Skip to main content
Log in

Annotation of a 95-kb Populus deltoides genomic sequence reveals a disease resistance gene cluster and novel class I and class II transposable elements

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Poplar has become a model system for functional genomics in woody plants. Here, we report the sequencing and annotation of the first large contiguous stretch of genomic sequence (95 kb) of poplar, corresponding to a bacterial artificial chromosome clone mapped 0.6 centiMorgan from the Melampsora larici-populina resistance locus. The annotation revealed 15 putative genetic objects, of which five were classified as hypothetical genes that were similar only with expressed sequence tags from poplar. Ten putative objects showed similarity with known genes, of which one was similar to a kinase. Three other objects corresponded to the toll/interleukin-1 receptor/nucleotide-binding site/leucine-rich repeat class of plant disease resistance genes, of which two were predicted to encode an amino terminal nuclear localization signal. Four objects were homologous to the Ty1/copia family of class I transposable elements, one of which was designated Retropop and interrupted one of the disease resistance genes. Two other objects constituted a novel Spm-like class II transposable element, which we designated Magali.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4A, B
Fig. 5

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Anderson PA, Lawrence GJ, Morrish BC, Ayliffe MA, Finnegan EJ, Ellis JG (1997) Inactivation of the flax rust resistance gene M associated with loss of a repeated unit within the leucine-rich repeat coding region. Plant Cell 9:641–651

    CAS  PubMed  Google Scholar 

  • Apweiler R, Attwood TK, Bairoch A, Bateman A, Birney E, Biswas M, Bucher P, Cerutti L, Corpet F, Croning MDR, Durbin R, Falquet L, Fleischmann W, Gouzy J, Hermjakob H, Hulo N, Jonassen I, Kahn D, Kanapin A, Karavidopoulou Y, Lopez R, Marx B, Mulder NJ, Oinn TM, Pagni M, Servant F, Sigrist CJA, Zdobnov EM (2001) InterPro—an integrated documentation resource for protein families, domains and functional sites. Bioinformatics 16:1145–1150

    Google Scholar 

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    PubMed  Google Scholar 

  • Bauer Z, Gómez-Gómez L, Boller T, Felix G (2001) Sensitivity of different ecotypes and mutants of Arabidopsis thaliana toward the bacterial elicitor flagellin correlates with the presence of receptor-binding sites. J Biol Chem 276:45669–45676

    Article  CAS  PubMed  Google Scholar 

  • Bent AF (1996) Plant disease resistance genes: function meets structure. Plant Cell 8:1757–1771

    CAS  Google Scholar 

  • Bergelson J, Kreitman M, Stahl EA, Tian D (2001) Evolutionary dynamics of plant R-genes. Science 292:2281–2285

    Article  CAS  PubMed  Google Scholar 

  • Bevan M, Bancroft I, Bent E, Love K, Goodman H, Dean C, Bergkamp R, Dirkse W, Van Staveren M, Stiekema W, Drost L, Ridley P, Hudson S-A, Patel K, Murphy G, Piffanelli P, Wedler H, Wedler E, Wambutt R, Weitzenegger T, Pohl T, Terryn N, Gielen J, Villarroel R, De Clerck R, Van Montagu M, Lecharny A, Auborg S, Gy I, Kreis M, Lao N, Kavanagh T, Hempel S, Kotter P, Entian K-D, Rieger M, Schaeffer M, Funk B, Mueller-Auer S, Silvey M, James R, Montfort A, Pons A, Puigdomenech P, Douka A, Voukelatou E, Milioni D, Hatzopoulos P, Piravandi E, Obermaier B, Hilbert H, Düsterhöft A, Moores T, Jones JDG, Eneva T, Palme K, Benes V, Rechman S, Ansorge W, Cooke R, Berger C, Delseny M, Voet M, Volckaert G, Mewes H-W, Schueller C, Chalwatzis N (1998) Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature 391:485–488

    Article  CAS  PubMed  Google Scholar 

  • Bradshaw HDJ, Ceulemans R, Davis J, Stettler R (2000) Emerging model systems in plant biology: poplar (Populus) as a model forest tree. J Plant Growth Regul 19:306–313

    CAS  Google Scholar 

  • Brunner AM, Rottmann WH, Sheppard LA, Krutovskii K, DiFazio SP, Leonardi S, Strauss SH (2000) Structure and expression of duplicate AGAMOUS orthologues in poplar. Plant Mol Biol 44:619–634

    Article  CAS  PubMed  Google Scholar 

  • Cannon SB, Zhu H, Baumgarten AM, Spangler R, May G, Cook DR, Young ND (2002) Diversity, distribution, and ancient taxonomic relationships within the TIR and non-TIR NBS-LRR resistance gene subfamilies. J Mol Evol 54:548–562

    Article  CAS  PubMed  Google Scholar 

  • Casacuberta JM, Grandbastien M-A (1993) Characterisation of LTR sequences involved in the protoplast specific expression of the tobacco Tnt1 retrotransposon. Nucleic Acids Res 21:2087–2093

    CAS  PubMed  Google Scholar 

  • Cervera M-T, Gusmão J, Steenackers M, Peleman J, Storme V, Vanden Broeck A, Van Montagu M, Boerjan W (1996) Identification of AFLP molecular markers for resistance againstMelampsora larici-populina inPopulus. Theor Appl Genet 93:733–737

    CAS  Google Scholar 

  • Cervera M-T, Storme V, Ivens B, Gusmão J, Liu BH, Hostyn V, Van Slycken J, Van Montagu M, Boerjan W (2001) Dense genetic linkage maps of three Populus species (Populus deltoides, P. nigra and P. trichocarpa) based on AFLP and microsatellite markers. Genetics 158:787–809

    CAS  PubMed  Google Scholar 

  • Deslandes L, Olivier J, Peeters N, Feng DX, Khounlotham M, Boucher C, Somssich I, Genin S, Marco Y (2003) Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proc Natl Acad Sci USA 100:8024–8029

    Article  CAS  PubMed  Google Scholar 

  • Ellis J, Dodds P, Pryor T (2000) Structure, function and evolution of plant disease resistance genes. Curr Opin Plant Biol 3:278–284

    CAS  PubMed  Google Scholar 

  • Ewing B, Green P (1998) Base-calling of automated sequencer traces using Phred. II. Error probabilities. Genome Res 8:186–194

    CAS  PubMed  Google Scholar 

  • Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using Phred. I. Accuracy assessment. Genome Res 8:175–185

    CAS  PubMed  Google Scholar 

  • Feschotte C, Jiang N, Wessler SR (2002) Plant transposable elements: where genetics meets genomics. Nat Rev Genet 3:329–341

    CAS  PubMed  Google Scholar 

  • Fluhr R (2001) Sentinels of disease. Plant resistance genes. Plant Physiol 127:1367–1374

    CAS  PubMed  Google Scholar 

  • Frey M, Reinecke J, Grant S, Saedler H, Gierl A (1990) Excision of the En/Spm transposable element of Zea mays requires two element-encoded proteins. EMBO J 9:4037–4044

    CAS  PubMed  Google Scholar 

  • Gierl A, Saedler H, Peterson PA (1989) Maize transposable elements. Annu Rev Genet 23:71–85

    Google Scholar 

  • Goff SA, Ricke D, Lan T-H, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun W-l, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100

    CAS  PubMed  Google Scholar 

  • Hehl R, Faurie E, Hesselbach J, Salamini F, Whitham S, Baker B, Gebhardt C (1999) TMV resistance gene N homologues are linked to Synchytrium endobioticum resistance in potato. Theor Appl Genet 98:379–386

    Google Scholar 

  • Jones DA, Jones JDG (1997) The role of leucine-rich repeat proteins in plant defences. Adv Bot Res 24:89–167

    Google Scholar 

  • Kelley JM, Field CE, Craven MB, Bocskai D, Kim U-J, Rounsley SD, Adams MD (1999) High throughput direct end sequencing of BAC clones. Nucleic Acids Res 27:1539–1546

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Bennetzen JL (1999) Plant retrotransposons. Annu Rev Genet 33:479–532

    CAS  PubMed  Google Scholar 

  • Kurtz S, Schleiermacher C (1999) REPuter: fast computation of maximal repeats in complete genomes. Bioinformatics 15:426–427

    Google Scholar 

  • Lahaye T (2002) The Arabidopsis RRS1-R disease resistance gene—uncovering the plant’s nucleus as the new battlefield of plant defense? Trends Plant Sci 7:425–427

    Article  CAS  PubMed  Google Scholar 

  • Lefèvre D, Goué-Mourier MC, Faivre-Rampant P, Villar M (1998) A single gene cluster controls incompatibility and partial resistance to various Melampsora larici-populina races in hybrid poplars. Phytopathology 88:156–163

    Google Scholar 

  • Lefèvre F, Pichot C, Pinon J (1994) Intra- and interspecific inheritance of some components of the resistance to leaf rust (Melampsora larici-populina Kleb.) in poplars. Theor Appl Genet 88:501–507

    Google Scholar 

  • Leister RT, Katagiri F (2000) A resistance gene product of the nucleotide binding site—leucine rich repeats class can form a complex with bacterial avirulence proteins in vivo. Plant J 22:345–354

    CAS  PubMed  Google Scholar 

  • Lescot M, Déhais P, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    Article  CAS  PubMed  Google Scholar 

  • Lukashin AV, Borodovsky M (1998) GeneMark.hmm: new solutions for gene finding. Nucleic Acids Res 26:1107–1115

    CAS  PubMed  Google Scholar 

  • Mathé C, Sagot M-F, Schiex T, Rouzé P (2002) Current methods of gene prediction, their strengths and weaknesses. Nucleic Acids Res 30:4103–4117

    Article  CAS  PubMed  Google Scholar 

  • Mellerowicz EJ, Baucher M, Sundberg B, Boerjan W (2001) Unravelling cell wall formation in the woody dicot stem. Plant Mol Biol 47:239–247

    Article  CAS  PubMed  Google Scholar 

  • Meyers BC, Dickerman AW, Michelmore RW, Siravamakrishnan S, Sobral BW, Young ND (1999) Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J 20:317–332

    Article  CAS  PubMed  Google Scholar 

  • Mikami K, Katagiri T, Iuchi S, Yamaguchi-Shinozaki K, Shinozaki K (1998) A gene encoding phosphatidylinositol-4-phosphate 5-kinase is induced by water stress and abscisic acid in Arabidopsis thaliana. Plant J 15:563–568

    Article  CAS  PubMed  Google Scholar 

  • Mott R (1997) EST_GENOME: a program to align spliced DNA sequences to unspliced genomic DNA. Comput Appl Biosci 13:477–478

    Google Scholar 

  • Nacken WKF, Piotrowiak R, Saedler H, Sommer H (1991) The transposable element Tam1 from Antirrhinum majus shows structural homology to the maize transposon En/Spm and has no sequence specificity of insertion. Mol Gen Genet 228:201–208

    CAS  PubMed  Google Scholar 

  • Newcombe G, Bradshaw HD Jr (1996) Quantitative trait loci conferring resistance in hybrid poplar to Septoria populicola, the cause of leaf spot. Can J For Res 26:1943–1950

    Google Scholar 

  • Newcombe G, Bradshaw HD Jr, Chastagner GA, Stettler RF (1996) A major gene for resistance to Melampsora medusae f. sp. deltoidae in a hybrid poplar pedigree. Phytopathology 86:87–94

    CAS  Google Scholar 

  • Nicholas KB, Nicholas HB Jr, Deerfield DWI (1997) GeneDoc: analysis and visualization of genetic variation. EMBnet.news 4 (http://www.ebi.ac.uk/embnet.news/vol4_2)

  • Pan Q, Wendel J, Fluhr R (2000) Divergent evolution of plant NBS-LRR resistance gene homologues in dicot and cereal genomes. J Mol Evol 50:203–213

    CAS  PubMed  Google Scholar 

  • Parker JE, Coleman MJ, Szabò V, Frost LN, Schmidt R, van der Biezen EA, Moores T, Dean C, Daniels MJ, Jones JDG (1997) The Arabidopsis downy mildew resistance gene RPP5 shares similarity to the Toll and interleukin-1 receptors with N and L6. Plant Cell 9:879–894

    CAS  PubMed  Google Scholar 

  • Pavy N, Rombauts S, Déhais P, Mathé C, Ramana DVV, Leroy P, Rouzé P (1999) Evaluation of gene prediction software using a genomic data set: application of Arabidopsis thaliana sequences. Bioinformatics 15:887–899

    Google Scholar 

  • Pinon J, van Dam BC, Genetet I, de Kam M (1987) Two pathogenic races of Melampsora larici-populina in north-western Europe. Eur J For Pathol 17:47–53

    Google Scholar 

  • Qureshi ST, Gros P, Malo D (1999) Host resistance to infection: genetic control of lipopolysaccharide responsiveness by TOLL-like receptor genes. Trends Genet 15:291–294

    Article  CAS  PubMed  Google Scholar 

  • Raes J, Van de Peer Y (1999) ForCon: a software tool for the conversion of sequence alignments. EMBnet.news 6 (http://www.ebi.ac.uk/embnet.news/vol6_1)

  • Richter TE, Ronald PC (2000) The evolution of disease resistance genes. Plant Mol Biol 42:195–204

    CAS  PubMed  Google Scholar 

  • Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream M-A, Barrell B (2000) Artemis: sequence visualization and annotation. Bioinformatics 16:944–945

    Google Scholar 

  • Rychlik W (1989) OLIGO version 4.0: reference manual. National Biosciences, Plymouth, Min.

  • Salamov AA, Solovyev VV (2000) Ab initio gene finding in Drosophila genomic DNA. Genome Res 10:516–522

    Google Scholar 

  • Salzberg SL, Pertea M, Delcher AL, Gardner MJ, Tettelin H (1999) Interpolated Markov models for eukaryotic gene finding. Genomics 59:24–31

    Article  CAS  PubMed  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    PubMed  Google Scholar 

  • Schiex T, Moisan A, Rouzé P (2001) EuGène: an eukaryotic gene finder that combines several sources of evidence. Lect Notes Comput Sci 2066:111–125

    Google Scholar 

  • Snowden KC, Napoli CA (1998) Psl: a novelSpm-like transposable element from Petunia hybrida. Plant J 14:43–54

    Article  CAS  PubMed  Google Scholar 

  • Solovyev VV, Zharkikh AA, Kolchanov NA (1985) Context analysis of polynucleotide sequences. Methods of detecting non-random repeats. I. Direct repeats in genes of β, β′, σ subunits of Escherichia coli RNA-polymerase (in Russian). Mol Biol (Mosk) 19:524–536

    Google Scholar 

  • Song W-Y, Pi L-L, Wang G-L, Gardner J, Holsten T, Ronald PC (1997) Evolution of the riceXa21 disease resistance gene family. Plant Cell 9:1279–1287

    CAS  PubMed  Google Scholar 

  • Sonnhammer ELL, Durbin R (1995) A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. Gene 167:GC1–GC10

    CAS  PubMed  Google Scholar 

  • Sterky F, Regan S, Karlsson J, Hertzberg M, Rohde A, Holmberg A, Amini B, Bhalerao R, Larsson M, Villarroel R, Van Montagu M, Sandberg G, Olsson O, Teeri TT, Boerjan W, Gustafsson P, Uhlén M, Sundberg B, Lundeberg J (1998) Gene discovery in the wood-forming tissues of poplar: analysis of 5692 expressed sequence tags. Proc Natl Acad Sci USA 95:13330–13335

    CAS  PubMed  Google Scholar 

  • Stettler RF, Bradshaw HD Jr, Heilman PE, Hinckley TM (1996) Biology of Populus and its implications for management and conservation. National Research Council of Canada, Ottawa

  • Stirling B, Newcombe G, Vrebalov J, Bosdet I, Bradshaw HD Jr (2001) Suppressed recombination around the MXC3 locus, a major gene for resistance to poplar leaf rust. Theor Appl Genet 103:1129–1137

    CAS  Google Scholar 

  • Stirling B, Yang ZK, Gunter LE, Tuskan GA, Bradshaw HD Jr (2003) Comparative sequence analysis between orthologous regions of the Arabidopsis and Populus genomes reveals substantial synteny and microcollinearity. Can J For Res 33:2245–2251

    Article  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    CAS  PubMed  Google Scholar 

  • Turcotte K, Srinivasan S, Bureau T (2001) Survey of transposable elements from rice genomic sequences. Plant J 25:169–179

    CAS  PubMed  Google Scholar 

  • Tuskan GA, Wullschleger SD, Bradshaw HD, Dalhman RC (2002) Sequencing the Populus genome: applications to the energy-related missions of DOE. Abstr Plant Anim Microbe Genomes Conf 2002:10

    Google Scholar 

  • van der Biezen EA, Freddie CT, Kahn K, Parker JE, Jones JD (2002) Arabidopsis RPP4 is a member of the RPP5 multigene family of TIR-NB-LRR genes and confers downy mildew resistance through multiple signalling components. Plant J 29:439–451

    Article  PubMed  Google Scholar 

  • Verriès C, Bès C, This P, Tesnière C (2000) Cloning and characterization of Vine-1, a LTR-retrotransposon-like element in Vitis vinifera L., and other Vitisspecies. Genome 43:366–376

    PubMed  Google Scholar 

  • Voytas DF, Cummings MP, Konieczny A, Ausubel FM, Rodermel SR (1992) copia-like retrotransposons are ubiquitous among plants. Proc Natl Acad Sci USA 89:7124–7128

    CAS  PubMed  Google Scholar 

  • White SE, Habera LF, Wessler SR (1994) Retrotransposons in the flanking regions of normal plant genes: a role for copia-like elements in the evolution of gene structure and expression. Proc Natl Acad Sci USA 91:11792–11796

    CAS  PubMed  Google Scholar 

  • Whitham S, Dinesh-Kumar SP, Choi D, Hehl R, Corr C, Baker B (1994) The product of the tobacco mosaic virus resistance gene N: similarity to Toll and the interleukin-1 receptor. Cell 78:1101–1115

    CAS  PubMed  Google Scholar 

  • Zhang J, Steenackers M, Storme V, Neyrinck S, Van Montagu M, Gerats T, Boerjan W (2001) Fine mapping and identification of nucleotide-binding site/leucine-rich repeat sequences at the MER locus in Populus deltoides ‘S9-2’. Phytopathology 91:1069–1073

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Jan Gielen, Wilson Ardiles-Diaz, and Raimundo Villarroel for sequencing BAC 60I2 and full-length cDNAs, Patrice Déhais for computer assistance, Marc Van Montagu, Nancy Terryn, Jeroen Raes, and Peter De Keukeleire for helpful discussions, and Martine De Cock for help in preparing the manuscript. This research was supported by grants from the IWT-STWW (980396), the Geconcerteerde Onderzoeksacties (Mefisto-666), OSTC IUAP P4-02, the Flemish government (BN0//BB/2000), and the European Union (POPYOMICS QLK-CT-2002-00953).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Rouzé.

Additional information

Communicated by D.B. Neale

M.L. and S.R. contributed equally to this article

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lescot, M., Rombauts, S., Zhang, J. et al. Annotation of a 95-kb Populus deltoides genomic sequence reveals a disease resistance gene cluster and novel class I and class II transposable elements. Theor Appl Genet 109, 10–22 (2004). https://doi.org/10.1007/s00122-004-1621-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-004-1621-0

Keywords

Navigation