Skip to main content

Advertisement

Log in

Nanotechnology advances for sustainable agriculture: current knowledge and prospects in plant growth modulation and nutrition

  • Review
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Advances in nanotechnology make it an important tool for improving agricultural production. Strong evidence supports the role of nanomaterials as nutrients or nanocarriers for the controlled release of fertilizers to improve plant growth. Scientific research shows that nanotechnology applied in plant sciences is smart technology.

Abstract

Excessive application of mineral fertilizers has produced a harmful impact on the ecosystem. Furthermore, the projected increase in the human population by 2050 has led to the search for alternatives to ensure food security. Nanotechnology is a promising strategy to enhance crop productivity while minimizing fertilizer inputs. Nanofertilizers can contribute to the slow and sustainable release of nutrients to improve the efficiency of nutrient use in plants. Nanomaterial properties (i.e., size, morphology and charge) and plant physiology are crucial factors that influence the impact on plant growth. An important body of scientific research highlights the role of carbon nanomaterials, metal nanoparticles and metal oxide nanoparticles to improve plant development through the modulation of physiological and metabolic processes. Modulating nutrient concentrations, photosynthesis processes and antioxidant enzyme activities have led to increases in shoot length, root development, photosynthetic pigments and fruit yield. In parallel, nanocarriers (nanoclays, nanoparticles of hydroxyapatite, mesoporous silica and chitosan) have been shown to be an important tool for the controlled and sustainable release of conventional fertilizers to improve plant nutrition; however, the technical advances in nanofertilizers need to be accompanied by modernization of the regulations and legal frameworks to allow wider commercialization of these elements. Nanofertilizers are a promising strategy to improve plant development and nutrition, but their application in sustainable agriculture remains a great challenge. The present review summarizes the current advance of research into nanofertilizers, and their future prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdel Latef AAH, Kumar Srivastava A, Sayed Abd El-sadek M, Kordrostami M, Phan Tran LS (2018) Titanium dioxide nanoparticles improve growth and enhance tolerance of broad bean plants under saline soil conditions. Land Degrad Develop 29:1065–1073

    Article  Google Scholar 

  • Abdel-Aziz HMM, Hasaneen MNA, Omer AM (2016) Nano chitosan-NPK fertilizer enhances the growth and productivity of wheat plants grown in sandy soil. Span J Agric Res 4:e0902

    Article  Google Scholar 

  • Abusalem M, Awad A, Ayad J, Abu Rayyan A (2019) Green synthesis of α-Fe2O3 nanoparticles using pistachio leaf extract influenced seed germination and seedling growth of tomato. Jordan J Earth Environ Sci 10:161–166

    Google Scholar 

  • Adams C, Erickson JE, Bunderson L (2020) A mesoporous silica nanoparticle technology applied in dilute nutrient solution accelerated establishment of zoysiagrass. Agrosyst Geosci Environ 3:e20006

    Article  Google Scholar 

  • Ali A, Phull AR, Zia M (2018) Elemental zinc to zinc nanoparticles: is ZnO NPs crucial for life? Synthesis, toxicological, and environmental concerns. Nanotechnol Rev 7:413–441

    Article  CAS  Google Scholar 

  • Alkhatib R, Alkhatib B, Abdo N, Al-Eitan L, Creamer R (2019) Physio-biochemical and ultrastructural impact of (Fe3O4) nanoparticles on tobacco. BMC Plant Biol 19:253

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Al-Rekaby LS (2018) Influence of multiwalled carbon nanotubes and biostimulators on growth and content of bioactive constituents of karkade (Hibiscus sabdariffa L.). J Bot 2018:9097363

    Google Scholar 

  • Amooaghaie R, Norouzi M, Saeri M (2017) Impact of zinc and zinc oxide nanoparticles on the physiological and biochemical processes in tomato and wheat. Botany 95:441–455

    Article  CAS  Google Scholar 

  • Ananda S, Shobha G, Shashidhara KS, Vishwaprakash M (2019) Nano-cuprous oxide enhances seed germination and seedling growth in Lycopersicum esculentum plants. J Drug Deliv Ther 9:296–302

    Article  CAS  Google Scholar 

  • Anwaar S, Maqbool Q, Jabeen N, Nazar M, Abbas F, Nawaz B, Hussain T, Hussain SZ (2016) The effect of green synthesized CuO nanoparticles on callogenesis and regeneration of Oryza sativa L. Front Plant Sci 7:1330

    Article  PubMed  PubMed Central  Google Scholar 

  • Asgher M, Per TS, Masood A, Fatma M, Freschi L, Corpas FJ, Khan NA (2016) Nitric oxide signaling and its crosstalk with other plant growth regulators in plant responses to abiotic stress. Environ Sci Pollut Res Int 24:2273–2285

    Article  PubMed  CAS  Google Scholar 

  • Askary M, Mehdi Talebi S, Amini F, Balout Bangan AD (2017) Effects of iron nanoparticles on Mentha piperita L. under salinity stress. Biologija 63:65–75

    Article  CAS  Google Scholar 

  • Aslani F, Bagheri S, Julkapli NM, Juraimi AS, Golestan Hashemi FS, Baghdadi A (2014) Effects of engineered nanomaterials on plants growth: an overview. Sci World J 2014:641759

    Article  Google Scholar 

  • Behboudi F, Tahmasebi Sarvestani Z, Zaman Kassaee M, Mohamad Modares Sanavi SA, Sorooshzadeh A, Badreddin Ahmadi S (2018) Evaluation of chitosan nanoparticles effects on yield and yield components of barley (Hordeum vulgare L.) under late season drought stress. J Water Environ Nanotechnol 3:22–39

    CAS  Google Scholar 

  • Benício LPF, Eulálio D, de Moura Guimaraes L, Garcia Pinto F, Marciano da Costa L, Tronto J (2018) Layered double hydroxides as hosting matrices for storage and slow release of phosphate analyzed by stirred-flow method. Mat Res 21:e20171004

    Article  CAS  Google Scholar 

  • Bernardo MP, Guimarães GGF, Majaron VF, Ribeiro C (2018) Controlled release of phosphate from LDH structures: dynamics in soil and application as smart fertilizer. ACS Sustain Chem Eng 6:5152–5161

    Article  CAS  Google Scholar 

  • Biswas B, Warr LN, Hilder EF, Goswami N, Rahman MM, Churchman JG, Vasilev K, Pan G, Naidu R (2019) Biocompatible functionalisation of nanoclays for improved environmental remediation. Chem Soc Rev 48:3740

    Article  CAS  PubMed  Google Scholar 

  • Budhani S, Egboluche NP, Arslan Z, Yu H, Deng H (2019) Phytotoxic effect of silver nanoparticles on seed germination and growth of terrestrial plants. J Environ Sci Health C 37:4

    Article  CAS  Google Scholar 

  • Burak Taşkın M, Şahin Ö, Taskin H, Atakol O, Inal A, Gunes A (2018) Effect of synthetic nano-hydroxyapatite as an alternative phosphorus source on growth and phosphorus nutrition of lettuce (Lactuca sativa L.) plant. J Plant Nutr 41:1148–1154

    Article  CAS  Google Scholar 

  • Cao Z, Zhou H, Kong L, Li L, Wang R, Shen W (2020) A novel mechanism underlying multi-walled carbon nanotube-triggered tomato lateral root formation: the involvement of nitric oxide. Nanoscale Res Lett 15:49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castro-González CG, Sánchez-segura L, Gómez-Merino FC, Bello-Bello JJ (2019) Exposure of stevia (Stevia rebaudiana B.) to silver nanoparticles in vitro: transport and accumulation. Sci Rep 9:10372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chaudhary I, Singh V (2020) Titanium dioxide nanoparticles and its impact on growth, biomass and yield of agricultural crops under environmental stress: a review. Res J Nanosci Nanotechnol 10:1–8

    Article  Google Scholar 

  • Cvjetko P, Milošića A, Domijan AM, Vinković Vrček I, Tolićd S, Štefanića PP, Letofsky-Papst I, Tkalec M, Balen B (2017) Toxicity of silver ions and differently coated silver nanoparticles in Allium cepa roots. Ecotoxicol Environ Saf 137:18–28

    Article  CAS  PubMed  Google Scholar 

  • Da Costa MVJ, Sharma PK (2015) Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica 54:110–119

    Article  CAS  Google Scholar 

  • Dai Y, Chen F, Yue L, Li T, Jiang Z, Xu Z, Wang Z, Xing B (2020) Uptake, transport, and transformation of CeO2 nanoparticles by strawberry and their impact on rhizosphere bacterial community. ACS Sustain Chem Eng 8:4792–4800

    Article  CAS  Google Scholar 

  • Das KK, Nava V, Chang CW, Chan JW, Xing B, Yang Y (2018) Emerging investigator series: quantification of multiwall carbon nanotubes in plant tissues with spectroscopic analysis. Environ Sci: Nano 6:380–387

    Google Scholar 

  • De Souza A, Govea-Alcaide E, Masunaga SH, Fajardo-Rosabal L, Effenberger F, Rossi LM, Jardim RF (2019) Impact of Fe3O4 nanoparticle on nutrient accumulation in common bean plants grown in soil. SN Appl Sci 1:308

    Article  CAS  Google Scholar 

  • Ditta A, Arshad M (2016) Applications and perspectives of using nanomaterials for sustainable plant nutrition. Nanotechnol Rev 5(2):209–229

    Article  CAS  Google Scholar 

  • Du W, Gardea-Torresdey JL, Ji R, Yin Y, Zhu J, Peralta-Videa JR, Guo H (2015) Physiological and biochemical changes imposed by CeO2 nanoparticles on wheat: a life cycle field study. Environ Sci Technol 49:11884–11893

    Article  CAS  PubMed  Google Scholar 

  • Duhan JS, Kumar R, Kumar N, Kaur P, Nehra K, Duhan S (2017) Nanotechnology: the new perspective in precision agriculture. Biotechnol Rep 15:11–23

    Article  Google Scholar 

  • Everaert M, Warrinnier R, Baken S, Gustafsson JP, De Vos D, Smolders E (2016) Phosphate-exchanged Mg-Al layered double hydroxides: a new slow release phosphate fertilizer. ACS Sustain Chem Eng 4:4280–4287

    Article  CAS  Google Scholar 

  • Faizan M, Hayat S (2019) Effect of foliar spray of ZnO-NPs on the physiological parameters and antioxidant systems of Lycopersicon esculentum. Pol J Natur Sc 34:87–105

    Google Scholar 

  • Faraji J, Sepehri A (2018) Titanium dioxide nanoparticles and sodium nitroprusside alleviate the adverse effects of cadmium stress on germination and seedling growth of wheat (Triticum aestivum L.). Univ Sci 23:61–87

    Article  CAS  Google Scholar 

  • Fathi Z, Khavari Nejad RA, Mahmoodzadeh H, Nejad Satari T (2017) Investigating of a wide range of concentrations of multi-walled carbon nanotubes on germination and growth of castor seeds (Ricinus communis L.). J Plant Prot Res 57:228–236

    Article  CAS  Google Scholar 

  • Fincheira P, Tortella G, Duran N, Seabra AB, Rubilar O (2019) Current applications of nanotechnology to develop plant growth inducer agents as an innovation strategy. Crit Rev Biotechnol 40:15–30

    Article  PubMed  CAS  Google Scholar 

  • Fox JP, Capen JD, Zhang W, Ma X, Rossi L (2020) Effects of cerium oxide nanoparticles and cadmium on corn (Zea mays L.) seedlings physiology and root anatomy. NanoImpact. https://doi.org/10.1016/j.impact.2020.100264

    Article  Google Scholar 

  • Ghasempour M, Iranbakhsh A, Ebadi M, Oraghi Ardebili Z (2019) Multi-walled carbon nanotubes improved growth, anatomy, physiology, secondary metabolism, and callus performance in Catharanthus roseus: an in vitro study. 3 Biotech 9:404

    Article  PubMed  PubMed Central  Google Scholar 

  • Gohari G, Mohammadi A, Akbari A, Panahirad S, Reza Dadpour M, Fotopoulos V, Kimura S (2020) Titanium dioxide nanoparticles (TiO2 NPs) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavica. Sci Rep 10:912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gui X, Zhang Z, Liu S, Ma Y, Zhang P, He X, Li Y, Zhang J, Li H, Rui Y, Liu L, Cao W (2015) Fate and phytotoxicity of CeO2 nanoparticles on lettuce cultured in the potting soil environment. PLoS ONE 10:e0134261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo H, White JC, Wang Z, Xing B (2018) Nano-enabled fertilizers to control the release and use efficiency of nutrients. Curr Opin Environ Sci Health 6:77–83

    Article  Google Scholar 

  • Ha C, Huyen Nguyen T, Wang SL, Dzung Nguyen A (2019) Preparation of NPK nanofertilizer based on chitosan nanoparticles and its effect on biophysical characteristics and growth of coffee in green house. Res Chem Intermed 45:51–63

    Article  CAS  Google Scholar 

  • Hafizi Z, Nasr N (2018) The effect of zinc oxide nanoparticles on safflower plant growth and physiology. Eng Technol Appl Sci Res 8:2508–2513

    Article  Google Scholar 

  • He X, Deng H, Hwang HM (2019) The current application of nanotechnology in food and agriculture. J Food Drug Anal 27:1–21

    Article  PubMed  CAS  Google Scholar 

  • Hu J, Guo H, Li J, Gan Q, Wang Y, Xing B (2017) Comparative impacts of iron oxide nanoparticles and ferric ions on the growth of Citrus maxima. Environ Pollut 221:199–208

    Article  CAS  PubMed  Google Scholar 

  • Husen A, Siddiqi KS (2014) Carbon and fullerene nanomaterials in plant system. J Nanobiotechnology 12:16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jain A, Ranjan S, Dasgupta N, Ramalingam C (2016) Nanomaterials in food and agriculture: an overview on their safety concerns and regulatory issues. Crit Rev Food Sci Nutr 58:297–317

    Article  CAS  Google Scholar 

  • Jalali M, Ghanati F, Modarres-Sanavi AM (2016) Effect of Fe3O4 nanoparticles and iron chelate on the antioxidant capacity and nutritional value of soil-cultivated maize (Zea mays) plants. Crop Pasture Sci 67:621–628

    Article  CAS  Google Scholar 

  • Jasim B, Thomas R, Mathew J, Radhakrishnan EK (2017) Plant growth and diosgenin enhancement effect of silver nanoparticles in Fenugreek (Trigonella foenum-graecum L.). Saudi Pharm J 25:443–447

    Article  CAS  PubMed  Google Scholar 

  • Joshi A, Kaur S, Singh P, Dharamvir K, Nayyar H, Verma G (2018) Tracking multi-walled carbon nanotubes inside oat (Avena sativa L.) plants and assessing their effect on growth, yield, and mammalian (human) cell viability. Appl Nanosci 8:1399–1414

    Article  CAS  Google Scholar 

  • Joshi A, Sharma L, Kaur S, Dharamvir K, Nayyar H, Verma G (2020) Plant nanobionic effect of multi-walled carbon nanotubes on growth, anatomy, yield and grain composition of rice. BioNanoScience 10:430–445

    Article  Google Scholar 

  • Juárez-Maldonado A, Rosales-Velázquez JL, Ortega-Ortiz H, Cabrera-De-la-Fuente MM, Ramírez H, Benavides-Mendoza A (2013) Accumulation of silver nanoparticles and its effect on the antioxidant capacity in Allium cepa L. FYTON 82:91–97

    Google Scholar 

  • Kah M, Tufenkji N, White JC (2019) Nano-enabled strategies to enhance crop nutrition and protection. Nat Nanotechnol 14:532–540

    Article  CAS  PubMed  Google Scholar 

  • Kalia A, Sharma SP, Kaur H, Kaur H (2020) Chapter 5: novel nanocomposite-basedcontrolled-release fertilizer and pesticide formulations: prospects and challenges. In Multifunctional Hybrid Nanomaterials for Sustainable Agri-Food and Ecosystems 2020: 99–134.

  • Kamle M, Kumar Mahato D, Devi S, Soni R, Tripathi V, Kumar Mishra A, Kumar P (2020) Nanotechnological interventions for plant health improvement and sustainable agriculture. 3 Biotech 10:168

    Article  PubMed  PubMed Central  Google Scholar 

  • Karami A, Sepehri A (2018) Beneficial role of MWCNTs and SNP on growth, physiological and photosynthesis performance of barley under NaCl stress. J Soil Sci Plant Nutr 18:752–771

    CAS  Google Scholar 

  • Kazemi NM, Salimi AA (2019) Chitosan nanoparticle for loading and release of nitrogen, potassium, and phosphorus nutrients. Iran J Sci Technol Trans Sci 43:2781–2786

    Article  Google Scholar 

  • Khalifa NS, Hasaneen MN (2018) The effect of chitosan–PMAA–NPK nanofertilizer on Pisum sativum plants. 3 Biotech 8:193

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan AR, Wakeel A, Muhammad N, Liu B, Wu M, Liu Y, Ali I, Raza Zaidi SH, Azhar W, Song G, Wu J, Gan Y (2019) Involvement of ethylene signaling in zinc oxide nanoparticle-mediated biochemical changes in Arabidopsis thaliana leaves. Environ Sci: Nano 6:341

    CAS  Google Scholar 

  • Kim JH, Lee Y, Kim EJ, Gu S, Sohn EJ, Seo YS, An HJ, Chang YS (2014) Exposure of iron nanoparticles to Arabidopsis thaliana enhances root elongation by triggering cell wall loosening. Environ Sci Technol 48:3477–3485

    Article  CAS  PubMed  Google Scholar 

  • Kokina I, Mickevi I, Jahundovi I, Ogurcovs A, Krasovska M, Jermalonoka M, Mihailova I, Tamanis E, Gerbreders V (2017) Plant explants grown on medium supplemented with Fe3O4 nanoparticles have a significant increase in embryogenesis. J Nanomater 2017:4587147

    Article  Google Scholar 

  • Kokina I, Plaksenkova I, Jermaļonoka M, Petrova A (2020) Impact of iron oxide nanoparticles on yellow medick (Medicago falcata L.) plants. J Plant Interact 15:1–7

    Article  CAS  Google Scholar 

  • Kottegoda N, Sandaruwan C, Priyadarshana G, Siriwardhana A, Rathnayake UA, Berugoda Arachchige DM, Kumarasinghe AR, Dahanayake D, Karunaratne V, Amaratunga GAJ (2017) Urea-hydroxyapatite nanohybrids for slow release of nitrogen. ACS Nano 11:1214–1221

    Article  CAS  PubMed  Google Scholar 

  • Kubavat D, Trivedi K, Vaghela P, Prasad K, Vijay Anand KG, Trivedi H, Patidar R, Chaudhary J, Andhariya B, Ghosh A (2020) Characterization of chitosan based sustained release nano-fertilizer formulation as a soil conditioner while improving biomass production of Zea mays L. Land Degrad Dev 2020:1–13

    Google Scholar 

  • Le Nhan V, Rui Y, Gui X, Li X, Liu S, Han Y (2014) Uptake, transport, distribution and bio-effects of SiO2 nanoparticles in Bt-transgenic cotton. J Nanobiotechnol 12:50

    Article  CAS  Google Scholar 

  • Li X, Yang Y, Gao B, Zhang M (2015) Stimulation of peanut seedling development and growth by zero-valent iron nanoparticles at low concentrations. PLoS ONE 10:e0122884

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li Y, Zhu N, Liang X, Bai X, Zheng L, Zhao J, Li YF, Zhang Z, Gao Y (2020) Silica nanoparticles alleviate mercury toxicity via immobilization and inactivation of Hg(II) in soybean (Glycine max). Environ Sci Nano 7:1807–1817

    Article  CAS  Google Scholar 

  • Lopes-Oliveira PJ, Genuário Gomes D, Pelegrino MT, Bianchini E, Pimenta JA, Stolf-Moreira R, Seabra AB, Caixeta Oliveira H (2019) Effects of nitric oxide-releasing nanoparticles on neotropical tree seedlings submitted to acclimation under full sun in the nursery. Sci Rep 9:17371

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luyckx M, Hausman JF, Lutts S, Guerriero G (2017) Silicon and plants: current knowledge and technological perspectives. Front Plant Sci 8:411

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma C, White JC, Zhao J, Zhao Q, Xing B (2018) Uptake of engineered nanoparticles by food crops: characterization, mechanisms, and implications. Annu Rev Food Sci Technol 9:129–153

    Article  CAS  PubMed  Google Scholar 

  • Majumdar S, Peralta-Videa JR, Trujillo-Reyes J, Sun Y, Barrios AC, Niu G, Flores- Margez JP, Gardea-Torresdey JL (2016) Soil organic matter influences cerium translocation and physiological processes in kidney bean plants exposed to cerium oxide nanoparticles. Sci Total Environ 569–570:201–211

    Article  PubMed  CAS  Google Scholar 

  • Malerba M, Cerana R (2016) Chitosan effects on plant systems. Int J Mol Sci 17:996

    Article  PubMed Central  CAS  Google Scholar 

  • Malerba M, Cerana R (2019) Recent applications of chitin- and chitosan-based polymers in plants. Polymers 11:839

    Article  CAS  PubMed Central  Google Scholar 

  • Marchiol L, Filippi A, Adamiano A, Degli Esposti L, Iafisco M, Mattiello A, Petrussa E, Braidot E (2019) Influence of hydroxyapatite nanoparticles on germination and plant metabolism of tomato (Solanum lycopersicum L.): preliminary evidence. Agronomy 9:161

    Article  CAS  Google Scholar 

  • Margenot AJ, Rippner DA, Dumlao MR, Nezami S, Green PG, Parikh SJ, McElrone AJ (2018) Copper oxide nanoparticle effects on root growth and hydraulic conductivity of two vegetable crops. Plant Soil 431:333–345

    Article  CAS  Google Scholar 

  • Martínez-Ballesta MC, Zapata L, Chalbi N, Carvajal M (2016) Multiwalled carbon nanotubes enter broccoli cells enhancing growth and water uptake of plants exposed to salinity. J Nanobiotechnol 14:42

    Article  CAS  Google Scholar 

  • Mazaheri Tirani M, Madadkar Haghjou M, Ismaili A (2019) Hydroponic grown tobacco plants respond to zinc oxide nanoparticles and bulk exposures by morphological, physiological and anatomical adjustments. Funct Plant Biol 46:360–375

    Article  CAS  PubMed  Google Scholar 

  • Mikhak A, Sohrabi A, Zaman Kassaee MM, Feizian M (2016) Synthetic nanozeolite/nanohydroxyapatite as a phosphorus fertilizer for German chamomile (Matricaria chamomilla L.). Ind Crops Prod 95:444–452

    Article  CAS  Google Scholar 

  • Mitter N, Hussey K (2019) Moving policy and regulation forward for nanotechnology applications in agriculture. Nat Nanotechnol 14:508–514

    Article  CAS  PubMed  Google Scholar 

  • Moshelion M, Altman A (2015) Current challenges and future perspectives of plant and agricultural biotechnology. Trends Biotechnol 33:6

    Article  CAS  Google Scholar 

  • Mukherjee A, Majumdar S, Servin AD, Pagano L, Parkash Dhankher O, White JC (2016) Carbon nanomaterials in agriculture: a critical review. Front Plant Sci 7:172

    Article  PubMed  PubMed Central  Google Scholar 

  • Mukhopadhyay SS (2014) Nanotechnology in agriculture: prospects and constraints. Nanotechnol Sci Appl 7:63–71

    Article  PubMed  PubMed Central  Google Scholar 

  • Naseem F, Zhi Y, Akhyar Farrukh M, Hussain F, Yin Z (2020) Mesoporous ZnAl2 Si10O24 nanofertilizers enable high yield of Oryza sativa L. Sci Rep 10:10841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noshad A, Hetherington C, Iqbal M (2019) Impact of AgNPs on seed germination and seedling growth: a focus study on its antibacterial potential against Clavibacter michiganensis subsp. michiganensis infection in Solanum lycopersicum. J Nanomater 2019:6316094

    Article  CAS  Google Scholar 

  • Nourozi E, Hosseini B, Maleki R, Abdollahi Mandoulakani B (2019) Iron oxide nanoparticles: a novel elicitor to enhance anticancer flavonoid production and gene expression in Dracocephalum kotschyi hairy-root cultures. J Sci Food Agric 99:6418–6430

    Article  CAS  PubMed  Google Scholar 

  • Oliveira HC, Gomes BCR, Pelegrino MT, Seabra AB (2016) Nitric oxide-releasing chitosan nanoparticles alleviate the effects of salt stress in maize plants. Nitric Oxide 61:10–19

    Article  CAS  PubMed  Google Scholar 

  • Oloumi H, Mousavi EA, Mohammadi Nejad R (2018) Multi-wall carbon nanotubes effects on plant seedlings growth and cadmium/lead uptake in vitro. Russ J Plant Physiol 65:260–268

    Article  CAS  Google Scholar 

  • Pandey AC, Sanjay SS, Yadav RS (2010) Application of ZnO nanoparticles in influencing the growth rate of Cicer arietinum. J Exp Nanosci 5:488–497

    Article  CAS  Google Scholar 

  • Pandey K, Lahiani MH, Hicks VK, Hudson MK, Green MJ, Khodakovskaya M (2018) Effects of carbon-based nanomaterials on seed germination, biomass accumulation and salt stress response of bioenergy crops. PLoS ONE 13:e0202274

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parisi C, Vigani M, Rodríguez-Cerezo E (2015) Agricultural nanotechnologies: what are the current possibilities? Nano Today 10:124–127

    Article  CAS  Google Scholar 

  • Patel DK, Kim HB, Dutta SD, Ganguly K, Lim KT (2020) Carbon nanotubes-based nanomaterials and their agricultural and biotechnological applications. Materials 13:1679

    Article  CAS  PubMed Central  Google Scholar 

  • Pedruzzi DP, Araujo LO, Falco WF, Machado G, Casagrande GA, Colbeck I, Lawson T, Oliveira SL, Caires ARL (2020) ZnO nanoparticles impact on the photosynthetic activity of Vicia faba: effect of particle size and concentration. NanoImpact 19:100246

    Article  Google Scholar 

  • Pereira EI, Minussi FB, da Cruz CCT, Bernardi ACC, Ribeiro C (2012) Urea—montmorillonite-extruded nanocomposites: a novel slow- release material. J Agric Food Chem 60:5267–5272

    Article  CAS  PubMed  Google Scholar 

  • Pérez Velasco EA, Betancourt Galindo R, Valdez Aguilar LA, González Fuentes JA, Puente Urbina BA, Lozano Morales SA, Sánchez Valdés S (2020) Effects of the morphology, surface modification and application methods of ZnO-NPs on the growth and biomass of tomato plants. Molecules 25:1282

    Article  PubMed Central  CAS  Google Scholar 

  • Pérez-de-Luque A (2017) Interaction of nanomaterials with plants: what do we need for real applications in agriculture? Front Environ Sci 5:12

    Article  Google Scholar 

  • Plaksenkova I, Jermaļonoka M, Bankovska L, Gavarāne I, Gerbreders V, Sledevskis E, Sniķeris J, Kokina I (2019) Effects of Fe3O4 nanoparticle stress on the growth and development of rocket Eruca sativa. J Nanomater 2019:2678247

    Article  CAS  Google Scholar 

  • Pradhan S, Durgam M, Rao Mailapalli D (2020) Urea loaded hydroxyapatite nanocarrier for efficient delivery of plant nutrients in rice. Arch Agron Soil Sci. https://doi.org/10.1080/03650340.2020.1732940

    Article  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014

    Article  PubMed  PubMed Central  Google Scholar 

  • Priyanka N, Venkatachalam P (2016) Biofabricated zinc oxide nanoparticles coated with phycomolecules as novel micronutrient catalysts for stimulating plant growth of cotton. Adv Nat Sci: Nanosci Nanotechnol 7:045018

    Google Scholar 

  • Qian H, Peng X, Han X, Ren J, Sun L, Fu Z (2013) Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana. J Environ Sci 25:1947–1955

    Article  CAS  Google Scholar 

  • Rahmatizadeh R, Javad Arvin SM, Jamei R, Mozaffari H, Reza Nejhad F (2019) Response of tomato plants to interaction effects of magnetic (Fe3O4) nanoparticles and cadmium stress. J Plant Interact 14:474–481

    Article  CAS  Google Scholar 

  • Rico CM, Johnson MG, Marcus MA, Andersen CP (2017) Intergenerational responses of wheat (Triticum aestivum L.) to cerium oxide nanoparticles exposure. Environ Sci: Nano 4:700–711

    CAS  Google Scholar 

  • Sadak MS (2019) Impact of silver nanoparticles on plant growth, some biochemical aspects, and yield of fenugreek plant (Trigonella foenum-graecum). Doc Bull Natl Res Cent 43:38

    Article  Google Scholar 

  • Salachna P, Byczynska A, Zawadzinska A, Piechocki R, Mizielinska M (2019) Stimulatory effect of silver nanoparticles on the growth and flowering of potted oriental lilies. Agronomy 9:160

    Article  CAS  Google Scholar 

  • Sarkar J, Chakraborty N, Chatterjee A, Bhattacharjee A, Dasgupta D, Acharya K (2020) Green synthesized copper oxide nanoparticles ameliorate defense and antioxidant enzymes in Lens culinaris. Nanomaterials 10:312

    Article  CAS  PubMed Central  Google Scholar 

  • Schwab F, Zhai G, Kern M, Turner A, Schnoor JL, Wiesner MR (2016) Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants- Critical review. Nanotoxicology 10:257–278

    Article  CAS  PubMed  Google Scholar 

  • Shah F, Wu W (2019) Soil and crop management strategies to ensure higher crop productivity within sustainable environments. Sutainability 11:1485

    Article  Google Scholar 

  • Shang Y, Kamrul Hasan M, Jalal Ahammed G, Li M, Yin H, Zhou J (2019) Applications of nanotechnology in plant growth and crop protection: a review. Molecules 24:2558

    Article  CAS  PubMed Central  Google Scholar 

  • Shankramma K, Yallappa S, Shivanna MB, Manjanna J (2016) Fe2O3 magnetic nanoparticles to enhance S. lycopersicum (tomato) plant growth and their biomineralization. Appl Nanosci 6:983–990

    Article  CAS  Google Scholar 

  • Sharma G, Kumar A, Aruna Devi K, Prajapati D, Bhagat D, Pal A, Raliya R, Biswas P, Saharan V (2020) Chitosan nanofertilizer to foster source activity in maize. Int J Biol Macromol 145:226–234

    Article  CAS  PubMed  Google Scholar 

  • Shen Y, Zhou J, Du C (2019) Development of a polyacrylate/silica nanoparticle hybrid emulsion for delaying nutrient release in coated controlled-release urea. Coatings 9:88

    Article  CAS  Google Scholar 

  • Silveira NM, Frungillo L, Marcos FCC, Pelegrino MT, Miranda MT, Seabra AB, Salgado I, Machado EC, Ribeiro RV (2016) Exogenous nitric oxide improves sugarcane growth and photosynthesis under water deficit. Planta 244:181–190

    Article  CAS  PubMed  Google Scholar 

  • Smirnova EA, Gusev AA, Zaitseva ON, Lazareva EM, Onishchenko GE, Kuznetsova EV, Tkachev AG, Feofanov AV, Kirpichnikov MP (2011) Multi-walled carbon nanotubes penetrate into plant cells and affect the growth of Onobrychis arenaria seedlings. Acta Naturae 3:99–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solanki P, Bhargava A, Chhipa H, Jain N, Panwar J (2015) Nano-fertilizers and their smart delivery system. In: Rai M, Ribeiro C, Mattoso L, Duran N (eds) Nanotechnologies in food and agriculture. Springer, Cham

    Google Scholar 

  • Soliman AS, Hassan M, Abou-Elella F, Hanafy Ahmed AH, El-Feky SA (2016) Effect of nano and molecular phosphorus fertilizers on growth and chemical composition of baobab (Adansonia digitata L.). J Plant Sci 11:52–60

    Article  CAS  Google Scholar 

  • Song G, Gao Y, Hou W, Zhang H, Ma H (2012) Physiological effect of anatase TiO2 nanoparticles on Lemna minor. Environ Toxicol Chem 31:2147–2152

    Article  CAS  PubMed  Google Scholar 

  • Su Y, Ashworth V, Kim C, Adeleye AS, Rolshausen P, Roper C, White J, Jassby D (2019) Delivery, uptake, fate, and transport of engineered nanoparticles in plants: a critical review and data analysis. Environ Sci: Nano 6:2311–2331

    CAS  Google Scholar 

  • Sun L, Wang R, Ju Q, Xu J (2020) Physiological, metabolic and transcriptomic analyses reveal the responses of Arabidopsis seedlings to carbon nanohorns. Environ Sci Technol 54:4409–4420

    Article  CAS  PubMed  Google Scholar 

  • Taha RA (2016) Nanocarbon applications for plant. Adv Plants Agric Res 5:483–484

    Google Scholar 

  • Tarafdar JC, Raliya R, Mahawar H, Rathore I (2014) Development of zinc nanofertilizer to enhance crop production in pearl millet (Pennisetum americanum). Agric Res 3:257–262

    Article  CAS  Google Scholar 

  • Tyczewska A, Wozniak E, Gracz J, Kuczynski J, Twardowski T (2018) Towards food security: current state and future prospects of agrobiotechnology. Trends Biotechnol 36(12):1219–1229

    Article  CAS  PubMed  Google Scholar 

  • United Nations (2017) World Population Prospects: The 2017 Revision, Key Findings and Advance Tables. Working Paper No. ESA/P/WP/248

  • Upadhyaya H, Roy H, Shome S, Tewari S, Bhattacharya MK, Panda SK (2017) Physiological impact of zinc nanoparticle on germination of rice (Oryza sativa L.) seed. J Plant Sci Phytopathol 1:062–070

    Article  Google Scholar 

  • Venkatachalam P, Priyanka N, Manikandan K, Ganeshbabu I, Indiraarulselvi P, Geetha N, Muralikrishna K, Bhattacharya RC, Tiwari M, Sharma N, Sahi SV (2016) Enhanced plant growth promoting role of phycomolecules coated zinc oxide nanoparticles with P supplementation in cotton (Gossypium hirsutum L.). Plant Physiol Biochem 110:118–127

    Article  PubMed  CAS  Google Scholar 

  • Verma SK, Das AK, Gantait S, Kumar V, Gurel E (2019) Applications of carbon nanomaterials in the plant system: a perspective view on the pros and cons. Sci Total Environ 667:485–499

    Article  CAS  PubMed  Google Scholar 

  • Vishwakarma K, Shweta, Upadhyay N, Singh J, Liu S, Singh VP, Prasad SM, Chauhan DK, Tripathi DK, Sharma S (2017) Differential phytotoxic impact of plant mediated silver nanoparticles (AgNPs) and silver nitrate (AgNO3) on Brassica sp. Front Plant Sci 8:1501

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang P, Lombi E, Zhao FJ, Kopittke PM (2016a) Nanotechnology: a new opportunity in plant sciences. Trends Plant Sci 21(8):699–712

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Yang X, Chen S, Li Q, Wang W, Hou C, Gao X, Wang L, Wang S (2016b) Zinc oxide nanoparticles affect biomass accumulation and photosynthesis in Arabidopsis. Front Plant Sci 6:1243

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang W, Liu J, Ren Y, Zhang L, Xue Y, Zhang L, He J (2020) Phytotoxicity assessment of copper oxide nanoparticles on the germination, early seedling growth, and physiological responses in Oryza sativa L. Bull Environ Contam Toxicol 104:770–777

    Article  CAS  PubMed  Google Scholar 

  • Wanyika H, Gatebe E, Kioni P, Tang Z, Gao Y (2012) Mesoporous silica nanoparticles carrier for urea: potential applications in agrochemical delivery systems. J Nanosci Nanotechnol 12:2221–2228

    Article  CAS  PubMed  Google Scholar 

  • Xiong L, Wang P, Hunter MN, Kopittke PM (2018) Bioavailability and movement of hydroxyapatite nanoparticles (HA-NPs) applied as a phosphorus fertiliser in soils. Environ Sci: Nano 5:2888

    CAS  Google Scholar 

  • Yang X, Pan H, Wang P, Zhao FJ (2016) Particle-specific toxicity and bioavailability of cerium oxide (CeO2) nanoparticles to Arabidopsis thaliana. J Hazard Mater 322:292–300

    Article  PubMed  CAS  Google Scholar 

  • Yoon H, Kang YG, Chang YS, Kim JH (2019) Effects of zerovalent iron nanoparticles on photosynthesis and biochemical adaptation of soil-grown Arabidopsis thaliana. Nanomaterials 9:1543

    Article  CAS  PubMed Central  Google Scholar 

  • Yoon HY, Gu Lee J, Degli Esposti L, Iafisco M, Joo Kim P, Gu Shin S, Jeon JR, Adamiano A (2020) Synergistic release of crop nutrients and stimulants from hydroxyapatite nanoparticles functionalized with humic substances: toward a multifunctional nanofertilizer. ACS Omega 5:6598–6610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yousefi S, Kartoolinejad D, Naghdi R (2017) Effects of priming with multi-walled carbon nanotubes on seed physiological characteristics of Hopbush (Dodonaea viscosa L.) under drought stress. Int J Environ Stud 74:528–534

    Article  CAS  Google Scholar 

  • Zaytseva O, Neumann G (2016) Carbon nanomaterials: production, impact on plant development, agricultural and environmental applications. Chem Biol Technol Agric 3:17

    Article  CAS  Google Scholar 

  • Zhang P, Guo Z, Zhang Z, Fu H, White JC, Lynch I (2020) Nanomaterial transformation in the soil–plant system: implications for food safety and application in agriculture. Small 16:2000705

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported for the project financed by ANID/CONICYT FONDECYT/POSTDOCTORADO N°3180279, ANID/FONDAP/15130015, FAPESP (2018/08194-2), CNPq (404815/2018-9, 313117/2019-5). This research was partially funded by the Dirección de Investigación-Universidad de La Frontera.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Fincheira.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Gerhard Leubner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fincheira, P., Tortella, G., Seabra, A.B. et al. Nanotechnology advances for sustainable agriculture: current knowledge and prospects in plant growth modulation and nutrition. Planta 254, 66 (2021). https://doi.org/10.1007/s00425-021-03714-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-021-03714-0

Keywords

Navigation