour T, Kiemer L, Molgaard A, Gupta R, Skriver K, Brunak S (2004) Analysis and prediction of leucine-rich nuclear export signals. Protein Eng Des Sel 17:527–536

    Article  PubMed  Google Scholar 

  • Lee T, Tang H, Wang X, Paterson A (2013) PGDD: a database of gene and genome duplication in plants. Nucleic Acids Res 41:D1152–D1158

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Letunic I, Doerks T, Bork P (2012) SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res 40:D302–D305

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li L, Stoeckert CJ Jr, Roos DS (2003) OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 13:2178–2189

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li J, Gao G, Zhang T, Wu X (2013) The putative phytocyanin genes in Chinese cabbage (Brassica rapa L.): genome-wide identification, classification and expression analysis. Mol Genet Genomics 288:1–20

    Article  CAS  PubMed  Google Scholar 

  • Lin YX, Jiang HY, Chu ZX, Tang XL, Zhu SW, Cheng BJ (2011) Genome-wide identification, classification and analysis of heat shock transcription factor family in maize. BMC Genomics 12:76

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mittal D, Chakrabarti S, Sarkar A, Singh A, Grover A (2009) Heat shock factor gene family in rice: genomic organization and transcript expression profiling in response to high temperature, low temperature and oxidative stresses. Plant Physiol Biochem 47:785–795

    Article  CAS  PubMed  Google Scholar 

  • Morimoto RI (1998) Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Gene Dev 12:3788–3796

    Article  CAS  PubMed  Google Scholar 

  • Morimoto RI (2002) Dynamic remodeling of transcription complexes by molecular chaperones. Cell 110:281–284

    Article  CAS  PubMed  Google Scholar 

  • Mun JH, Yu HJ, Shin JY, Oh M, Hwang HJ, Chung H (2012) Auxin response factor gene family in Brassica rapa: genomic organization, divergence, expression, and evolution. Mol Genet Genomics 287:765–784

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nguyen Ba AN, Pogoutse A, Provart N, Moses AM (2009) NLStradamus: a simple Hidden Markov Model for nuclear localization signal prediction. BMC Bioinforma 10:202

    Article  Google Scholar 

  • Nover L, Scharf KD, Gagliardi D, Vergne P, Czarnecka-Verner E, Gurley WB (1996) The Hsf world: classification and properties of plant heat stress transcription factors. Cell Stress Chaperones 1:215–223

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nover L, Bharti K, Doring P, Mishra SK, Ganguli A, Scharf KD (2001) Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? Cell Stress Chaperons 6:177–189

    Article  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pirkkala L, Nykanen P, Sistonen L (2001) Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J 15:1118–1131

    Article  CAS  PubMed  Google Scholar 

  • Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, Heger A, Holm L, Sonnhammer EL, Eddy SR, Bateman A, Finn RD (2012) The Pfam protein families database. Nucleic Acids Res 40:D290–D301

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Renak D, Gibalova A, Solcova K, Honys D (2014) A new link between stress response and nucleolar function during pollen development in Arabidopsis mediated by AtREN1 protein. Plant Cell Environ 37(3):670–683

    Article  CAS  PubMed  Google Scholar 

  • Santoro N, Johansson N, Thiele DJ (1998) Heat shock element architecture is an important determinant in the temperature and transactivation domain requirements for heat shock transcription factor. Mol Cell Biol 18:6340–6352

    CAS  PubMed Central  PubMed  Google Scholar 

  • Scharf KD, Berberich T, Ebersberger I, Nover L (2012) The plant heat stress transcription factor (Hsf) family: structure, function and evolution. Biochim Biophys Acta 1819:104–119

    Article  CAS  PubMed  Google Scholar 

  • Schranz ME, Lysak MA, Mitchell-Olds T (2006) The ABC’s of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci 11:535–542

    Article  CAS  PubMed  Google Scholar 

  • Singh K, Foley RC, Onate-Sanchez L (2002) Transcription factors in plant defense and stress responses. Curr Opin Plant Biol 5:430–436

    Article  CAS  PubMed  Google Scholar 

  • Song X, Li Y, Hou X (2013a) Genome-wide analysis of the AP2/ERF transcription factor superfamily in Chinese cabbage (Brassica rapa ssp. pekinensis). BMC Genomics 14:573

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Song X, Liu T, Duan W, Ma Q, Ren J, Wang Z, Li Y, Hou X (2013b) Genome-wide analysis of the GRAS gene family in Chinese cabbage (Brassica rapa ssp. pekinensis). Genomics

  • Song X, Huang Z, Duan W, Ren J, Liu T, Li Y, Hou X (2014) Genome-wide analysis of the bHLH transcription factor family in Chinese cabbage (Brassica rapa ssp. pekinensis). Mol Genet Genomics 289(1):77–91

    Article  CAS  PubMed  Google Scholar 

  • Sorger PK, Pelham HRB (1988) Yeast heat-shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylation. Cell 54:855–864

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tong C, Wang X, Yu J, Wu J, Li W, Huang J, Dong C, Hua W, Liu S (2013) Comprehensive analysis of RNA-seq data reveals the complexity of the transcriptome in Brassica rapa. BMC Genomics 14:689

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tunc-Ozdemir M, Tang C, Ishka MR, Brown E, Groves NR, Myers CT, Rato C, Poulsen LR, McDowell S, Miller G, Mittler R, Harper JF (2013) A cyclic nucleotide-gated channel (CNGC16) in pollen is critical for stress tolerance in pollen reproductive development. Plant Physiol 161:1010–1020

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • von Koskull-Doring P, Scharf KD, Nover L (2007) The diversity of plant heat stress transcription factors. Trends Plant Sci 12:452–457

    Article  Google Scholar 

  • Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun JH, Bancroft I, Cheng F (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1039

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Dong Q, Jiang H, Zhu S, Chen B, Xiang Y (2012a) Genome-wide analysis of the heat shock transcription factors in Populus trichocarpa and Medicago truncatula. Mol Biol Rep 39:1877–1886

    Article  PubMed  Google Scholar 

  • Wang Y, Tang H, Debarry JD, Tan X, Li J, Wang X, Lee TH, Jin H, Marler B, Guo H, Kissinger JC, Paterson AH (2012b) MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res 40:e49

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, Appel RD, Hochstrasser DF (1999) Protein identification and analysis tools in the ExPASy server. Methods Mol Biol 112:531–552

    CAS  PubMed  Google Scholar 

  • Zhang L, Wu B, Zhao D, Li C, Shao F, Lu S (2013) Genome-wide analysis and molecular dissection of the SPL gene family in Salvia miltiorrhiza. J Integr Plant Biol 56(1):38–50

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Key Program, No. 31330067), National Program on Key Basic Research Projects (The 973 Program: 2012CB113900), National High Technology Research and Development Program of China (863 Program, No. 2012AA100101), and Shanghai ‘2011’ program (No. ZF12051301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xilin Hou.

Additional information

X. Song and G. Liu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3197 kb)

Supplementary material 2 (XLSX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, X., Liu, G., Duan, W. et al. Genome-wide identification, classification and expression analysis of the heat shock transcription factor family in Chinese cabbage. Mol Genet Genomics 289, 541–551 (2014). https://doi.org/10.1007/s00438-014-0833-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-014-0833-5

Keywords

Navigation