Skip to main content
Log in

Cestodes in the genomic era

  • Helminthology - Review
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The first cestode genomes were obtained by an international consortium led by the Wellcome Sanger Institute that included representative institutions from countries where the sequenced parasites have been studied for decades, in part because they are etiological agents of endemic diseases (Argentina, Uruguay, Mexico, Canada, UK, Germany, Switzerland, Ireland, USA, Japan, and China). After this, several complete genomes were obtained reaching 16 species to date. Cestode genomes have smaller relative size compared to other animals including free-living flatworms. Moreover, the features genome size and repeat content seem to differ in the two analyzed orders. Cyclophyllidean species have smaller genomes and with fewer repetitive content than Diphyllobothriidean species. On average, cestode genomes have 13,753 genes with 6 exons per gene and 41% GC content. More than 5,000 shared cestode proteins were accurately annotated by the integration of gene predictions and transcriptome evidence being more than 40% of these proteins of unknown function. Several gene losses and reduction of gene families were found and could be related to the extreme parasitic lifestyle of these species. The application of cutting-edge sequencing technology allowed the characterization of the terminal sequences of chromosomes that possess unique characteristics. Here, we review the current status of knowledge of complete cestode genomes and place it within a comparative genomics perspective. Multidisciplinary work together with the implementation of new technologies will provide valuable information that can certainly improve our chances to finally eradicate or at least control diseases caused by cestodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

adapted from Maldonado et al. (2017)

Similar content being viewed by others

References

  • Ai L, Xu MJ, Chen MX, Zhang YN, Chen SH, Guo J, Cai YC, Zhou XN, Zhu XQ, Chen JX (2012) Characterization of microRNAs in Taenia saginata of zoonotic significance by Solexa deep sequencing and bioinformatics analysis. Parasitol Res 110(6):2373–2378

    Article  CAS  PubMed  Google Scholar 

  • Ai L, Chen MX, Zhang YN, Chen SH, Zhou XN, Chen JX (2014) Comparative analysis of the miRNA profiles from Taenia solium and Taenia asiatica adult. Afr J Microbiol Res 8(9):895–902

    Article  Google Scholar 

  • Allen MA, Hillier LW, Waterston RH, Blumenthal T (2011) A global analysis of C elegans trans-splicing. Genome Res. 21(2):255–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arrabal JP, Avila HG, Rivero MR, Camicia F, Salas MM, Costa SA, Nocera CG, Rosenzvit MC, Kamenetzky L (2017) Echinococcus oligarthrus in the subtropical region of Argentina: First integration of morphological and molecular analyses determines two distinct populations. Vet Parasitol 240:60–67

    Article  CAS  PubMed  Google Scholar 

  • Bai Y, Zhang Z, Jin L, Kang H, Zhu Y, Zhang L, Li X, Ma F, Zhao L, Shi B, Li J, McManus DP, Zhang W, Wang S (2014) Genome-wide sequencing of small RNAs reveals a tissue-specific loss of conserved microRNA families in Echinococcus granulosus. BMC Genom 15(1):736

    Article  Google Scholar 

  • Barrios AA, Grezzi L, Miles S, Mariconti M, Mourglia-Ettlin G, Seoane PI, Díaz A (2019) Inefficient and abortive classical complement pathway activation by the calcium inositol hexakisphosphate component of the Echinococcus granulosus laminated layer. Immunobiology 224(5):710–719

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP (2018) Metazoan MicroRNAs. Cell 173(1):20–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basika T, Macchiaroli N, Cucher M, Espínola S, Kamenetzky L, Zaha A, Rosenzvit M, Ferreira HB (2016) Identification and profiling of microRNAs in two developmental stages of the model cestode parasite Mesocestoides corti. Mol Biochem Parasitol 210(1–2):37–49

    Article  CAS  PubMed  Google Scholar 

  • Bennett HM, Mok HP, Gkrania-Klotsas E, Tsai IJ, Stanley EJ, Antoun NM, Coghlan A, Harsha B, Traini A, Ribeiro DM, Steinbiss S, Lucas SB, Allinson KS, Price SJ, Santarius TS, Carmichael AJ, Chiodini PL, Holroyd N, Dean AF, Berriman M (2014) The genome of the sparganosis tapeworm Spirometra erinaceieuropaei isolated from the biopsy of a migrating brain lesion. Genome Biol 15(11):510

    Article  PubMed  PubMed Central  Google Scholar 

  • Berriman M, Haas BJ, LoVerde PT et al (2009) The genome of the blood fluke Schistosoma mansoni. Nature 460(7253):352–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brehm K, Koziol U (2017) Echinococcus-host interactions at cellular and molecular levels. Adv Parasitol 95:147–212

    Article  CAS  PubMed  Google Scholar 

  • Brehm K, Jensen K, Frosch M (2000a) mRNA trans-splicing in the human parasitic cestode Echinococcus multilocularis. J Biol Chem 275(49):38311–38318

    Article  CAS  PubMed  Google Scholar 

  • Brehm K, Kronthaler K, Jura H, Frosch M (2000b) Cloning and characterization of beta-tubulin genes from Echinococcus multilocularis. Mol Biochem Parasitol 107(2):297–302

    Article  CAS  PubMed  Google Scholar 

  • Cai P, Gobert GN, McManus DP (2016) MicroRNAs in parasitic helminthiases: current status and future perspectives. Trends Parasitol 32(1):71–86

    Article  CAS  PubMed  Google Scholar 

  • Caira JN, Jensen K, Georgiev BB, Kuchta R, Littlewood DTJ, Mariaux J, Scholz T, Tkach VV, Waeschenbach A (2017) An overview of tapeworms from vertebrate bowels of the Earth. In: Caira JN, Jensen K (eds) Planetary Biodiversity Inventory (2008–2017): tapeworms from Vertebrate Bowels of the EarthNatural History Museum. University of Kansas, Lawrence, pp 1–20

    Google Scholar 

  • Cheng G, Cohen L, Ndegwa D, Davis RE (2006) The flatworm spliced leader 3’-terminal AUG as a translation initiator methionine. J Biol Chem 281(2):733–743

    Article  CAS  PubMed  Google Scholar 

  • Coakley G, Maizels RM, Buck AH (2015) Exosomes and Other extracellular vesicles: the new communicators in parasite infections. Trends Parasitol 31(10):477–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cucher M, Macchiaroli N, Kamenetzky L, Maldonado L, Brehm K, Rosenzvit MC (2015) High-throughput characterization of Echinococcus spp. metacestode miRNomes. Int J Parasitol 45(4):253–67

    Article  CAS  PubMed  Google Scholar 

  • Cucher MA, Macchiaroli N, Baldi G, Camicia F, Prada L, Maldonado L, Avila HG, Fox A, Gutiérrez A, Negro P, López R, Jensen O, Rosenzvit M, Kamenetzky L (2016) Cystic echinococcosis in South America: systematic review of species and genotypes of Echinococcus granulosus sensu lato in humans and natural domestic hosts. Trop Med Int Health 21(2):166–175

    Article  PubMed  Google Scholar 

  • Cucher MA, Ancarola ME, Kamenetzky L (2021) The challenging world of extracellular RNAs of helminth parasites. Mol Immunol 134:150–160

    Article  CAS  PubMed  Google Scholar 

  • Dissous C, Ahier A, Khayath N (2007) Protein tyrosine kinases as new potential targets against human schistosomiasis. BioEssays 29(12):1281–1288

    Article  CAS  PubMed  Google Scholar 

  • Fontenla S, Rinaldi G, Smircich P, Tort JF (2017) Conservation and diversification of small RNA pathways within flatworms. BMC Evol Biol 17(1):215

    Article  PubMed  PubMed Central  Google Scholar 

  • Frayha GJ (1968) A study of the synthesis and absorption of cholesterol in hydatid cysts (Echinococcus granulosus). Comp Biochem Physiol 27(3):875–878

    Article  CAS  PubMed  Google Scholar 

  • Fromm B, Worren MM, Hahn C, Hovig E, Bachmann L (2013) Substantial loss of conserved and gain of novel MicroRNA families in flatworms. Mol Biol Evol 30(12):2619–2628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fromm B, Domanska D, Høye E, Ovchinnikov V, Kang W, Aparicio-Puerta E, Johansen M, Flatmark K, Mathelier A, Hovig E, Hackenberg M, Friedländer MR, Peterson KJ (2020) MirGeneDB 2.0: the metazoan microRNA complement. Nucleic Acids Res 48(D1):D132–D141

    Article  CAS  PubMed  Google Scholar 

  • Gauci CG, Alvarez Rojas CA, Chow C, Lightowlers MW (2018) Limitations of the Echinococcus granulosus genome sequence assemblies for analysis of the gene family encoding the EG95 vaccine antigen. Parasitology 145(6):807–813

    Article  CAS  PubMed  Google Scholar 

  • Gelmedin V, Caballero-Gamiz R, Brehm K (2008) Characterization and inhibition of a p38-like mitogen-activated protein kinase (MAPK) from Echinococcus multilocularis: antiparasitic activities of p38 MAPK inhibitors. Biochem Pharmacol 76(9):1068–1081

    Article  CAS  PubMed  Google Scholar 

  • Goffeau A, Barrell BG, Bussey H et al (1996) Life with 6000 genes. Science 274(546):563–567

    Google Scholar 

  • Grohme MA, Schloissnig S, Rozanski A, Pippel M, Young GR, Winkler S, Brandl H, Henry I, Dahl A, Powell S, Hiller M, Myers E, Rink JC (2018) The genome of Schmidtea mediterranea and the evolution of core cellular mechanisms. Nature 554(7690):56–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo X, Zheng Y (2018) Identification and characterization of microRNAs in a cestode Hydatigera taeniaeformis using deep sequencing approach. Expl Parasitol 194:32–37

    Article  CAS  Google Scholar 

  • Howe KL, Bolt BJ, Shafie M, Kersey P, Berriman M (2017) WormBase ParaSite - a comprehensive resource for helminth genomics. Mol Biochem Parasitol 215:2–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang F, Dang Z, Suzuki Y, Horiuchi T, Yagi K, Kouguchi H, Irie T, Kim K, Oku Y (2016) Analysis on gene expression profile in oncospheres and early stage metacestodes from Echinococcus multilocularis.. PLoS Negl Trop Dis 10(4):e0004634

    Article  PubMed  PubMed Central  Google Scholar 

  • International Helminth Genomes Consortium (2019) Comparative genomics of the major parasitic worms. Nat Genet 51(1):163–174

    Article  CAS  Google Scholar 

  • International Molecular Helminthology Annotation Network (IMHAN), Palevich N, Britton C, Kamenetzky L, Mitreva M, de Moraes MM, Bennuru S, Quack T, Scholte LLS, Tyagi R, Slatko BE (2018) Tackling hypotheticals in helminth genomes. Trends Parasitol 34(3):179–183

    Article  Google Scholar 

  • Jin X, Lu L, Su H, Lou Z, Wang F, Zheng Y, Xu GT (2013) Comparative analysis of known miRNAs across platyhelminths. FEBS J 280(16):3944–3951

    Article  CAS  PubMed  Google Scholar 

  • Kamenetzky L, Muzulin PM, Gutierrez AM, Angel SO, Zaha A, Guarnera EA, Rosenzvit MC (2005) High polymorphism in genes encoding antigen B from human infecting strains of Echinococcus granulosus. Parasitology 131(Pt 6):805–815

    Article  CAS  PubMed  Google Scholar 

  • Kamenetzky L, Stegmayer G, Maldonado L, Macchiaroli N, Yones C, Milone DH (2016) MicroRNA discovery in the human parasite Echinococcus multilocularis from genome-wide data. Genomics 107(6):274–280

    Article  CAS  PubMed  Google Scholar 

  • Kim DW, Yoo WG, Lee MR, Yang HW, Kim YJ, Cho SH, Lee WJ, Ju JW (2014) Transcriptome sequencing and analysis of the zoonotic parasite Spirometra erinacei spargana (plerocercoids). Parasit Vectors 15(7):368

    Article  Google Scholar 

  • Kinkar L, Korhonen PK, Cai H, Gauci CG, Lightowlers MW, Saarma U, Jenkins DJ, Li J, Li J, Young ND, Gasser RB (2019) Long-read sequencing reveals a 4.4 kb tandem repeat region in the mitogenome of Echinococcus granulosus (sensu stricto) genotype G1. Parasit Vectors 12(1):238

    Article  PubMed  PubMed Central  Google Scholar 

  • Koziol U, Jarero F, Olson PD, Brehm K (2016) Comparative analysis of Wnt expression identifies a highly conserved developmental transition in flatworms. BMC Biol 14:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuchta R, Scholz T, Brabec J, Bray RA (2008) Suppression of the tapeworm order Pseudophyllidea (Platyhelminthes: Eucestoda) and the proposal of two new orders, Bothriocephalidea and Diphyllobothriidea. Int J Parasitol 38:49–55

    Article  CAS  PubMed  Google Scholar 

  • Landa A, Navarro L, Ochoa-Sánchez A, Jiménez L (2019) Taenia solium and Taenia crassiceps: miRNomes of the larvae and effects of miR-10-5p and let-7-5p on murine peritoneal macrophages. Biosci Rep 39(11):BSR20190152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landman SR, Hwang TH, Silverstein KA, Li Y, Dehm SM, Steinbach M, Kumar V (2014) SHEAR: sample heterogeneity estimation and assembly by reference. BMC Genomics 15(1):84

    Article  PubMed  PubMed Central  Google Scholar 

  • Le TH, Blair D, Agatsuma T, Humair PF, Campbell NJ, Iwagami M, Littlewood DT, Peacock B, Johnston DA, Bartley J, Rollinson D, Herniou EA, Zarlenga DS, McManus DP (2000) Phylogenies inferred from mitochondrial gene orders-a cautionary tale from the parasitic flatworms. Mol Biol Evol 17(7):1123–1125

    Article  CAS  PubMed  Google Scholar 

  • Le TH, Pearson MS, Blair D, Dai N, Zhang LH, McManus DP (2002) Complete mitochondrial genomes confirm the distinctiveness of the horse-dog and sheep-dog strains of Echinococcus granulosus. Parasitology 124(Pt 1):97–112

    Article  CAS  PubMed  Google Scholar 

  • Li W, Liu B, Yang Y, Ren Y, Wang S, Liu C, Zhang N, Qu Z, Yang W, Zhang Y, Yan H, Jiang F, Li L, Li S, Jia W, Yin H, Cai X, Liu T, McManus DP, Fan W, Fu B (2018) The genome of tapeworm Taenia multiceps sheds light on understanding parasitic mechanism and control of coenurosis disease. DNA Res 25(5):499–510

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang P, Mao L, Zhang S, Guo X, Liu G, Wang L, Hou J, Zheng Y, Luo X (2019) Identification and molecular characterization of exosome-like vesicles derived from the Taenia asiatica adult worm. Acta Trop 198:105036

    Article  CAS  PubMed  Google Scholar 

  • Logsdon GA, Vollger MR, Hsieh P et al (2021) The structure, function and evolution of a complete human chromosome 8. Nature 593:101–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macchiaroli N, Cucher M, Zarowiecki M, Maldonado L, Kamenetzky L, Rosenzvit MC (2015) microRNA profiling in the zoonotic parasite Echinococcus canadensis using a high-throughput approach. Parasit Vectors 8:83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macchiaroli N, Maldonado LL, Zarowiecki M, Cucher M, Gismondi MI, Kamenetzky L, Rosenzvit MC (2017) Genome-wide identification of microRNA targets in the neglected disease pathogens of the genus Echinococcus. Mol Biochem Parasitol 214:91–100

    Article  CAS  PubMed  Google Scholar 

  • Macchiaroli N, Cucher M, Kamenetzky L, Yones C, Bugnon L, Berriman M, Olson PD, Rosenzvit MC (2019) Identification and expression profiling of microRNAs in Hymenolepis. Int J Parasitol 49(3–4):211–223

    Article  CAS  PubMed  Google Scholar 

  • Maldonado LL, Assis J, Araújo FM, Salim AC, Macchiaroli N, Cucher M, Camicia F, Fox A, Rosenzvit M, Oliveira G, Kamenetzky L (2017) The Echinococcus canadensis (G7) genome: a key knowledge of parasitic platyhelminth human diseases. BMC Genomics 18:204

    Article  PubMed  PubMed Central  Google Scholar 

  • Maldonado LL, Arrabal JP, Rosenzvit MC, Oliveira GC, Kamenetzky L (2019) Revisiting the Phylogenetic History of Helminths Through Genomics, the Case of the New Echinococcus oligarthrus Genome. Front Genet 10:708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumoto J, Sakamoto K, Shinjyo N, Kido Y, Yamamoto N, Yagi K, Miyoshi H, Nonaka N, Katakura K, Kita K, Oku Y (2008) Anaerobic NADH-fumarate reductase system is predominant in the respiratory chain of Echinococcus multilocularis, providing a novel target for the chemotherapy of alveolar echinococcosis. Antimicrob Agents Chemother 52(1):164–170

    Article  CAS  PubMed  Google Scholar 

  • McManus DP (2006) Molecular discrimination of taeniid cestodes. Parasitol Int. 55(Suppl):S31-7

    Article  CAS  PubMed  Google Scholar 

  • McManus DP, Le TH, Blair D (2004) Genomics of parasitic flatworms. Int J Parasitol 34(2):153–158

    Article  CAS  PubMed  Google Scholar 

  • Nakao M, Yokoyama N, Sako Y, Fukunaga M, Ito A (2002) The complete mitochondrial DNA sequence of the cestode Echinococcus multilocularis (Cyclophyllidea: Taeniidae). Mitochondrion 1(6):497–509

    Article  CAS  PubMed  Google Scholar 

  • Nakao M, McManus DP, Schantz PM, Craig PS, Ito A (2007) A molecular phylogeny of the genus Echinococcus inferred from complete mitochondrial genomes. Parasitology 134(Pt 5):713–722

    CAS  PubMed  Google Scholar 

  • Nakao M, Yanagida T, Okamoto M, Knapp J, Nkouawa A, Sako Y, Ito A (2010) State-of-the-art Echinococcus and Taenia: phylogenetic taxonomy of human-pathogenic tapeworms and its application to molecular diagnosis. Infect Genet Evol 10(4):444–452

    Article  CAS  PubMed  Google Scholar 

  • Nakao M, Yanagida T, Konyaev S, Lavikainen A, Odnokurtsev VA, Zaikov VA, Ito A (2013) Mitochondrial phylogeny of the genus Echinococcus (Cestoda: Taeniidae) with emphasis on relationships among Echinococcus canadensis genotypes. Parasitology 140(13):1625–1636

    Article  CAS  PubMed  Google Scholar 

  • Nelson DR (2009) The cytochrome p450 homepage. Hum Genomics 4:59–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nowak RM, Jastrzębski JP, Kuśmirek W et al (2019) Hybrid de novo whole-genome assembly and annotation of the model tapeworm Hymenolepis diminuta. Sci Data 6:302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliver S, van der Aart Q, Agostoni-Carbone M et al (1992) The complete DNA sequence of yeast chromosome III. Nature 357:38–46

    Article  CAS  PubMed  Google Scholar 

  • Olson PD, Tkach VV (2005) Advances and trends in the molecular systematics of the parasitic Platyhelminthes. Adv Parasitol 60:165–243

    Article  PubMed  Google Scholar 

  • Olson PD, Poddubnaya LG, Littlewood DT, Scholz T (2008) On the position of Archigetes and its bearing on the early evolution of the tapeworms. J Parasitol 94(4):898–904

    Article  CAS  PubMed  Google Scholar 

  • Olson PD, Zarowiecki M, Kiss F, Brehm K (2012) Cestode genomics - progress and prospects for advancing basic and applied aspects of flatworm biology. Parasite Immunol 34(2–3):130–150

    Article  CAS  PubMed  Google Scholar 

  • Olson PD, Zarowiecki M, James K, Baillie A, Bartl G, Burchell P, Chellappoo A, Jarero F, Tan LY, Holroyd N, Berriman M (2018) Genome-wide transcriptome profiling and spatial expression analyses identify signals and switches of development in tapeworms. EvoDevo 9:21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olson PD, Tracey A, Baillie A et al (2020) Complete representation of a tapeworm genome reveals chromosomes capped by centromeres, necessitating a dual role in segregation and protection. BMC Biol 18:165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papaioannou VE (2014) The T-box gene family: emerging roles in development, stem cells and cancer. Development 141(20):3819–3833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parkinson J, Wasmuth JD, Salinas G, Bizarro CV, Sanford C, Berriman M, Ferreira HB, Zaha A, Blaxter ML, Maizels RM, Fernández C (2012) A transcriptomic analysis of Echinococcus granulosus larval stages: implications for parasite biology and host adaptation. PLoS Negl Trop Dis 6(11):e1897

    Article  PubMed  PubMed Central  Google Scholar 

  • Pérez MG, Macchiaroli N, Lichtenstein G, Conti G, Asurmendi S, Milone DH, Stegmayer G, Kamenetzky L, Cucher M, Rosenzvit MC (2017) microRNA analysis of Taenia crassiceps cysticerci under praziquantel treatment and genome-wide identification of Taenia solium miRNAs. Int J Parasitol 47(10–11):643–653

    Article  PubMed  Google Scholar 

  • Pérez MG, Spiliotis M, Rego N, Macchiaroli N, Kamenetzky L, Holroyd N, Cucher MA, Brehm K, Rosenzvit MC (2019) Deciphering the role of miR-71 in Echinococcus multilocularis early development in vitro. PLoS Negl Trop Dis 13(12):e0007932

    Article  PubMed  PubMed Central  Google Scholar 

  • Pórfido JL, Herz M, Kiss F, Kamenetzky L, Brehm K, Rosenzvit MC, Córsico B, Franchini GR (2020) Fatty acid-binding proteins in Echinococcus spp.: the family has grown. Parasitol Res 119(4):1401–1408

    Article  PubMed  Google Scholar 

  • Proffitt MR, Jones AW (1969) Chromosome analysis of Hymenolepis microstoma. Exp Parasitol 25(1):72–84

    Article  CAS  PubMed  Google Scholar 

  • Rhoads A, Au KF (2015) PacBio Sequencing and Its Applications. Genomics Proteomics Bioinformatics 13(5):278–289

    Article  PubMed  PubMed Central  Google Scholar 

  • Ritler D, Rufener R, Li JV et al (2019) In vitro metabolomic footprint of the Echinococcus multilocularis metacestode. Sci Rep 9:19438

    Article  PubMed  PubMed Central  Google Scholar 

  • Romig T, Ebi D, Wassermann M (2015) Taxonomy and molecular epidemiology of Echinococcus granulosus sensu lato. Vet Parasitol 213(3–4):76–84

    Article  CAS  PubMed  Google Scholar 

  • Sotillo J, Robinson MW, Kimber MJ, Cucher M, Ancarola ME, Nejsum P, Marcilla A, Eichenberger RM, Tritten L (2020) The protein and microRNA cargo of extracellular vesicles from parasitic helminths - current status and research priorities. Int J Parasitol 50(9):635–645

    Article  CAS  PubMed  Google Scholar 

  • Špakulová M, Orosová M, Mackiewicz JS (2011) Cytogenetics and Chromosomes of Tapeworms (Platyhelminthes, Cestoda), Chapter 3. In: Rollinson D, Hay SI (eds) Advances in Parasitology, vol 74. Academic Press, New York, pp 177–230

    Google Scholar 

  • Tandonnet S, Koutsovoulos GD, Adams S, Cloarec D, Parihar M, Blaxter ML, Pires da Silva A (2019) Chromosome-Wide Evolution and Sex Determination in the Three-Sexed Nematode Auanema rhodensis. G3 Genes Genomes Genetics 9(4):1211–1230

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai IJ, Zarowiecki M, Holroyd N et al (2013) The genomes of four tapeworm species reveal adaptations to parasitism. Nature 496(7443):57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vargas-Parada L, Solís CF, Laclette JP (2001) Heat shock and stress response of Taenia solium and T. crassiceps (Cestoda). Parasitology 122(Pt 5):583–8

    Article  CAS  PubMed  Google Scholar 

  • von Nickisch-Rosenegk M, Brown WM, Boore JL (2001) Complete sequence of the mitochondrial genome of the tapeworm Hymenolepis diminuta: gene arrangements indicate that Platyhelminths are Eutrochozoans. Mol Biol Evol 18(5):721–730

    Article  Google Scholar 

  • Wang S, Wang S, Luo Y et al (2016) Comparative genomics reveals adaptive evolution of Asian tapeworm in switching to a new intermediate host. Nat Commun 7:12845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood V, Lock A, Harris MA, Rutherford K, Bähler J, Oliver SG (2019) Hidden in plain sight: what remains to be discovered in the eukaryotic proteome? Open Biol 9(2):180241

    CAS  PubMed  Google Scholar 

  • Wu X, Fu Y, Yang D et al (2013) Identification of neglected cestode Taenia multiceps microRNAs by illumina sequencing and bioinformatic analysis. BMC Vet Res 9:162

    Article  PubMed  PubMed Central  Google Scholar 

  • Yap KW, Thompson RCA, Rood JI, Pawlowski ID (1987) Taenia hydatigena: Isolation of mitochondrial DNA, molecular cloning, and physical mitochondrial genome mapping. Exp Parasitol 63(3):288–294

    Article  CAS  PubMed  Google Scholar 

  • Zheng H, Zhang W, Zhang L et al (2013) The genome of the hydatid tapeworm Echinococcus granulosus. Nat Genet 45:1168–1175

    Article  CAS  PubMed  Google Scholar 

  • Zhou N, Jiang Y, Bergquist TR et al (2019) The CAFA challenge reports improved protein function prediction and new functional annotations for hundreds of genes through experimental screens. Genome Biol 20:244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nature Milestones: Genomic Sequencing (2021) https://www.nature.com/collections/genomic-sequencing-milestones. Accessed 1 June 2021

  • Schmidt GD, Roberts LS (2008) Foundations of Parasitology (8th Edition), Mcgraw Hill Higher Education Editorial p 701

  • Tielens AGM, Hellemond JJ van (2006) Unusual aspects of metabolism in flatworm parasites In: Maule AG, Marks NJ (eds) Parasitic flatworms: molecular biology, biochemistry, immunology and physiology. Wallingford, pp 387–407

Download references

Funding

This work was supported by Universidad de Buenos Aires, project UBACYT, 20020190100261BA (LK); Agencia Nacional de Promoción Científica y Tecnológica (ANPCYT) project PICT 2017–1376 (LK), and project PICT 2017 Nº 2062 (MC); Pérez Guerrero Trust Fund for South-South Cooperation (PGTF INT/19/K11) (MC) and the National Scientific and Technical Research Council (CONICET) (LK, MC, LM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Kamenetzky.

Ethics declarations

Competing interests

The authors declare no competing interests.

Data and materials availability

Not applicable

Code availability

Not applicable.

Additional information

Guest Editor: Anja Taubert

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamenetzky, L., Maldonado, L.L. & Cucher, M.A. Cestodes in the genomic era. Parasitol Res 121, 1077–1089 (2022). https://doi.org/10.1007/s00436-021-07346-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-021-07346-x

Keywords

Navigation