Skip to main content
Log in

Cloning and homologous characterization of geranylgeranyl pyrophosphate synthase (GGPPS) from Withania somnifera revealed alterations in metabolic flux towards gibberellic acid biosynthesis

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Overexpression of a novel geranylgeranyl pyrophosphate synthase gene (WsGGPPS) in planta resulted in increased levels of gibberellic acid and decrease in withanolide content.

Abstract

Withania somnifera (L.) Dunal, the herb from family Solanaceae is one of the most treasured medicinal plant used in traditional medicinal systems owing to its unique stockpile of pharmaceutically active secondary metabolites. Phytochemical and pharmacological studies in this plant were well established, but the genes affecting the regulation of biosynthesis of major metabolites were not well elucidated. In this study cloning and functional characterization of a key enzyme in terpenoid biosynthetic pathway viz. geranylgeranyl pyrophosphate synthase (EC 2.5.1.29) gene from Withania somnifera was performed. The full length WsGGPPS gene contained 1,104 base pairs that encode a polypeptide of 365 amino acids. The quantitative expression analysis suggested that WsGGPPS transcripts were expressed maximally in flower tissues followed by berry tissues. The expression levels of WsGGPPS were found to be regulated by methyl jasmonate (MeJA) and salicylic acid (SA). Amino acid sequence alignment and phylogenetic studies suggested that WsGGPPS had close similarities with GGPPS of Solanum tuberosum and Solanum pennellii. The structural analysis provided basic information about three dimensional features and physicochemical parameters of WsGGPPS protein. Overexpression of WsGGPPS in planta for its functional characterization suggested that the WsGGPPS was involved in gibberellic acid biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

DMAPP:

Dimethylallyl pyrophosphate

GA:

Gibberellic acid

MeJA:

Methyl jasmonate

GGPPS:

Geranylgeranyl pyrophosphate synthase

IPP:

Isopentenyl pyrophosphate

NMITLI:

The New Millennium Indian Technology Leadership Initiative

SA:

Salicylic acid

References

  • Ahmad H, Samuel SS, Khandelwal K, Arya A, Tripathi S, Agrawal S, Sangwan NS, Shukla R, Dwivedi AK (2016a) Enduring protection provided by NMITLI118RT+ and its preparation NMITLI118RT+ CFM against ischemia/reperfusion injury in rats. RSC Adv 6:42827–42835

    Article  CAS  Google Scholar 

  • Ahmad H, Arya A, Agrawal S, Samuel SS, Singh SK, Valicherla GR, Sangwan NS, Mitra K, Gayen JR, Paliwal S, Shukla R, Dwivedi AK (2016b) Phospholipid complexation of NMITLI118RT+: way to a prudent therapeutic approach for beneficial outcomes in ischemic stroke in rats. Drug Delivery 23:3606–3618

    Article  CAS  PubMed  Google Scholar 

  • Aitken SM, Attucci S, Ibrahim RK, Gulick PJ (1995) A cDNA encoding geranylgeranyl pyrophosphate synthase from white lupin. Plant Physiol 108:837–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akhtar N, Gupta P, Sangwan NS, Sangwan RS, Trivedi PK (2013) Cloning and functional characterization of 3-hydroxy-3-methylglutaryl coenzyme A reductase gene from Withania somnifera: an important medicinal plant. Protoplasma 250:613–622

    Article  CAS  PubMed  Google Scholar 

  • Ament K, Van Schie CC, Bouwmeester HJ, Haring MA, Schuurink RC (2006) Induction of a leaf specific geranylgeranyl pyrophosphate synthase and emission of (E, E)-4, 8, 12-trimethyltrideca-1, 3, 7, 11-tetraene in tomato are dependent on both jasmonic acid and salicylic acid signaling pathways. Planta 224:1197–1208

    Article  CAS  PubMed  Google Scholar 

  • Arnon DJ (1956) Chlorophyll absorption spectrum and quantitative determination. Biochim Biophys Acta 20:449–461

    Article  CAS  PubMed  Google Scholar 

  • Badillo A, Steppuhn J, Deruere J, Camara B, Kuntz M (1995) Structure of a functional geranylgeranyl pyrophosphate synthase gene from Capsicum annuum. Plant Mol Biol 27:425–428

    Article  CAS  PubMed  Google Scholar 

  • Bansal S, Narnoliya LK, Mishra B, Chandra M, Yadav RK, Sangwan NS (2018) HMG-CoA reductase from Camphor Tulsi (Ocimum kilimandscharicum) regulated MVA dependent biosynthesis of diverse terpenoids in homologous and heterologous plant systems. Sci rep 8:1–5

    Google Scholar 

  • Barbar A, Couture M, Sen SE, Béliveau C, Nisole A, Bipfusa M, Cusson M (2013) Cloning, expression and characterization of an insect geranylgeranyl diphosphate synthase from Choristoneura fumiferana. Insect Biochem Mol Biol 43:947–958

    Article  CAS  PubMed  Google Scholar 

  • Beck G, Coman D, Herren E, Ruiz-Sola MA, Rodriguez-Concepcion M, Gruissem W, Vranova E (2013) Characterization of the GGPP synthase gene family in Arabidopsis thaliana. Plant Mol Biol 82:393–416

    Article  CAS  PubMed  Google Scholar 

  • Bhat WW, Lattoo SK, Razdan S, Dhar N, Rana S, Dhar RS, Khan S, Vishwakarma RA (2012) Molecular cloning, bacterial expression and promoter analysis of squalene synthase from Withania somnifera (L.) Dunal. Gene 499:25–36

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya SK, Muruganandam AV (2003) Adaptogenic activity of Withania somnifera: an experimental study using a rat model of chronic stress. Pharmacol Biochem Behav 75:547–55

    Article  CAS  PubMed  Google Scholar 

  • Bick JA, Lange BM (2003) Metabolic cross talk between cytosolic and plastidial pathways of isoprenoid biosynthesis: unidirectional transport of intermediates across the chloroplast envelope membrane. Arch Biochem Biophys 415:146–154

    Article  CAS  PubMed  Google Scholar 

  • Bouvier F, Rahier A, Camara B (2005) Biogenesis, molecular regulation and function of plant isoprenoids. Prog Lipid Res 44:357–429

    Article  CAS  PubMed  Google Scholar 

  • Brückner K, Tissier A (2013) High-level diterpene production by transient expression in Nicotiana benthamiana. Plant Methods 9:46

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chang TH, Hsieh FL, Ko TP, Teng KH, Liang PH, Wang AHJ (2010) Structure of a heterotetrameric geranyl pyrophosphate synthase from mint (Mentha piperita) reveals inter subunit regulation. Plant Cell 22:454–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang WC, Song H, Liu HW, Liu P (2013) Current development in isoprenoid precursor biosynthesis and regulation. Curr Opin Chem Biol 17:571–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaurasiya ND, Sangwan NS, Sabir F, Misra LN, Sangwan RS (2012) Withanolide biosynthesis recruits both mevalonate and DOXP pathways of isoprenogenesis in Ashwagandha Withania somnifera L. (Dunal). Plant Cell Rep 31:1889–1897

    Article  CAS  PubMed  Google Scholar 

  • Cheong JJ, Do Choi Y (2003) Methyl jasmonate as a vital substance in plants. Trends Genet 19:409–413

    Article  CAS  PubMed  Google Scholar 

  • Choudhury B, Chowdhury S, Biswas AK (2011) Regulation of growth and metabolism in rice (Oryza sativa L.) by arsenic and its possible reversal by phosphate. J Plant Interact 6:15–24

    Article  CAS  Google Scholar 

  • Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  CAS  PubMed  Google Scholar 

  • Cunningham FX Jr, Chamovitz D, Misawa N, Gantt E, Hirschberg J (1993) Cloning and functionalexpression in Escherichia coli of a cyanobacterial gene for lycopene cyclase, the enzyme that catalyzes the biosynthesis of β-carotene. FEBS Lett 328:130–138

    Article  CAS  PubMed  Google Scholar 

  • Davies BH (1965) Analysis of carotenoid pigments. In: Goodwin TW (ed) Chemistry and biochemistry of plant pigments. Academic Press, New York, pp 489–532

    Google Scholar 

  • de Bruijn WJ, Levisson M, Beekwilder J, van Berkel WJ, Vincken JP (2020) Plant aromatic prenyltransferases: tools for microbial cell factories. Trends Biotechnol 38(8):917–934

    Article  PubMed  CAS  Google Scholar 

  • Dhar N, Rana S, Razdan S, Bhat WW, Hussain A, Dhar RS, Vaishnavi S, Hamid A, Vishwakarma R, Lattoo SK (2014) Cloning and functional characterization of three branch point oxidosqualene cyclases from Withania somnifera (L.) dunal. J Biol Chem 289:17249–17267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding M-Z, Yan H-F, Li L-F, Zhai F, Shang L-Q, Yin Z, Yuan Y-J (2014) Biosynthesis of taxadiene in Saccharomyces cerevisiae: selection of geranylgeranyl diphosphate synthase directed by a computer-aided docking strategy. PLoS ONE 9:e109348

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dong C, Qu G, Guo J, Wei F, Gao S, Sun Z, Jin L, Sun X, Rochaix JD, Miao Y, Wang R (2021) Rational design of geranylgeranyl diphosphate synthase enhances carotenoid production and improves photosynthetic efficiency in Nicotiana tabacum. Sci Bull 67:315–327

    Article  CAS  Google Scholar 

  • Engprasert S, Taura F, Kawamukai M, Shoyama Y (2004) Molecular cloning and functional expression of geranylgeranyl pyrophosphate synthase from Coleus forskohlii Briq. BMC Plant Biol 4:18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ergün N, Topcuoğlu ŞF, Yildiz A (2002) Auxin (indole-3-acetic acid), gibberellic acid (GA3), abscisic acid (ABA) and cytokinin (zeatin) production by some species of mosses and lichens. Turk J Bot 26:13–18

    Google Scholar 

  • Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 1:3784–3788

    Article  Google Scholar 

  • Gupta P, Goel R, Agarwal A, Asif M, Sangwan NS, Sangwan RS, Trivedi P (2015) Comparative transcriptome analysis of different chemotypes elucidates withanolide biosynthesis pathway from medicinal plant Withania somnifera. Sci Rep 5(18611):21. https://doi.org/10.1038/srep18611

    Article  CAS  Google Scholar 

  • Hemmerlin A, Harwood JL, Bach TJ (2012) A raison d’etre for two distinct pathways in the early steps of plant isoprenoid biosynthesis? Prog Lipid Res 51:95–148

    Article  CAS  PubMed  Google Scholar 

  • Jadaun JS, Sangwan NS, Narnoliya LK, Tripathi S, Sangwan RS (2017) Withania coagulans tryptophan decarboxylase gene cloning, heterologous expression, and catalytic characteristics of the recombinant enzyme. Protoplasma 254:181–192

    Article  CAS  PubMed  Google Scholar 

  • Ji X, Zheng L, Liu Y, Nie X, Liu S, Wang Y (2014) A transient transformation system for the functional characterization of genes involved in stress response. Plant Mol Biol Rep 32:732–739

    Article  CAS  Google Scholar 

  • Kellogg BA, Poulter CD (1997) Chain elongation in the isoprenoid biosynthetic pathway. Curr Opin Chem Biol 1:570–578

    Article  CAS  PubMed  Google Scholar 

  • Kim OT, Bang KH, Kim YC, Hyun DY, Kim MY, Cha SW (2009) Upregulation of ginsenoside and gene expression related to triterpene biosynthesis in ginseng hairy root cultures elicited by methyl jasmonate. Plant Cell Tissue Org Cult 98:25–33

    Article  CAS  Google Scholar 

  • Kloer DP, Welsch R, Beyer P, Schulz GE (2006) Structure and reaction geometry of geranylgeranyl diphosphate synthase from Sinapis alba. Biochemistry 45:15197–15204

    Article  CAS  PubMed  Google Scholar 

  • Kuntz M, Romer S, Suire C, Hugueney P, Weil JH, Schantz R, Camara B (1992) Identification of a cDNA for the plastid-located geranylgeranyl pyrophosphate synthase from Capsicum annuum: correlative increase in enzyme activity and transcript level during fruit ripening. Plant J 2:25–34

    CAS  PubMed  Google Scholar 

  • Kushwaha AK, Sangwan NS, Trivedi PK, Negi AS, Misra L, Sangwan RS (2013) Tropine forming tropinone reductase gene from Withania somnifera (Ashwagandha): biochemical characteristics of the recombinant enzyme and novel physiological overtones of tissue-wide gene expression patterns. PLoS ONE 8:e74777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laferrière A, Beyer P (1991) Purification of geranylgeranyl diphosphate synthase from Sinapis alba etioplasts. Biochim Biophys Acta Protein Struct Mol Enzymol 1077:167–172

    Article  Google Scholar 

  • Laskaris G, Van der Heijden R, Verpoorte R (2000) Purification and partial characterisation of geranylgeranyl diphosphate synthase, from Taxus baccata cell cultures: an enzyme that regulates taxane biosynthesis. Plant Sci 153:97–105

    Article  CAS  PubMed  Google Scholar 

  • Leonelli L, Erickson E, Lyska D, Niyogi KK (2016) Transient expression in Nicotiana benthamiana for rapid functional analysis of genes involved in non-photochemical quenching and carotenoid biosynthesis. Plant J 88:375–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang PH, Ko TP, Wang AHJ (2002) Structure, mechanism and function of prenyltransferases. Eur J Biochem 269:3339–3354

    Article  CAS  PubMed  Google Scholar 

  • Lin J, Jin YJ, Zhou X, Wang JY (2010) Molecular cloning and functional analysis of the gene encoding geranylgeranyl diphosphate synthase from Jatropha curcas. Afr J Biotechnol 9:3342–3351

    CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Luan Y, Fu X, Lu P, Grierson D, Xu C (2020) Molecular mechanisms determining the differential accumulation of carotenoids in plant species and varieties. Crit Rev Plant Sci 39:125–139

    Article  CAS  Google Scholar 

  • Machiah DK, Gowda TV (2006) A glycoprotein from a folk medicinal plant, Withania somnifera, inhibits hyaluronidase activity of snake venoms. Comp Biochem Physiol C Toxicol Pharmacol Part C Toxicol Pharmacol 143:158–161

    Article  CAS  Google Scholar 

  • Mishra S, Sangwan RS, Bansal S, Sangwan NS (2013) Efficient genetic transformation of Withania coagulans (Stocks) Dunal mediated by Agrobacterium tumefaciens from leaf explants of in vitro multiple shoot culture. Protoplasma 250:451–458

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Bansal S, Sangwan RS, Sangwan NS (2016) Genotype independent and efficient Agrobacterium mediated transformation of the medicinal plant Withania somnifera Dunal. J Plant Biochem Biotechnol 25:191–198

    Article  CAS  Google Scholar 

  • Oh SK, Kim IJ, Shin DH, Yang J, Kang H, Han KH (2000) Cloning, characterization, and heterologous expression of a functional geranylgeranyl pyrophosphate synthase from sunflower (Helianthus annuus L.). J Plant Physiol 157:535–542

    Article  CAS  Google Scholar 

  • Okada K, Saito T, Nakagawa T, Kawamukai M, Kamiya Y (2000) Five geranylgeranyl diphosphate synthases expressed in different organs are localized into three subcellular compartments in Arabidopsis. Plant Physiol 22:1045–1056

    Article  Google Scholar 

  • Orlova I, Nagegowda DA, Kish CM, Gutensohn M, Maeda H, Varbanova M, Fridman E, Yamaguchi S, Hanada A, Kamiya Y, Krichevsky A (2009) The small subunit of snapdragon geranyl diphosphate synthase modifies the chain length specificity of tobacco geranylgeranyl diphosphate synthase in planta. Plant Cell 21:4002–4017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pathak P, Shukla P, Kanshana JS, Jagavelu K, Sangwan NS, Dwivedi AK, Dikshit M (2021) Standardized root extract of Withania somnifera and Withanolide A exert moderate vasorelaxant effect in the rat aortic rings by enhancing nitric oxide generation. J Ethnopharmacol 278:1–8

    Article  CAS  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  PubMed  Google Scholar 

  • Pichersky E, Gang DR (2000) Genetics and biochemistry of secondary metabolites in plants: an evolutionary perspective. Trends Plant Sci 5:439–445

    Article  CAS  PubMed  Google Scholar 

  • Quondam M, Barbato C, Pickford A, Helmer-Citterich M, Macino G (1997) Homology modeling of Neurospora crassa geranylgeranyl pyrophosphate synthase: structural interpretation of mutant phenotypes. Protein Eng 10:1047–1055

    Article  CAS  PubMed  Google Scholar 

  • Rai A, Smita SS, Singh AK, Shanker K, Nagegowda DA (2013) Heteromeric and homomeric geranyl diphosphate synthases from Catharanthus roseus and their role in monoterpene indole alkaloid biosynthesis. Mol Plant 6:1531–1549

    Article  CAS  PubMed  Google Scholar 

  • Ross JJ, O’Neill DP, Rathbone DA (2003) Auxin-gibberellin interactions in pea: integrating the old with the new. J Plant Growth Regul 22:99–108

    Article  CAS  Google Scholar 

  • Ruiz-Sola MÁ, Coman D, Beck G, Barja MV, Colinas M, Graf A, Welsch R, Rütimann P, BühlmannP Bigler L, Gruissem W (2016) Arabidopsis geranylgeranyl diphosphate synthase-11 is a hub isozyme required for the production of most photosynthesis-related isoprenoids. New Phytol 209:252–264

    Article  CAS  PubMed  Google Scholar 

  • Rana S, Bhat WW, Dhar N, Pandith SA, Razdan S, Vishwakarma R, Lattoo SK (2014) Molecular characterization of two A-type P450s, WsCYP98A and WsCYP76A from Withania somnifera (L.) Dunal: expression analysis and withanolide accumulation in response to exogenous elicitations. BMC Biotechnol 14:1–7

    Article  CAS  Google Scholar 

  • Sabir F, Sangwan NS, Chaurasiya ND, Misra LN, Sangwan RS (2008) In vitro with anolide production by Withania somnifera L. cultures. Z Naturforsch C 63:409–412

    Article  CAS  PubMed  Google Scholar 

  • Sabir F, Mishra S, Sangwan RS, Jadaun JS, Sangwan NS (2013) Qualitative and quantitative variations in withanolides and expression of some pathway genes during different stages of morphogenesis in Withania somnifera Dunal. Protoplasma 250:539–549

    Article  CAS  PubMed  Google Scholar 

  • Sangwan NS, Sangwan RS (2014a) Applied plant cell biology secondary metabolites of traditional medical: a case study of Ashwagandha (Withania somnifera). Plant Cell Monogr 22:325–367

    Article  CAS  Google Scholar 

  • Sangwan NS, Sangwan RS (2014b) Secondary metabolites of traditional medical plants—case study Ashwaganda (Withania somnifera). In: Opatrný Z, Nick P (eds) Applied plant cell biology. Plant cell monographs, vol 22. Springer, Berlin, pp 325–367

    Chapter  Google Scholar 

  • Sangwan RS, Chaurasiya ND, Misra LN, Lal P, Uniyal GC, Sharma R, Sangwan NS, Suri KA, Qazi GN, Tuli R (2004) Phytochemical variability in commercial herbal products and preparations of Withania somnifera (Ashwagandha). Curr Sci 86:461–465

    CAS  Google Scholar 

  • Sangwan RS, Chaurasiya ND, Lal P, Misra L, Sangwan TR, NS, (2008) Withanolide A is inherently de novo biosynthesized in roots of the medicinal plant Ashwagandha (Withania somnifera). Physiol Plant 133:278–287

    Article  CAS  PubMed  Google Scholar 

  • Sangwan NS, Tripathi S, Srivastava Y, Mishra B, Pandey N (2017) Phytochemical genomics of Ashwagandha. In: Kaul S, Wadhwa R (eds) Science of Ashwagandha: preventive and therapeutic potentials. Springer, Cham, pp 3–36

    Chapter  Google Scholar 

  • Schuhr CA, Radykewicz T, Sagner S, Latzel C, Zenk MH, Arigoni D (2003) Quantitative assessment of crosstalk between the two isoprenoid biosynthesis pathways in plants by NMR spectroscopy. Phytochem Rev 2:3–16

    Article  CAS  Google Scholar 

  • Singh SK, Valicherla GR, Bikkasani AK, Cheruvu SH, Hossain Z, Taneja I, Ahmad H, Raju SKR, Sangwan NS, Singh SK, Dwivedi AK, Wahajuddin M, Gayen JR (2020) Elucidation of plasma protein binding, blood partitioning, permeability, CYP phenotyping and CYP inhibition studies of Withanone using validated UPLC method: an active constituent of neuroprotective herb Ashwagandha. J Ethnopharmacol 270:1–11

    Google Scholar 

  • Srivastava Y, Sangwan NS (2020) Improving medicinal crops through phytochemical perspective: Withania somnifera (Ashwagandha). In: Tuteja N, Tuteja R, Passricha N, Saifi S (eds) Advancement in crop improvement techniques. Woodhead Publishing, New York, pp 275–295

    Chapter  Google Scholar 

  • Srivastava S, Sangwan RS, Tripathi S, Mishra B, Narnoliya LK, Misra LN, Sangwan NS (2015) Light and auxin responsive cytochrome P450s from Withania somnifera Dunal: cloning expression and molecular modelling of two pairs of homologue genes with differential regulation. Protoplasma 252:1421–1437

    Article  CAS  PubMed  Google Scholar 

  • Tarkowská D, Strnad M (2018) Isoprenoid-derived plant signaling molecules: biosynthesis and biological importance. Planta 247:1051–1106

    Article  PubMed  CAS  Google Scholar 

  • Tata SK, Jung J, Kim YH, Choi JY, Jung JY, Lee IJ, Ryu SB (2016) Heterologous expression of chloroplast-localized geranylgeranyl pyrophosphate synthase confers fast plant growth, early flowering and increased seed yield. Plant Biotechnol J 14:29–39

    Article  CAS  PubMed  Google Scholar 

  • Tetali SD (2019) Terpenes and isoprenoids: a wealth of compounds for global use. Planta 249:1–8

    Article  CAS  PubMed  Google Scholar 

  • Thabet I, Guirimand G, Guihur A, Lanoue A, Courdavault V, Papon N, Bouzid S, Giglioli-Guivarc’h N, Simkin A, Clastre M, (2012) Characterization and subcellular localization of geranylgeranyl diphosphate synthase from Catharanthus roseus. Mol Biol Rep 39:3235–3243

    Article  CAS  PubMed  Google Scholar 

  • Thatcher SR, Danilevskaya ON, Meng X, Beatty M, Zastrow-Hayes G, Harris C, Van Allen B, Habben J, Li B (2016) Genome-wide analysis of alternative splicing during development and drought stress in maize. Plant Physiol 170:586–599

    Article  CAS  PubMed  Google Scholar 

  • Tholl D (2006) Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr Opin Plant Biol 9:297–304

    Article  CAS  PubMed  Google Scholar 

  • Tripathi S, Sangwan RS, Narnoliya LK, Srivastav Y, Mishra B, Sangwan NS (2017) Transcription factor repertoire in Ashwagandha (Withania somnifera) through analytics of transcriptomic resources: Insights into regulation of development and withanolide metabolism. Sci Rep 7:16649

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tripathi S, Sangwan RS, Mishra B, Jadaun JS, Sangwan NS (2020a) Berry transcriptome: insights into a novel resource to understand development dependent secondary metabolism in Withania somnifera (Ashwagandha). Physiol Plant 168:148–173

    Article  CAS  PubMed  Google Scholar 

  • Tripathi S, Srivastava Y, Sangwan RS, Sangwan NS (2020b) In silico mining and functional analysis of AP2/ERF gene in Withania somnifera. Sci Rep 1:1–2

    Google Scholar 

  • Tsaballa A, Nikolaidis A, Trikka F, Ignea C, Kampranis SC, Makris AM, Argiriou A (2015) Use of the de novo transcriptome analysis of silver-leaf nightshade (Solanum elaeagnifolium) to identify gene expression changes associated with wounding and terpene biosynthesis. BMC Genomics 16:504

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tuli R, Sangwan RS, Kumar S, Bhattacharya S, Misra LN, Mandal C, Raghubir R, Trivedi PK, Tewari SK, Mishra P, Chaturvedi P, Sangwan Neelam S (2009) Ashwagandha (Withania somnifera) A model Indian medicinal plant. In: Tuli R, Sangwan RS (eds) Monograph Published by Council of Scientific and Industrial Research (CSIR), Govt. of India, Publisher NMITLI-CSIR, New Delhi. ISBN No. 978-93-80235-29-5

  • Turner JG, Ellis C, Devoto A (2002) The jasmonate signal pathway. Plant Cell 14:153–164

    Article  CAS  Google Scholar 

  • Vaccaro MC, Alfieri M, Malafronte N, De Tommasi N, Leone A (2017) Increasing the synthesis of bioactive abietane diterpenes in Salvia sclarea hairy roots by elicited transcriptional reprogramming. Plant Cell Rep 36:375–386

    Article  CAS  PubMed  Google Scholar 

  • Vickers CE, Williams TC, Peng B, Cherry J (2017) Recent advances in synthetic biology for engineering isoprenoid production in yeast. Curr Opin Chem Biol 40:47–56

    Article  CAS  PubMed  Google Scholar 

  • Vranovà E, Coman D, Gruissem W (2013) Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annu Rev Plant Biol 64:665–700

    Article  PubMed  CAS  Google Scholar 

  • Wang KC, Ohnuma S (2000) Isoprenyl diphosphate synthases. Biochim Biophys Acta Mol Cell Biol Lipids 1529:33–48

    Article  CAS  Google Scholar 

  • Wang J, Lin HX, Su P, Chen T, Guo J, Gao W, Huang LQ (2019) Molecular cloning and functional characterization of multiple geranylgeranyl pyrophosphate synthases (ApGGPPS) from Andrographis paniculata. Plant Cell Rep 38:117–128

    Article  PubMed  CAS  Google Scholar 

  • Xu L, Gao F, Feng J, Lv J, Liu Q, Nan F, Liu X, Xie S (2022) Relationship between β-carotene accumulation and geranylgeranyl pyrophosphate synthase in different species of Dunaliella. Plants 11:1–14

    Google Scholar 

  • Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59:225–251

    Article  CAS  PubMed  Google Scholar 

  • Yu ZX, Li JX, Yang CQ, Hu WL, Wang LJ, Chen XY (2012) The jasmonate-responsive AP2/ERF transcription factors AaERF1 and AaERF2 positively regulate artemisinin biosynthesis in Artemisia annua L. Mol Plant 5:353–365

    Article  CAS  PubMed  Google Scholar 

  • Zerbe P, Bohlmann J (2015) Plant diterpene synthases: Exploring modularity and metabolic diversity for bioengineering. Trends Biotechnol 33:419–428

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Liu H, Zong Y, Tu Z, Li H (2021) Isolation, expression, and functional analysis of the geranylgeranyl pyrophosphate synthase (GGPPS) gene from Liriodendron tulipifera. Plant Physiol Biochem 166:700–711

    Article  CAS  PubMed  Google Scholar 

  • Zhou F, Wang CY, Gutensohn M, Jiang L, Zhang P, Zhang D, Dudareva N, Lu S (2017) A recruiting protein of geranylgeranyl diphosphate synthase controls metabolic flux toward chlorophyll biosynthesis in rice. Proc Natl Acad Sci USA 114:6866–6871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu X, Suzuki K, Saito T, Okada K, Tanaka K, Nakagawa T, Matsuda H, Kawamukai M (1997) Geranylgeranyl pyrophosphate synthase encoded by the newly isolated gene GGPS6 from Arabidopsis thaliana is localized in mitochondria. Plant Mol Biol 35:331–341

    Article  CAS  PubMed  Google Scholar 

  • Zi J, Mafu S, Peters RJ (2014) To gibberellins and beyond! Surveying the evolution of (di)terpenoid metabolism. Annu Rev Plant Biol 65:259–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

NSS is thankful to NMITLI-CSIR (Council of Scientific and Industrial Research, New Delhi) for the project grant support. YDS acknowledge the support from University Grant Commission (UGC) for fellowship. ST is thankful to Department of Science and Technology (DST) for WOS-A fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neelam S. Sangwan.

Additional information

Communicated by Dorothea Bartels.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Fig. S1 a

Withanolide profiling in W. somnifera leaves transiently transformed by WsGGPPS. b HPLC chromatogram of transiently transformed W. somnifera of representative samples. (WsT = Wild type, WsV = Empty vector control). Each value represents the mean ± SD of three biological replicates (PPTX 239 KB)

Table S1

Primers used in the study (DOCX 14 KB)

Table S2

Physiochemical properties of WsGGPPS (DOCX 14 KB)

Table S3

Docking properties for different substrates and inhibitor molecule with modeled WsGGPPS protein (DOC 32 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, Y., Tripathi, S., Mishra, B. et al. Cloning and homologous characterization of geranylgeranyl pyrophosphate synthase (GGPPS) from Withania somnifera revealed alterations in metabolic flux towards gibberellic acid biosynthesis. Planta 256, 4 (2022). https://doi.org/10.1007/s00425-022-03912-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-022-03912-4

Keywords

Navigation