Skip to main content
Log in

Functional analysis of 5′ untranslated region of a TIR-NBS-encoding gene from triploid white poplar

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Genome-wide analyses have identified a set of TIR-NBS-encoding genes in plants. However, the molecular mechanism underlying the expression of these genes is still unknown. In this study, we presented a TIR-NBS-encoding gene, PtDrl02, that displayed a low level of tissue-specific expression in a triploid white poplar [(Populus tomentosa × P. bolleana) × P. tomentosa], and analyzed the effects of the 5′ untranslated region (UTR) on gene expression. The 5′ UTR sequence repressed the reporter activity of β-glucuronidase (GUS) gene under PtDrl02 promoter by 113.5-fold with a staining ratio of 2.97% in the transgenic tobacco plants. Quantitative RT-PCR assays revealed that the 5′ UTR sequence decreased the transcript level of the GUS reporter gene by 13.3-fold, implying a regulatory role of 5′ UTR in transcription and/or mRNA destabilization. The comparison of GUS activity with the transcript abundance indicated that the 5′ UTR sequence decreased the translation efficiency of target gene by 88.3%. Additionally, the analysis of the transgenic P-985/UTRΔ/GUS plants showed that both the exon1 sequence and the leading intron within the 5′ UTR region were responsible for the regulation of gene expression. Our results suggested a negative effect of the 5′ UTR of PtDrl02 gene on gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403

    PubMed  CAS  Google Scholar 

  • Ameline-Torregrosa C, Wang BB, O’Bleness MS, Deshpande S, Zhu H, Roe B, Young ND, Cannon SB (2008) Identification and characterization of nucleotide-binding site-leucine-rich repeat genes in the model plant Medicago truncatula. Plant Physiol 146(1):5–21

    Article  PubMed  CAS  Google Scholar 

  • An G (1987) Binary Ti vectors for plant transformation and promoter analysis. Methods Enzymol 153:292–305

    Article  CAS  Google Scholar 

  • Bentley DL, Groudine M (1986) A block to elongation is largely responsible for decreased transcription of c-myc in differentiated HL60 cells. Nature 321(6071):702–706

    Article  PubMed  CAS  Google Scholar 

  • Bolle C, Sopory S, Lübberstedt T, Herrmann RG, Oelmüller R (1994) Segments encoding 5′-untranslated leaders of genes for thylakoid proteins contain cis-elements essential for transcription. Plant J 6(4):513–523

    Article  PubMed  CAS  Google Scholar 

  • Botella MA, Parker JE, Frost LN, Bittner-Eddy PD, Beynon JL, Daniels MJ, Holub EB, Jones JD (1998) Three genes of the Arabidopsis RPP1 complex resistance locus recognize distinct Peronospora parasitica avirulence determinants. Plant Cell 10(11):1847–1860

    Article  PubMed  CAS  Google Scholar 

  • Bousquet-Antonelli C, Presutti C, Tollervey D (2000) Identification of a regulated pathway for nuclear pre-mRNA turnover. Cell 102(6):765–775

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Brenet F, Dussault N, Delfino C, Boudouresque F, Chinot O, Martin PM, Ouafik LH (2006) Identification of secondary structure in the 5′-untranslated region of the human adrenomedullin mRNA with implications for the regulation of mRNA translation. Oncogene 25(49):6510–6519

    Article  PubMed  CAS  Google Scholar 

  • Bunimov N, Smith JE, Gosselin D, Laneuville O (2007) Translational regulation of PGHS-1 mRNA: 5′ untranslated region and first two exons conferring negative regulation. Biochim Biophys Acta 1769(2):92–105

    PubMed  CAS  Google Scholar 

  • Burch-Smith TM, Dinesh-Kumar SP (2007) The functions of plant TIR domains. Sci STKE 401:pe46

    Article  Google Scholar 

  • Cannons AC, Cannon J (2002) The stability of the Chlorella nitrate reductase mRNA is determined by the secondary structure of the 5′-UTR: implications for posttranscriptional regulation of nitrate reductase. Planta 214(3):488–491

    Article  PubMed  CAS  Google Scholar 

  • Chekanova JA, Dutko JA, Mian IS, Belostotsky DA (2002) Arabidopsis thaliana exosome subunit AtRrp4p is a hydrolytic 3′→5′ exonuclease containing S1 and KH RNA-binding domains. Nucleic Acids Res 30(3):695–700

    Article  PubMed  CAS  Google Scholar 

  • Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host–microbe interactions: shaping the evolution of the plant immune response. Cell 124(4):803–814

    Article  PubMed  CAS  Google Scholar 

  • Chung BYW, Simons C, Firth AE, Brown CM, Hellens RP (2006) Effect of 5′ UTR introns on gene expression in Arabidopsis thaliana. BMC Genomics 7:120

    Article  PubMed  CAS  Google Scholar 

  • Curi GC, Chan RL, Gonzalez DH (2005) The leader intron of Arabidopsis thaliana genes encoding cytochrome c oxidase subunit 5c promotes high-level expression by increasing transcript abundance and translation efficiency. J Exp Bot 56(419):2563–2571

    Article  PubMed  CAS  Google Scholar 

  • Curie C, McCormick S (1997) A strong inhibitor of gene expression in the 5′ untranslated region of the pollen-specific LAT59 gene of tomato. Plant Cell 9(11):2025–2036

    Article  PubMed  CAS  Google Scholar 

  • Curie C, Axelos M, Bardet C, Atanassova R, Chaubet N, Lescure B (1993) Modular organization and development activity of an Arabidopsis thaliana EF-1 alpha gene promoter. Mol Gen Genet 238(3):428–436

    Article  PubMed  CAS  Google Scholar 

  • Dixon MS, Jones DA, Keddie JS, Thomas CM, Harrison K, Jones JD (1996) The tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine-rich repeat proteins. Cell 84(3):451–459

    Article  PubMed  CAS  Google Scholar 

  • Finn RD, Mistry J, Schuster-Böckler B, Griffiths-Jones S, Hollich V, Lassmann T, Moxon S, Marshall M, Khanna A, Durbin R, Eddy SR, Sonnhammer EL, Bateman A (2006) Pfam: clans, web tools and services. Nucleic Acids Res 34(Database issue):D247–D251

    Google Scholar 

  • Grant MR, Godiard L, Straube E, Ashfield T, Lewald J, Sattler A, Innes RW, Dangl JL (1995) Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science 269(5225):843–846

    Article  PubMed  CAS  Google Scholar 

  • Halterman D, Zhou F, Wei F, Wise RP, Schulze-Lefert P (2001) The MLA6 coiled-coil, NBS-LRR protein confers AvrMla6-dependent resistance specificity to Blumeria graminis f. sp. hordei in barley and wheat. Plant J 25(3):335–348

    Article  PubMed  CAS  Google Scholar 

  • Hammond-Kosack KE, Jones JD (1997) Plant disease resistance genes. Annu Rev Plant Physiol Plant Mol Biol 48:575–607

    Article  PubMed  CAS  Google Scholar 

  • Hess MA, Duncan RF (1996) Sequence and structure determinants of Drosophila Hsp70 mRNA translation: 5′UTR secondary structure specifically inhibits heat shock protein mRNA translation. Nucleic Acids Res 24(12):2441–2449

    Article  PubMed  CAS  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res 27(1):297–300

    Article  PubMed  CAS  Google Scholar 

  • Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Hu WW, Gong H, Pua EC (2005) The pivotal roles of the plant S-adenosylmethionine decarboxylase 5′ untranslated leader sequence in regulation of gene expression at the transcriptional and posttranscriptional levels. Plant Physiol 138(1):276–286

    Article  PubMed  CAS  Google Scholar 

  • Hua XJ, Van de Cotte B, Van Montagu M, Verbruggen N (2001) The 5′ untranslated region of the At-P5R gene is involved in both transcriptional and post-transcriptional regulation. Plant J 26(2):157–169

    Article  PubMed  CAS  Google Scholar 

  • Hultmark D, Klemenz R, Gehring WJ (1986) Translational and transcriptional control elements in the untranslated leader of the heat-shock gene hsp22. Cell 44(3):429–438

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6(13):3901–3907

    PubMed  CAS  Google Scholar 

  • Kim MJ, Kim H, Shin JS, Chung CH, Ohlrogge JB, Suh MC (2006) Seed-specific expression of sesame microsomal oleic acid desaturase is controlled by combinatorial properties between negative cis-regulatory elements in the SeFAD2 promoter and enhancers in the 5′-UTR intron. Mol Genet Genomics 276(4):351–368

    Article  PubMed  CAS  Google Scholar 

  • Kohler A, Rinaldi C, Duplessis S, Baucher M, Geelen D, Duchaussoy F, Meyers BC, Boerjan W, Martin F (2008) Genome-wide identification of NBS resistance genes in Populus trichocarpa. Plant Mol Biol 66(6):619–636

    Article  PubMed  CAS  Google Scholar 

  • Kozak M (1989) Circumstances and mechanisms of inhibition of translation by secondary structure in eukaryotic mRNAs. Mol Cell Biol 9(11):5134–5142

    PubMed  CAS  Google Scholar 

  • Kozak M (1991) Structural features in eukaryotic mRNAs that modulate the initiation of translation. J Biol Chem 266(30):19867–19870

    PubMed  CAS  Google Scholar 

  • Kozak M (2002) Emerging links between initiation of translation and human diseases. Mamm Genome 13(8):401–410

    Article  PubMed  CAS  Google Scholar 

  • Le Hir H, Nott A, Moore MJ (2003) How introns influence and enhance eukaryotic gene expression. Trends Biochem Sci 28(4):215–220

    Article  PubMed  CAS  Google Scholar 

  • Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30(1):325–327

    Article  PubMed  CAS  Google Scholar 

  • Lescot M, Rombauts S, Zhang J, Aubourg S, Mathé C, Jansson S, Rouzé P, Boerjan W (2004) Annotation of a 95-kb Populus deltoids genomic sequence reveals a disease resistance gene cluster and novel class I and class II transposable elements. Theor Appl Genet 109:10–22

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Yang S, Yang H, Hua J (2007) The TIR-NB-LRR gene SNC1 is regulated at the transcript level by multiple factors. Mol Plant Microbe Interact 20(11):1449–1456

    Article  PubMed  CAS  Google Scholar 

  • Lin CY, Chen YH, Lee HC, Tsai HJ (2004) Novel cis-element in intron 1 represses somite expression of zebrafish myf-5. Gene 334:63–72

    Article  PubMed  CAS  Google Scholar 

  • McCarthy JE (1998) Posttranscriptional control of gene expression in yeast. Microbiol Mol Biol Rev 62(4):1492–1553

    PubMed  CAS  Google Scholar 

  • McHale L, Tan X, Koehl P, Michelmore RW (2006) Plant NBS-LRR proteins: adaptable guards. Genome Biol 7(4):212

    Article  PubMed  CAS  Google Scholar 

  • Meijer HA, Thomas AA (2002) Control of eukaryotic protein synthesis by upstream open reading frames in the 5′-untranslated region of an mRNA. Biochem J 367(Pt1):1–11

    Article  PubMed  CAS  Google Scholar 

  • Mes JJ, van Doorn AA, Wijbrandi J, Simons G, Cornelissen BJ, Haring MA (2000) Expression of the Fusarium resistance gene I-2 colocalizes with the site of fungal containment. Plant J 23(2):183–193

    Article  PubMed  CAS  Google Scholar 

  • Meyers BC, Dickerman AW, Michelmore RW (1999) Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J 20:317–332

    Article  PubMed  CAS  Google Scholar 

  • Meyers BC, Morgante M, Michelmore RW (2002) TIR-X and TIR-NBS proteins: two new families related to disease resistance TIR-NBS-LRR proteins encoded in Arabidopsis and other plant genomes. Plant J 32(1):77–92

    Article  PubMed  CAS  Google Scholar 

  • Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW (2003) Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 15(4):809–834

    Article  PubMed  CAS  Google Scholar 

  • Milligan SB, Bodeau J, Yaghoobi J, Kaloshian I, Zabel P, Williamson VM (1998) The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell 10(8):1307–1319

    Article  PubMed  CAS  Google Scholar 

  • Morello L, Bardini M, Sala F, Breviario D (2002) A long leader intron of the Ostub16 rice beta-tubulin gene is required for high-level gene expression and can autonomously promote transcription both in vivo and in vitro. Plant J 29(1):33–44

    Article  PubMed  CAS  Google Scholar 

  • Morris DR, Geballe AP (2000) Upstream open reading frames as regulators of mRNA translation. Mol Cell Biol 20(23):8635–8642

    Article  PubMed  CAS  Google Scholar 

  • Muhlrad D, Decker CJ, Parker R (1995) Turnover mechanisms of the stable yeast PGK1 mRNA. Mol Cell Biol 15(4):2145–2156

    PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Myers SJ, Huang Y, Genetta T, Dingledine R (2004) Inhibition of glutamate receptor 2 translation by a polymorphic repeat sequence in the 5′-untranslated leaders. J Neurosci 24(14):3489–3499

    Article  PubMed  CAS  Google Scholar 

  • Norris SR, Meyer SE, Callis J (1993) The intron of Arabidopsis thaliana polyubiquitin genes is conserved in location and is a quantitative determinant of chimeric gene expression. Plant Mol Biol 21(5):895–906

    Article  PubMed  CAS  Google Scholar 

  • Pan Q, Simpson RU (1999) c-myc intron element-binding proteins are required for 1, 25-dihydroxyvitamin D3 regulation of c-myc during HL-60 cell differentiation and the involvement of HOXB4. J Biol Chem 274(13):8437–8444

    Article  PubMed  CAS  Google Scholar 

  • Parker JE, Coleman MJ, Szabò V, Frost LN, Schmidt R, van der Biezen EA, Moores T, Dean C, Daniels MJ, Jones JD (1997) The Arabidopsis downy mildew resistance gene RPP5 shares similarity to the toll and interleukin-1 receptors with N and L6. Plant Cell 9(6):879–894

    Article  PubMed  CAS  Google Scholar 

  • Pesole G, Liuni S (1999) Internet resources for the functional analysis of 5′ and 3′ untranslated regions of eukaryotic mRNA. Trends Genet 15(9):378

    Article  PubMed  CAS  Google Scholar 

  • Pickering BM, Willis AE (2005) The implications of structured 5′ untranslated regions on translation and disease. Semin Cell Dev Biol 16(1):39–47

    Article  PubMed  CAS  Google Scholar 

  • Rahman M, Hirabayashi Y, Ishii T, Kodera T, Watanabe M, Takasawa N, Sasaki T (2001) A repressor element in the 5′-untranslated region of human Pax5 exon 1A. Gene 263(1–2):59–66

    Article  PubMed  CAS  Google Scholar 

  • Ringnér M, Krogh M (2005) Folding free energies of 5′-UTRs impact post-transcriptional regulation on a genomic scale in yeast. PLoS Comput Biol 1(7):e72

    Article  PubMed  CAS  Google Scholar 

  • Rose AB (2002) Requirements for intron-mediated enhancement of gene expression in Arabidopsis. RNA 8(11):1444–1453

    Article  PubMed  CAS  Google Scholar 

  • Rose AB (2004) The effect of intron location on intron-mediated enhancement of gene expression in Arabidopsis. Plant J 40(5):744–751

    Article  PubMed  CAS  Google Scholar 

  • Rose AB, Beliakoff JA (2000) Intron-mediated enhancement of gene expression independent of unique intron sequence and splicing. Plant Physiol 122:535–542

    Article  PubMed  CAS  Google Scholar 

  • Salmeron JM, Oldroyd GE, Rommens CM, Scofield SR, Kim HS, Lavelle DT, Dahlbeck D, Staskawicz BJ (1996) Tomato Prf is a member of the leucine-rich repeat class of plant disease resistance genes and lies embedded within the Pto kinase gene cluster. Cell 86(1):123–133

    Article  PubMed  CAS  Google Scholar 

  • Samadder P, Sivamani E, Lu J, Li X, Qu R (2008) Transcriptional and post-transcriptional enhancement of gene expression by the 5′ UTR intron of rice rubi3 gene in transgenic rice cells. Mol Genet Genomics 279(4):429–439

    Article  PubMed  CAS  Google Scholar 

  • Schmidt S, Lombardi M, Gardiner DM, Ayliffe M, Anderson PA (2007) The M flax rust resistance pre-mRNA is alternatively spliced and contains a complex upstream untranslated region. Theor Appl Genet 115(3):373–382

    Article  PubMed  CAS  Google Scholar 

  • Scortecci KC, Raina R, Fedoroff NV, Van Sluys MA (1999) Negative effect of the 5′-untranslated leader sequence on Ac transposon promoter expression. Plant Mol Biol 40(6):935–944

    Article  PubMed  CAS  Google Scholar 

  • Shen KA, Chin DB, Arroyo-Garcia R, Ochoa OE, Lavelle DO, Wroblewski T, Meyers BC, Michelmore RW (2002) Dm3 is one member of a large constitutively expressed family of nucleotide binding site-leucine-rich repeat encoding genes. Mol Plant Microbe Interact 15(3):251–261

    Article  PubMed  Google Scholar 

  • Stefanovic B, Lindquist J, Brenner DA (2000) The 5′ stem-loop regulates expression of collagen alpha1(I) mRNA in mouse fibroblasts cultured in a three-dimensional matrix. Nucleic Acids Res 28(2):641–657

    Article  PubMed  CAS  Google Scholar 

  • Tan X, Meyers BC, Kozik A, West MA, Morgante M, St Clair DA, Bent AF, Michelmore RW (2007) Global expression analysis of nucleotide binding site-leucine rich repeat-encoding and related genes in Arabidopsis. BMC Plant Biol 7:56

    Article  PubMed  CAS  Google Scholar 

  • Taylor A, Zhang L, Herrmann J, Wu B, Kedes L, Wells D (1997) Cell-cycle-specific transcription termination within the human histone H3.3 gene is correlated with specific protein–DNA interactions. Genet Res 69(2):101–110

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen GL, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Déjardin A, Depamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjärvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leplé JC, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouzé P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai CJ, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, Van de Peer Y, Rokhsar D (2006) The genome of black cottonwood, Populus trichocarpa (Torr. and Gray). Science 313(5793):1596–1604

    Article  PubMed  CAS  Google Scholar 

  • van der Velden AW, Thomas AA (1999) The role of the 5′ untranslated region of an mRNA in translation regulation during development. Int J Biochem Cell Biol 31(1):87–106

    Article  PubMed  Google Scholar 

  • Vega Laso MR, Zhu D, Sagliocco F, Brown AJ, Tuite MF, McCarthy JE (1993) Inhibition of translational initiation in the yeast Saccharomyces cerevisiae as a function of the stability and position of hairpin structures in the mRNA leader. J Biol Chem 268(9):6453–6462

    PubMed  CAS  Google Scholar 

  • Wood MW, VanDongen HM, VanDongen AM (1996) The 5′-untranslated region of the N-methyl-d-aspartate receptor NR2A subunit controls efficiency of translation. J Biol Chem 271(14):8115–8120

    Article  PubMed  CAS  Google Scholar 

  • Yang S, Zhang X, Yue JX, Tian D, Chen JQ (2008) Recent duplications dominate NBS-encoding gene expansion in two woody species. Mol Genet Genomics 280(3):187–198

    Article  PubMed  CAS  Google Scholar 

  • Yi H, Richards EJ (2007) A cluster of disease resistance genes in Arabidopsis is coordinately regulated by transcriptional activation and RNA silencing. Plant Cell 19(9):2929–2939

    Article  PubMed  CAS  Google Scholar 

  • Zhang ZY, Li FL, Zhu ZT (1992) Chromosome doubling and triploid breeding of Populus tomentosa Carr. and its hybrid. J Beijing For Univ 14(Suppl):52–58

    Google Scholar 

  • Zhang ZY, Li FL, Zhu ZT (1997) Doubling technology of pollen chromosome of Populus tomentosa and its hybrids. J Beijing For Univ (English edn) 6:9–20

    Google Scholar 

  • Zhang Q, Zhang ZY, Lin SZ, Lin YZ (2005) Resistance of transgenic hybrid triploids in Populus tomentosa Carr. against 3 species of Lepidopterans following two winter dormancies conferred by high level expression of cowpea trypsin inhibitor gene. Silvae Genet 54:108–116

    Google Scholar 

  • Zhang Q, Zhang ZY, Lin SZ, Zheng HQ, Lin YZ, An XM, Li Y, Li HX (2008) Characterization of resistance gene analogs with a nucleotide binding site isolated from a triploid white poplar. Plant Biol 10:310–322

    Article  PubMed  CAS  Google Scholar 

  • Zheng HQ, Lin SZ, Zhang Q, Zhang ZZ, Zhang ZY, Lei Y, Hou L (2007) Isolation and analysis of a TIR-specific promoter from poplar. For Stud China 9(2):95–106

    Article  CAS  Google Scholar 

  • Zhou T, Wang Y, Chen JQ, Araki H, Jing Z, Jiang K, Shen J, Tian D (2004) Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes. Mol Genet Genomics 271(4):402–415

    Article  PubMed  CAS  Google Scholar 

  • Zhu ZT, Zhang ZY (1997) Status and advances of genetic improvement of Populus tomentosa Carr. J Beijing For Univ (English edn) 6:1–7

    Google Scholar 

  • Zuker M (2000) Calculating nucleic acid secondary structure. Curr Opin Struct Biol 10:303–310

    Article  PubMed  CAS  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31(13):3406–3415

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Sciences Foundation of China (No. 30872043), the National TCM Project Application in the 11th Five-Year Plan in China (No. 2006BAD01A15-2) and the Doctor Foundation of Ministry of Education of China (No. 20070022003). We thank Dr. Wan Hong Yang from Nanyang Technological University in Singapore for paper revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyi Zhang.

Additional information

Communicated by R. Hagemann.

H. Zheng and S. Lin contributed equally to this work.

The GenBank accession numbers for the triploid white poplar PtDrl02 genomic and promoter sequences are DQ324361 and EF424611, respectively.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1 (DOC 96 kb)

Supplementary Table 2 (DOC 95 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, H., Lin, S., Zhang, Q. et al. Functional analysis of 5′ untranslated region of a TIR-NBS-encoding gene from triploid white poplar. Mol Genet Genomics 282, 381–394 (2009). https://doi.org/10.1007/s00438-009-0471-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-009-0471-5

Keywords

Navigation