Skip to main content
Log in

Regulation of seedling growth by ethylene and the ethylene–auxin crosstalk

  • Review
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

This review highlights that the auxin gradient, established by local auxin biosynthesis and transport, can be controlled by ethylene, and steers seedling growth. A better understanding of the mechanisms in Arabidopsis will increase potential applications in crop species.

In dark-grown Arabidopsis seedlings, exogenous ethylene treatment triggers an exaggeration of the apical hook, the inhibition of both hypocotyl and root elongation, and radial swelling of the hypocotyl. These features are predominantly based on the differential cell elongation in different cells/tissues mediated by an auxin gradient. Interestingly, the physiological responses regulated by ethylene and auxin crosstalk can be either additive or synergistic, as in primary root and root hair elongation, or antagonistic, as in hypocotyl elongation. This review focuses on the crosstalk of these two hormones at the seedling stage. Before illustrating the crosstalk, ethylene and auxin biosynthesis, metabolism, transport and signaling are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Adapted from Friml and Jones (2010)

Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abbas M, Alabadi D, Blazquez MA (2013) Differential growth at the apical hook: all roads lead to auxin. Front Plant Sci 4:441. doi:10.3389/fpls.2013.00441

    Article  PubMed  PubMed Central  Google Scholar 

  • Abel S, Theologis A (1996) Early genes and auxin action. Plant Physiol 111(1):9–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abeles FB, Morgan PW, Saltveit ME (1992) Ethylene in plant biology. Academic Press, San Diego, p 414

    Google Scholar 

  • Amrhein N, Schneebeck D, Skorupka H, Tophof S, Stöckigt J (1981) Identification of a major metabolite of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid in higher plants. Naturwissenschaften 68(12):619–620

    Article  CAS  Google Scholar 

  • An F, Zhang X, Zhu Z, Ji Y, He W, Jiang Z, Li M, Guo H (2012) Coordinated regulation of apical hook development by gibberellins and ethylene in etiolated Arabidopsis seedlings. Cell Res 22(5):915–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arteca RN, Tsai DS, Schlagnhaufer C, Mandava NB (1983) The effect of brassinosteroid on auxin-induced ethylene production by etiolated mung bean segments. Physiol Plant 59(4):539–544

    Article  CAS  Google Scholar 

  • Bailly A, Sovero V, Vincenzetti V, Santelia D, Bartnik D, Koenig BW, Mancuso S, Martinoia E, Geisler M (2008) Modulation of P-glycoproteins by auxin transport inhibitors is mediated by interaction with immunophilins. J Biol Chem 283(31):21817–21826. doi:10.1074/jbc.M709655200

    Article  CAS  PubMed  Google Scholar 

  • Bak S, Tax FE, Feldmann KA, Galbraith DW, Feyereisen R (2001) CYP83B1, a cytochrome P450 at the metabolic branch point in auxin and indole glucosinolate biosynthesis in Arabidopsis. Plant Cell 13(1):101–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baluska F, Parker JS, Barlow PW (1992) Specific patterns of cortical and endoplasmic microtubules associated with cell growth and tissue differentiation in roots of maize (Zea mays L.). J Cell Sci 103:191–200

    Google Scholar 

  • Barbez E, Kleine-Vehn J (2013) Divide Et Impera-cellular auxin compartmentalization. Curr Opin Plant Biol 16(1):78–84. doi:10.1016/j.pbi.2012.10.005

    Article  CAS  PubMed  Google Scholar 

  • Baskin TI (2015) Auxin inhibits expansion rate independently of cortical microtubules. Trends Plant Sci 20(8):471–472. doi:10.1016/j.tplants.2015.05.008

    Article  CAS  PubMed  Google Scholar 

  • Bennett MJ, Marchant A, Green HG, May ST, Ward SP, Millner PA, Walker AR, Schulz B, Feldmann KA (1996) Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Science 273(5277):948–950

    Article  CAS  PubMed  Google Scholar 

  • Beyer EM (1976) A potent inhibitor of ethylene action in plants. Plant Physiol 58(3):268–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Binder BM, Mortimore LA, Stepanova AN, Ecker JR, Bleecker AB (2004) Short-term growth responses to ethylene in Arabidopsis seedlings are EIN3/EIL1 independent. Plant Physiol 136(2):2921–2927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Binder BM, Rodriguez FI, Bleecker AB, Patterson SE (2007) The effects of Group 11 transition metals, including gold, on ethylene binding to the ETR1 receptor and growth of Arabidopsis thaliana. Febs Lett 581(26):5105–5109. doi:10.1016/j.febslet.2007.09.057

    Article  CAS  PubMed  Google Scholar 

  • Blakeslee JJ, Bandyopadhyay A, Peer WA, Makam SN, Murphy AS (2004) Relocalization of the PIN1 auxin efflux facilitator plays a role in phototropic responses. Plant Physiol 134(1):28–31. doi:10.1104/pp.103.031690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blakeslee JJ, Bandyopadhyay A, Lee OR, Mravec J, Titapiwatanakun B, Sauer M, Makam SN, Cheng Y, Bouchard R, Adamec J, Geisler M, Nagashima A, Sakai T, Martinoia E, Friml J, Peer WA, Murphy AS (2007) Interactions among PIN-FORMED and P-glycoprotein auxin transporters in Arabidopsis. Plant Cell 19(1):131–147. doi:10.1105/tpc.106.040782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433:39–44

    Article  CAS  PubMed  Google Scholar 

  • Boerjan W, Cervera MT, Delarue M, Beeckman T, Dewitte W, Bellini C, Caboche M, Van Onckelen H, Van Montagu M, Inze D (1995) Superroot, a recessive mutation in Arabidopsis, confers auxin overproduction. Plant Cell 7(9):1405–1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bondad N (1976) Response of some tropical and subtropical fruits to pre- and post-harvest applications of ethephon. Econ Bot 30(1):67–80

    Article  CAS  Google Scholar 

  • Bouguyon E, Brun F, Meynard D, Kubeš M, Pervent M, Leran S, Lacombe B, Krouk G, Guiderdoni E, Zažímalová E, Hoyerová K, Nacry P, Gojon A (2015) Multiple mechanisms of nitrate sensing by Arabidopsis nitrate transceptor NRT1.1. Nat Plants 1(3):15015. doi:10.1038/nplants.2015.15

    Article  CAS  PubMed  Google Scholar 

  • Boutte Y, Jonsson K, McFarlane HE, Johnson E, Gendre D, Swarup R, Friml J, Samuels L, Robert S, Bhalerao RP (2013) ECHIDNA-mediated post-Golgi trafficking of auxin carriers for differential cell elongation. Proc Natl Acad Sci USA 110(40):16259–16264. doi:10.1073/pnas.1309057110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford KJ, Yang SF (1980) Stress-induced ethylene production in the ethylene-requiring tomato mutant diageotropica. Plant Physiol 65(2):327–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford KJ, Hsiao TC, Yang SF (1982) Inhibition of ethylene synthesis in tomato plants subjected to anaerobic root stress. Plant Physiol 70(5):1503–1507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brady SM, Orlando DA, Lee JY, Wang JY, Koch J, Dinneny JR, Mace D, Ohler U, Benfey PN (2007) A high-resolution root spatiotemporal map reveals dominant expression patterns. Science 318(5851):801–806. doi:10.1126/science.1146265

    Article  CAS  PubMed  Google Scholar 

  • Brunoud G, Wells DM, Oliva M, Larrieu A, Mirabet V, Burrow AH, Beeckman T, Kepinski S, Traas J, Bennett MJ, Vernoux T (2012) A novel sensor to map auxin response and distribution at high spatio-temporal resolution. Nature 482(7383):U103–U132. doi:10.1038/Nature10791

    Article  CAS  Google Scholar 

  • Buer CS, Muday GK (2004) The transparent testa4 mutation prevents flavonoid synthesis and alters auxin transport and the response of Arabidopsis roots to gravity and light. Plant Cell 16(5):1191–1205. doi:10.1105/tpc.020313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buer CS, Sukumar P, Muday GK (2006) Ethylene modulates flavonoid accumulation and gravitropic responses in roots of Arabidopsis. Plant Physiol 140(4):1384–1396. doi:10.1104/pp.105.075671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caspar T, Pickard BG (1989) Gravitropism in a starchless mutant of Arabidopsis: implications for the starch-statolith theory of gravity sensing. Planta 177(2):185–197. doi:10.1007/BF00392807

    Article  Google Scholar 

  • Chang KN, Zhong S, Weirauch MT, Hon G, Pelizzola M, Li H, Huang SS, Schmitz RJ, Urich MA, Kuo D, Nery JR, Qiao H, Yang A, Jamali A, Chen H, Ideker T, Ren B, Bar-Joseph Z, Hughes TR, Ecker JR (2013) Temporal transcriptional response to ethylene gas drives growth hormone cross-regulation in Arabidopsis. eLife 2:e00675. doi:10.7554/eLife.00675

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chao Q, Rothenberg M, Solano R, Roman G, Terzaghi W, Ecker JR (1997) Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins. Cell 89(7):1133–1144

    Article  CAS  PubMed  Google Scholar 

  • Chen R, Hilson P, Sedbrook J, Rosen E, Caspar T, Masson PH (1998) The Arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier. Proc Natl Acad Sci 95:15112–15117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen R, Rosen E, Masson PH (1999) Gravitropism in higher plants. Plant Physiol 120(2):343–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Q, Dai X, De-Paoli H, Cheng Y, Takebayashi Y, Kasahara H, Kamiya Y, Zhao Y (2014) Auxin overproduction in shoots cannot rescue auxin deficiencies in Arabidopsis roots. Plant Cell Physiol 55(6):1072–1079. doi:10.1093/pcp/pcu039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng Y, Qin G, Dai X, Zhao Y (2007) NPY1, a BTB-NPH3-like protein, plays a critical role in auxin-regulated organogenesis in Arabidopsis. Proc Natl Acad Sci USA 104(47):18825–18829. doi:10.1073/pnas.0708506104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen JD, Baldi BG, Slovin JP (1986) 13C6-[benzene ring]-indole-3-acetic acid. Plant Physiol 80:14–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Čovanová M, Sauer M, Rychtář J, Friml J, Petrášek J, Zažímalová E (2013) Overexpression of the auxin binding protein1 modulates PIN-dependent auxin transport in tobacco cells. PLoS One 8(7):e70050. doi:10.1371/journal.pone.0070050

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dai X, Zhang Y, Zhang D, Chen J, Gao X, Estelle M, Zhao Y (2015) Embryonic lethality of Arabidopsis abp1-1 is caused by deletion of the adjacent BSM gene. Nat Plants 1:15183. doi:10.1038/nplants.2015.183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Cnodder T, Vissenberg K, Van Der Straeten D, Verbelen JP (2005) Regulation of cell length in the Arabidopsis thaliana root by the ethylene precursor 1-aminocyclopropane-1-carboxylic acid: a matter of apoplastic reactions. New Phytol 168(3):541–550. doi:10.1111/j.1469-8137.2005.01540.x

    Article  PubMed  CAS  Google Scholar 

  • Delarue M, Prinsen E, Onckelen HV, Caboche M, Bellini C (1998) Sur2 mutations of Arabidopsis thaliana define a new locus involved in the control of auxin homeostasis. Plant J 14(5):603–611

    Article  CAS  PubMed  Google Scholar 

  • Delbarre A, Muller P, Imhoff V, Guern J (1996) Comparison of mechanisms controlling uptake and accumulation of 2, 4-dichlorophenoxy acetic acid, naphthalene-1-acetic acid, and indole-3-acetic acid in suspension-cultured tobacco cells. Planta 198(4):532–541

    Article  CAS  Google Scholar 

  • Delbarre A, Muller P, Guern J (1998) Short-lived and phosphorylated proteins contribute to carrier-mediated efflux, but not to influx, of auxin in suspension-cultured tobacco cells. Plant Physiol 116(2):833–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dharmasiri N, Dharmasiri S, Weijers D, Lechner E, Yamada M, Hobbie L, Ehrismann JS, Jurgens G, Estelle M (2005) Plant development is regulated by a family of auxin receptor F box proteins. Dev Cell 9(1):109–119. doi:10.1016/j.devcel.2005.05.014

    Article  CAS  PubMed  Google Scholar 

  • Ding Z, Galvan-Ampudia CS, Demarsy E, Langowski L, Kleine-Vehn J, Fan Y, Morita MT, Tasaka M, Fankhauser C, Offringa R, Friml J (2011) Light-mediated polarization of the PIN3 auxin transporter for the phototropic response in Arabidopsis. Nat Cell Biol 13(4):447–452. doi:10.1038/ncb2208

    Article  CAS  PubMed  Google Scholar 

  • Dolan L, Janmaat K, Willemsen V, Linstead P, Poethig S, Roberts K, Scheres B (1993) Cellular organisation of the Arabidopsis thaliana root. Development 119:71–84

    CAS  PubMed  Google Scholar 

  • Dolan L, Duckett CM, Grierson C, Linstead P, Schneider K, Lawson E, Dean C, Poethig S, Roberts K (1994) Clonal relationships and cell patterning in the root epidermis of Arabidopsis. Development 120(9):2465–2474

    CAS  Google Scholar 

  • Dunlap JR, Kresovich S, McGee RE (1986) The effect of salt concentration on auxin stability in culture media. Plant Physiol 81(3):934–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edlund A, Eklof S, Sundberg B, Moritz T, Sandberg G (1995) A microscale technique for gas chromatography–mass spectrometry measurements of picogram amounts of indole-3-acetic acid in plant tissues. Plant Physiol 108:1043–1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esmon CA, Tinsley AG, Ljung K, Sandberg G, Hearne LB, Liscum E (2005) A gradient of auxin and auxin-dependent transcription precedes tropic growth responses. Proc Natl Acad Sci USA 103(1):236–241. doi:10.1073/pnas.0507127103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Friml J, Jones AR (2010) Endoplasmic reticulum: the rising compartment in auxin biology. Plant Physiol 154(2):458–462. doi:10.1104/pp.110.161380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friml J, Wisniewska J, Benkova E, Mendgen K, Palme K (2002) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415(6873):806–809. doi:10.1038/415806a

    Article  PubMed  Google Scholar 

  • Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Offringa R, Jurgens G (2003) Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426(6963):147–153. doi:10.1038/nature02085

    Article  CAS  PubMed  Google Scholar 

  • Fukaki H, Wysocka-Diller J, Kato T, Fujisawa H, Benfey PN, Tasaka M (1998) Genetic evidence that the endodermis is essential for shoot gravitropism in Arabidopsis thaliana. Plant J 14(4):425–430

    Article  CAS  PubMed  Google Scholar 

  • Gälweiler L, Guan C, Müller A, Wisman E, Mendgen K, Yephremov A, Palme K (1998) Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282(5397):2226–2230

    Article  PubMed  Google Scholar 

  • Gao Y, Zhang Y, Zhang D, Dai X, Estelle M, Zhao Y (2015) Auxin binding protein 1 (ABP1) is not required for either auxin signaling or Arabidopsis development. Proc Natl Acad Sci USA 112(7):2275–2280. doi:10.1073/pnas.1500365112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geisler M, Wang B, Zhu J (2014) Auxin transport during root gravitropism: transporters and techniques. Plant Biol 16(Suppl 1):50–57. doi:10.1111/plb.12030

    Article  PubMed  Google Scholar 

  • Geitmann A, Hush JM, Overall RL (1997) Inhibition of ethylene biosynthesis does not block microtubule re-orientation in wounded pea roots. Protoplasma 198(3–4):135–142

    Article  CAS  Google Scholar 

  • Gendreau E, Traas J, Desnos T, Grandjean O, Caboche M, Hofte H (1997) Cellular basis of hypocotyl growth in Arabidopsis thaliana. Plant Physiol 114(1):295–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giovanelli J, Mudd SH, Datko AH (1985) Quantitative analysis of pathways of methionine metabolism and their regulation in Lemna. Plant Physiol 78(3):555–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grebe M, Friml J, Swarup R, Ljung K, Sandberg G, Terlou M, Palme K, Bennett MJ, Scheres B (2002) Cell polarity signaling in Arabidopsis involves a BFA-sensitive auxin influx pathway. Curr Biol 12(4):329–334

    Article  CAS  PubMed  Google Scholar 

  • Grossmann K (2003) Mediation of herbicide effects by hormone interactions. J Plant Growth Regul 22(1):109–122. doi:10.1007/s00344-003-0020-0

    Article  CAS  Google Scholar 

  • Guo HW, Ecker JR (2003) Plant responses to ethylene gas are mediated by SCF (EBF1/EBF2)-dependent proteolysis of EIN3 transcription factor. Cell 115(6):667–677

    Article  CAS  PubMed  Google Scholar 

  • Guzman P, Ecker JR (1990) Exploiting the triple response of arabidopsis to identify ethylene-related mutants. Plant Cell 2(6):513–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagen G, Guilfoyle T (2002) Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol Biol 49(3–4):373–385

    Article  CAS  PubMed  Google Scholar 

  • Harper RM, Stowe-Evans EL, Luesse DR, Muto H, Tatematsu K, Watahiki MK, Yamamoto K, Liscum E (2000) The NPH4 locus encodes the auxin response factor ARF7, a conditional regulator of differential growth in aerial arabidopsis tissue. Plant Cell 12:757–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi K (2012) The interaction and integration of auxin signaling components. Plant Cell Physiol 53(6):965–975. doi:10.1093/pcp/pcs035

    Article  CAS  PubMed  Google Scholar 

  • Hayashi K-I, Overvoorde P (2013) Use of chemical biology to understand auxin metabolism, signaling, and polar transport. In: Audenaert D, Overvoorde P (eds) Plant chemical biology. Wiley, Hoboken. doi:10.1002/9781118742921.ch4.1

  • Hayashi K, Tan X, Zheng N, Hatate T, Kimura Y, Kepinski S, Nozaki H (2008) Small-molecule agonists and antagonists of F-box protein-substrate interactions in auxin perception and signaling. Proc Natl Acad Sci USA 105(14):5632–5637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi K, Neve J, Hirose M, Kuboki A, Shimada Y, Kepinski S, Nozaki H (2012) Rational design of an auxin antagonist of the SCF(TIR1) auxin receptor complex. ACS Chem Biol 7(3):590–598. doi:10.1021/cb200404c

    Article  CAS  PubMed  Google Scholar 

  • Hayashi K, Nakamura S, Fukunaga S, Nishimura T, Jenness MK, Murphy AS, Motose H, Nozaki H, Furutani M, Aoyama T (2014) Auxin transport sites are visualized in planta using fluorescent auxin analogs. Proc Natl Acad Sci USA 111(31):11557–11562. doi:10.1073/pnas.1408960111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henderson J, Bauly JM, Ashford DA, Oliver SC, Hawes CR, Lazarus CM, Venis MA, Napier RM (1997) Retention of maize auxin-binding protein in the endoplasmic reticulum: quantifying escape and the role of auxin. Planta 202(3):313–323

    Article  CAS  PubMed  Google Scholar 

  • Hoson T, Saito Y, Soga K, Wakabayashi K (2005) Signal perception, transduction, and response in gravity resistance. Another graviresponse in plants. Adv Space Res 36(7):1196–1202. doi:10.1016/j.asr.2005.04.095

    Article  Google Scholar 

  • Ikeda Y, Men S, Fischer U, Stepanova AN, Alonso JM, Ljung K, Grebe M (2009) Local auxin biosynthesis modulates gradient-directed planar polarity in Arabidopsis. Nat Cell Biol 11(6):731–738. doi:10.1038/ncb1879

    Article  CAS  PubMed  Google Scholar 

  • Imhoff V, Muller P, Guern J, Delbarre A (2000) Inhibitors of the carrier-mediated influx of auxin in suspension-cultured tobacco cells. Planta 210(4):580–588

    Article  CAS  PubMed  Google Scholar 

  • Jaillais Y, Chory J (2010) Unraveling the paradoxes of plant hormone signaling integration. Nat Struct Mol Biol 17(6):642–645. doi:10.1038/nsmb0610-642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen PJ, Hangarter RP, Estelle M (1998) Auxin transport is required for hypocotyl elongation in light-grown but not dark-grown Arabidopsis. Plant Physiol 116(2):455–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jing Y, Zhang D, Wang X, Tang W, Wang W, Huai J, Xu G, Chen D, Li Y, Lin R (2013) Arabidopsis chromatin remodeling factor PICKLE interacts with transcription factor HY5 to regulate hypocotyl cell elongation. Plant Cell 25(1):242–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones AM, Herman EM (1993) KDEL-containing auxin-binding protein is secreted to the plasma membrane and cell wall. Plant Physiol 101(2):595–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ju C, Yoon GM, Shemansky JM, Lin DY, Ying ZI, Chang J, Garrett WM, Kessenbrock M, Groth G, Tucker ML, Cooper B, Kieber JJ, Chang C (2012) CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis. Proc Natl Acad Sci USA 109(47):19486–19491. doi:10.1073/pnas.1214848109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jurado S, Abraham Z, Manzano C, Lopez-Torrejon G, Pacios LF, Del Pozo JC (2010) The Arabidopsis cell cycle F-box protein SKP2A binds to auxin. Plant Cell 22(12):3891–3904. doi:10.1105/tpc.110.078972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kai K, Horita J, Wakasa K, Miyagawa H (2007) Three oxidative metabolites of indole-3-acetic acid from Arabidopsis thaliana. Phytochemistry 68(12):1651–1663. doi:10.1016/j.phytochem.2007.04.030

    Article  CAS  PubMed  Google Scholar 

  • Kakei Y, Yamazaki C, Suzuki M, Nakamura A, Sato A, Ishida Y, Kikuchi R, Higashi S, Kokudo Y, Ishii T, Soeno K, Shimada Y (2015) Small-molecule auxin inhibitors that target YUCCA are powerful tools for studying auxin function. Plant J. doi:10.1111/tpj.13032

    PubMed  Google Scholar 

  • Kapulnik Y, Resnick N, Mayzlish-Gati E, Kaplan Y, Wininger S, Hershenhorn J, Koltai H (2011) Strigolactones interact with ethylene and auxin in regulating root-hair elongation in Arabidopsis. J Exp Bot 62(8):2915–2924. doi:10.1093/jxb/erq464

    Article  CAS  PubMed  Google Scholar 

  • Kieber J, Rothenberg M, Roman G, Feldmann K, Ecker J (1993) CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell 72:427–441

    Article  CAS  PubMed  Google Scholar 

  • Kim JY, Henrichs S, Bailly A, Vincenzetti V, Sovero V, Mancuso S, Pollmann S, Kim D, Geisler M, Nam HG (2010) Identification of an ABCB/P-glycoprotein-specific inhibitor of auxin transport by chemical genomics. J Biol Chem 285(30):23309–23317. doi:10.1074/jbc.M110.105981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klíma P, Laňková M, Zažímalová E (2015) Inhibitors of plant hormone transport. Protoplasma 253(6):1391–1404. doi:10.1007/s00709-015-0897-z

    Article  PubMed  CAS  Google Scholar 

  • Korasick DA, Enders TA, Strader LC (2013) Auxin biosynthesis and storage forms. J Exp Bot 64(9):2541–2555. doi:10.1093/jxb/ert080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kowalczyk M, Sandberg G (2001) Quantitative analysis of indole-3-acetic acid metabolites in Arabidopsis. Plant Physiol 127(4):1845–1853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krouk G, Lacombe B, Bielach A, Perrine-Walker F, Malinska K, Mounier E, Hoyerova K, Tillard P, Leon S, Ljung K (2010) Nitrate-regulated auxin transport by NRT1. 1 defines a mechanism for nutrient sensing in plants. Dev Cell 18(6):927–937

    Article  CAS  PubMed  Google Scholar 

  • Kubes M, Yang H, Richter GL, Cheng Y, Mlodzinska E, Wang X, Blakeslee JJ, Carraro N, Petrasek J, Zazimalova E, Hoyerova K, Peer WA, Murphy AS (2012) The Arabidopsis concentration-dependent influx/efflux transporter ABCB4 regulates cellular auxin levels in the root epidermis. Plant J 69(4):640–654. doi:10.1111/j.1365-313X.2011.04818.x

    Article  CAS  PubMed  Google Scholar 

  • Lankova M, Smith RS, Pesek B, Kubes M, Zazimalova E, Petrasek J, Hoyerova K (2010) Auxin influx inhibitors 1-NOA, 2-NOA, and CHPAA interfere with membrane dynamics in tobacco cells. J Exp Bot 61(13):3589–3598. doi:10.1093/jxb/erq172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lau O-L, Yang SF (1976) Inhibition of ethylene production by cobaltous ion. Plant Physiol 58(1):114–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Deunff E, Lecourt J (2015) Non-specificity of ethylene inhibitors: ‘double-edged’ tools to find out new targets involved in the root morphogenetic programme. Plant Biol. doi:10.1111/plb.12405

    PubMed  Google Scholar 

  • Le Deunff E, Lecourt J, Malagoli P (2016) Fine-tuning of root elongation by ethylene: a tool to study dynamic structure–function relationships between root architecture and nitrate absorption. Ann Bot Lond 118(4):607–620. doi:10.1093/aob/mcw123

    Article  Google Scholar 

  • Le J, Vandenbussche F, Van Der Straeten D, Verbelen JP (2001) In the early response of Arabidopsis roots to ethylene, cell elongation is up- and down-regulated and uncoupled from differentiation. Plant Physiol 125(2):519–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le J, Vandenbussche F, Van Der Straeten D, Verbelen J-P (2004) Position and cell type-dependent microtubule reorientation characterizes the early response of the Arabidopsis root epidermis to ethylene. Physiol Plant 121(3):513–519

    Article  CAS  Google Scholar 

  • Le J, Vandenbussche F, Cnodder T, Van Der Straeten D, Verbelen J-P (2005) Cell elongation and microtubule behavior in the arabidopsis hypocotyl: responses to ethylene and auxin. J Plant Growth Regul 24(3):166–178. doi:10.1007/s00344-005-0044-8

    Article  CAS  Google Scholar 

  • Leblanc A, Renault H, Lecourt J, Etienne P, Deleu C, Le Deunff E (2008) Elongation changes of exploratory and root hair systems induced by aminocyclopropane carboxylic acid and aminoethoxyvinylglycine affect nitrate uptake and BnNrt2. 1 and BnNrt1. 1 transporter gene expression in oilseed rape. Plant Physiol 146(4):1928–1940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JS, Chang W-K, Evans ML (1990) Effects of ethylene on the kinetics of curvature and auxin redistribution in gravistimulated roots of Zea mays. Plant Physiol 94(4):1770–1775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehman A, Black R, Ecker JR (1996) HOOKLESS1, an ethylene response gene, is required for differential cell elongation in the Arabidopsis hypocotyl. Cell 85(2):183–194

    Article  CAS  PubMed  Google Scholar 

  • Lewis DR, Miller ND, Splitt BL, Wu G, Spalding EP (2007) Separating the roles of acropetal and basipetal auxin transport on gravitropism with mutations in two Arabidopsis multidrug resistance-like ABC transporter genes. Plant Cell 19(6):1838–1850. doi:10.1105/tpc.107.051599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis DR, Ramirez MV, Miller ND, Vallabhaneni P, Ray WK, Helm RF, Winkel BS, Muday GK (2011) Auxin and ethylene induce flavonol accumulation through distinct transcriptional networks. Plant Physiol 156(1):144–164. doi:10.1104/pp.111.172502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leyser HM, Lincoln CA, Timpte C, Lammer D, Turner J, Estelle M (1993) Arabidopsis auxin-resistance gene AXR1 encodes a protein related to ubiquitin-activating enzyme E1. Nature 364(6433):161–164. doi:10.1038/364161a0

    Article  CAS  PubMed  Google Scholar 

  • Leyser HM, Pickett FB, Dharmasiri S, Estelle M (1996) Mutations in the AXR3 gene of Arabidopsis result in altered auxin response including ectopic expression from the SAUR-AC1 promoter. Plant J 10(3):403–413

    Article  CAS  PubMed  Google Scholar 

  • Li H, Johnson P, Stepanova A, Alonso JM, Ecker JR (2004) Convergence of signaling of differential cell growth pathways in the control in Arabidopsis. Dev Cell 7(2):193–204

    Article  CAS  PubMed  Google Scholar 

  • Li J, Dai X, Zhao Y (2006) A role for auxin response factor 19 in auxin and ethylene signaling in Arabidopsis. Plant Physiol 140(3):899–908. doi:10.1104/pp.105.070987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Ma M, Feng Y, Li H, Wang Y, Ma Y, Li M, An F, Guo H (2015) EIN2-directed translational regulation of ethylene signaling in Arabidopsis. Cell 163(3):670–683. doi:10.1016/j.cell.2015.09.037

    Article  CAS  PubMed  Google Scholar 

  • Liang X, Wang H, Mao L, Hu Y, Dong T, Zhang Y, Wang X, Bi Y (2012) Involvement of COP1 in ethylene- and light-regulated hypocotyl elongation. Planta 236(6):1791–1802

    Article  CAS  PubMed  Google Scholar 

  • Lin LC, Hsu JH, Wang LC (2010) Identification of novel inhibitors of 1-Aminocyclopropane-1-carboxylic acid synthase by chemical screening in Arabidopsis thaliana. J Biol Chem 285(43):33445–33456. doi:10.1074/jbc.M110.132498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lincoln C, Britton JH, Estelle M (1990) Growth and development of the axr1 mutants of Arabidopsis. Plant Cell 2(11):1071–1080. doi:10.1105/tpc.2.11.1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Mehdi S, Topping J, Friml J, Lindsey K (2013) Interaction of PLS and PIN and hormonal crosstalk in Arabidopsis root development. Front Plant Sci 4:75. doi:10.3389/fpls.2013.00075

    PubMed  PubMed Central  Google Scholar 

  • Ljung K (2013) Auxin metabolism and homeostasis during plant development. Development 140(5):943–950. doi:10.1242/dev.086363

    Article  CAS  PubMed  Google Scholar 

  • Ljung K, Hull AK, Celenza J, Yamada M, Estelle M, Normanly J, Sandberg G (2005) Sites and regulation of auxin biosynthesis in Arabidopsis roots. Plant Cell 17(4):1090–1104. doi:10.1105/tpc.104.029272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ludwig-Muller J (2011) Auxin conjugates: their role for plant development and in the evolution of land plants. J Exp Bot 62(6):1757–1773. doi:10.1093/jxb/erq412

    Article  PubMed  CAS  Google Scholar 

  • Luschnig C, Gaxiola RA, Grisafi P, Fink GR (1998) EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev 12(14):2175–2187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Q, Robert S (2013) Auxin biology revealed by small molecules. Physiol Plant. doi:10.1111/ppl.12128

    Google Scholar 

  • Ma W, Li J, Qu B, He X, Zhao X, Li B, Fu X, Tong Y (2014) Auxin biosynthetic gene TAR2 is involved in low nitrogen-mediated reprogramming of root architecture in Arabidopsis. Plant J 78(1):70–79. doi:10.1111/tpj.12448

    Article  CAS  PubMed  Google Scholar 

  • Mano Y, Nemoto K (2012) The pathway of auxin biosynthesis in plants. J Exp Bot 63(8):2853–2872. doi:10.1093/jxb/ers091

    Article  CAS  PubMed  Google Scholar 

  • Mao JL, Miao ZQ, Wang Z, Yu LH, Cai XT, Xiang CB (2016) Arabidopsis ERF1 mediates cross-talk between ethylene and auxin biosynthesis during primary root elongation by regulating ASA1 expression. PLoS Genet 12(1):e1005760. doi:10.1371/journal.pgen.1005760

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marchant A, Kargul J, May ST, Muller P, Delbarre A, Perrot-Rechenmann C, Bennett JM (1999) AUX1 regulates root gravitropism in Arabidopsis by facilitating auxin uptake within root apical tissues. EMBO J 18(8):2066–2073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchant A, Bhalerao R, Casimiro I, Eklof J, Casero PJ, Bennett M, Sandberg G (2002) AUX1 promotes lateral root formation by facilitating indole-3-acetic acid distribution between sink and source tissues in the Arabidopsis seedling. Plant Cell 14(3):589–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin MN, Cohen JD, Saftner RA (1995) A new 1-aminocyclopropane-1-carboxylic acid-conjugating activity in tomato fruit. Plant Physiol 109(3):917–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mashiguchi K, Tanaka K, Sakai T, Sugawara S, Kawaide H, Natsume M, Hanada A, Yaeno T, Shirasu K, Yao H, McSteen P, Zhao Y, K-i Hayashi, Kamiya Y, Kasahara H (2011) The main auxin biosynthesis pathway in Arabidopsis. PNAS 108(45):18512–18517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masucci JD, Schiefelbein JW (1994) The rhd6 mutation of Arabidopsis thaliana alters root-hair initiation through an auxin- and ethylene-associated process. Plant Physiol 106(4):1335–1346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masucci JD, Schiefelbein JW (1996) Hormones act downstream of TTG and GL2 to promote root hair outgrowth during epidermis development in the Arabidopsis root. Plant Cell 8(9):1505–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazzella MA, Casal JJ, Muschietti JP, Fox AR (2014) Hormonal networks involved in apical hook development in darkness and their response to light. Front Plant Sci. doi:10.3389/Fpls.2014.00052

    PubMed  PubMed Central  Google Scholar 

  • McDaniel BK, Binder BM (2012) Ethylene Receptor 1 (ETR1) is sufficient and has the predominant role in mediating inhibition of ethylene responses by silver in Arabidopsis thaliana. J Biol Chem 287(31):26094–26103. doi:10.1074/jbc.M112.383034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDonnell L, Plett JM, Andersson-Gunnerås S, Kozela C, Dugardeyn J, Van Der Straeten D, Glick BR, Sundberg B, Regan S (2009) Ethylene levels are regulated by a plant encoded 1-aminocyclopropane-1-carboxylic acid deaminase. Physiol Plant 136(1):94–109

    Article  CAS  PubMed  Google Scholar 

  • Merchante C, Brumos J, Yun J, Hu Q, Spencer KR, Enriquez P, Binder BM, Heber S, Stepanova AN, Alonso JM (2015) Gene-specific translation regulation mediated by the hormone-signaling molecule EIN2. Cell 163(3):684–697. doi:10.1016/j.cell.2015.09.036

    Article  CAS  PubMed  Google Scholar 

  • Mikkelsen MD, Naur P, Halkier BA (2004) Arabidopsis mutants in the C-S lyase of glucosinolate biosynthesis establish a critical role for indole-3-acetaldoxime in auxin homeostasis. Plant J 37(5):770–777

    Article  CAS  PubMed  Google Scholar 

  • Muday GK, Brady SR, Argueso C, Deruere J, Kieber JJ, DeLong A (2006) RCN1-regulated phosphatase activity and EIN2 modulate hypocotyl gravitropism by a mechanism that does not require ethylene signaling. Plant Physiol 141(4):1617–1629. doi:10.1104/pp.106.083212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muday GK, Rahman A, Binder BM (2012) Auxin and ethylene: collaborators or competitors? Trends Plant Sci 17(4):181–195. doi:10.1016/j.tplants.2012.02.001

    Article  CAS  PubMed  Google Scholar 

  • Narukawa-Nara M, Nakamura A, Kikuzato K, Kakei Y, Sato A, Mitani Y, Yamasaki-Kokudo Y, Ishii T, Hayashi KI, Asami T, Ogura T, Yoshida S, Fujioka S, Kamakura T, Kawatsu T, Tachikawa M, Soeno K, Shimada Y (2016) Aminooxy-naphthylpropionic acid and its derivatives are inhibitors of auxin biosynthesis targeting Trp aminotransferase: structure-activity relationships. Plant J 87(3):245–257. doi:10.1111/tpj.13197

    Article  CAS  PubMed  Google Scholar 

  • Nagashima A, Uehara Y, Sakai T (2008) The ABC subfamily B auxin transporter AtABCB19 is involved in the inhibitory effects of N-1-naphthyphthalamic acid on the phototropic and gravitropic responses of Arabidopsis hypocotyls. Plant Cell Physiol 49(8):1250–1255. doi:10.1093/pcp/pcn092

    Article  CAS  PubMed  Google Scholar 

  • Negi S, Ivanchenko MG, Muday GK (2008) Ethylene regulates lateral root formation and auxin transport in Arabidopsis thaliana. Plant J 55(2):175–187. doi:10.1111/j.1365-313X.2008.03495.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nieuwland J, Maughan S, Dewitte W, Scofield S, Sanz L, Murray JA (2009) The D-type cyclin CYCD4;1 modulates lateral root density in Arabidopsis by affecting the basal meristem region. Proc Natl Acad Sci USA 106(52):22528–22533. doi:10.1073/pnas.0906354106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noh B, Murphy AS, Spalding EP (2001) Multidrug resistance-like genes of Arabidopsis required for auxin transport and auxin-mediated development. Plant Cell 13(11):2441–2454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noh B, Bandyopadhyay A, Peer WA, Spalding EP, Murphy AS (2003) Enhanced gravi- and phototropism in plant mdr mutants mislocalizing the auxin efflux protein PIN1. Nature 423(6943):999–1002. doi:10.1038/nature01716

    Article  CAS  PubMed  Google Scholar 

  • Normanly J, Cohen JD, Fink GR (1993) Arabidopsis thaliana auxotrophs reveal a tryptophan-independent biosynthetic pathway for indole-3-acetic acid. Proc Natl Acad Sci USA 90(21):10355–10359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novak O, Henykova E, Sairanen I, Kowalczyk M, Pospisil T, Ljung K (2012) Tissue-specific profiling of the Arabidopsis thaliana auxin metabolome. Plant J 72(3):523–536. doi:10.1111/j.1365-313X.2012.05085.x

    Article  CAS  PubMed  Google Scholar 

  • Okada K, Shimura Y (1994) Genetic analyses of signalling in flower development using Arabidopsis. Plant Mol Biol 26(5):1357–1377

    Article  CAS  PubMed  Google Scholar 

  • Okushima Y, Overvoorde PJ, Arima K, Alonso JM, Chan A, Chang C, Ecker JR, Hughes B, Lui A, Nguyen D, Onodera C, Quach H, Smith A, Yu G, Theologis A (2005) Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. Plant Cell 17(2):444–463. doi:10.1105/tpc.104.028316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortega-Martínez O, Pernas M, Carol RJ, Dolan L (2007) Ethylene modulates stem cell division in the Arabidopsis thaliana root. Science 317 (5837):507–510. doi:10.1126/science.1143409

    Article  CAS  PubMed  Google Scholar 

  • Osswald WF, Schütz W, Elstner EF (1988) Indole-3-acetic Acid oxidation and crocin bleaching by horseradish peroxidase. Plant Physiol 86(4):1310–1314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ostin A, Kowalyczk M, Bhalerao RP, Sandberg G (1998) Metabolism of indole-3-acetic acid in Arabidopsis. Plant Physiol 118(1):285–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ouyang J, Shao X, Li J (2000) Indole-3-glycerol phosphate, a branchpoint of indole-3-acetic acid biosynthesis from the tryptophan biosynthetic pathway in Arabidopsis thaliana. Plant J 24(3):327–334

    Article  CAS  PubMed  Google Scholar 

  • Paredez AR, Somerville CR, Ehrhardt DW (2006) Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312(5779):1491–1495

    Article  CAS  PubMed  Google Scholar 

  • Parry G, Delbarre A, Marchant A, Swarup R, Napier R, Perrot-Rechenmann C, Bennett MJ (2001) Novel auxin transport inhibitors phenocopy the auxin influx carrier mutation aux1. Plant J 25(4):399–406

    Article  CAS  PubMed  Google Scholar 

  • Peer WA, Cheng Y, Murphy AS (2013) Evidence of oxidative attenuation of auxin signalling. J Exp Bot 64(9):2629–2639. doi:10.1093/jxb/ert152

    Article  CAS  PubMed  Google Scholar 

  • Pěnčík A, Simonovik B, Petersson SV, Henykova E, Simon S, Greenham K, Zhang Y, Kowalczyk M, Estelle M, Zazimalova E, Novak O, Sandberg G, Ljung K (2013) Regulation of auxin homeostasis and gradients in Arabidopsis roots through the formation of the indole-3-acetic acid catabolite 2-oxindole-3-acetic acid. Plant Cell 25(10):3858–3870. doi:10.1105/tpc.113.114421

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Przemeck GK, Mattsson J, Hardtke CS, Sung ZR, Berleth T (1996) Studies on the role of the Arabidopsis gene MONOPTEROS in vascular development and plant cell axialization. Planta 200(2):229–237

    Article  CAS  PubMed  Google Scholar 

  • Qiao H, Chang KN, Yazaki J, Ecker JR (2009) Interplay between ethylene, ETP1/ETP2 F-box proteins, and degradation of EIN2 triggers ethylene responses in Arabidopsis. Gene Dev 23(4):512–521. doi:10.1101/gad.1765709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiao H, Shen ZX, Huang SSC, Schmitz RJ, Urich MA, Briggs SP, Ecker JR (2012) Processing and subcellular trafficking of ER-tethered EIN2 control response to ethylene gas. Science 338(6105):390–393. doi:10.1126/science.1225974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman A, Hosokawa S, Oono Y, Amakawa T, Goto N, Tsurumi S (2002) Auxin and ethylene response interactions during Arabidopsis root hair development dissected by auxin influx modulators. Plant Physiol 130(4):1908–1917. doi:10.1104/pp.010546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rando RR (1974) Irreversible inhibition of aspartate-aminotransferase by 2-amino-3-butenoic-acid acid. Biochemistry 13(19):3859–3863. doi:10.1021/bi00716a006

    Article  CAS  PubMed  Google Scholar 

  • Rashotte AM, Brady SR, Reed RC, Ante SJ, Muday GK (2000) Basipetal auxin transport is required for gravitropism in roots of arabidopsis. Plant Physiol 122(2):481–490. doi:10.1104/Pp.122.2.481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rashotte AM, DeLong A, Muday GK (2001) Genetic and chemical reductions in protein phosphatase activity alter auxin transport, gravity response, and lateral root growth. Plant Cell 13(7):1683–1697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raz V, Ecker JR (1999) Regulation of differential growth in the apical hook of Arabidopsis. Development 126(16):3661–3668

    CAS  PubMed  Google Scholar 

  • Raz V, Koornneef M (2001) Cell division activity during apical hook development. Plant Physiol 125(1):219–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reed RC, Brady SR, Muday GK (1998) Inhibition of auxin movement from the shoot into the root inhibits lateral root development in Arabidopsis. Plant Physiol 118(4):1369–1378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Refregier G, Pelletier S, Jaillard D, Hofte H (2004) Interaction between wall deposition and cell elongation in dark-grown hypocotyl cells in Arabidopsis. Plant Physiol 135(2):959–968. doi:10.1104/pp.104.038711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robert S, Kleine-Vehn J, Barbez E, Sauer M, Paciorek T, Baster P, Vanneste S, Zhang J, Simon S, Covanova M, Hayashi K, Dhonukshe P, Yang Z, Bednarek SY, Jones AM, Luschnig C, Aniento F, Zazimalova E, Friml J (2010) ABP1 mediates auxin inhibition of clathrin-dependent endocytosis in Arabidopsis. Cell 143(1):111–121. doi:10.1016/j.cell.2010.09.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rojas-Pierce M, Titapiwatanakun B, Sohn EJ, Fang F, Larive CK, Blakeslee J, Cheng Y, Cuttler S, Peer WA, Murphy AS, Raikhel NV (2007) Arabidopsis P-glycoprotein19 participates in the inhibition of Gravitropism by gravacin. Chem Biol 14(12):1366–1376. doi:10.1016/j.chembiol.2007.10.014

    Article  CAS  PubMed  Google Scholar 

  • Růžička K, Ljung K, Vanneste S, Podhorská R, Beeckman T, Friml J, Benková E (2007) Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell 19(7):2197–2212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sabatini S, Beis D, Wolkenfelt H, Murfett J, Guilfoyle T, Malamy J, Benfey P, Leyser O, Bechtold N, Weisbeek P, Scheres B (1999) An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99(5):463–472

    Article  CAS  PubMed  Google Scholar 

  • Sabatini S, Heidstra R, Wildwater M, Scheres B (2003) SCARECROW is involved in positioning the stem cell niche in the Arabidopsis root meristem. Genes Dev 17(3):354–358. doi:10.1101/gad.252503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saftner RA, Martin MN (1993) Transport of 1-aminocyclopropane-1-carboxylic acid into isolated maize mesophyll vacuoles. Physiol Plant 87(4):535–543

    Article  CAS  Google Scholar 

  • Santisree P, Nongmaithem S, Sreelakshmi Y, Ivanchenko M, Sharma R (2012) The root as a drill: an ethylene-auxin interaction facilitates root penetration in soil. Plant Signal Behav 7(2):151–156. doi:10.4161/psb.18936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satoh S, Esashi Y (1980) Alpha-aminoisobutyric-acid—a probable competitive inhibitor of conversion of 1-aminocyclopropane-1-carboxylic acid to ethylene. Plant Cell Physiol 21(6):939–949

    CAS  Google Scholar 

  • Sauer M, Robert S, Kleine-Vehn J (2013) Auxin: simply complicated. J Exp Bot 64(9):2565–2577. doi:10.1093/jxb/ert139

    Article  CAS  PubMed  Google Scholar 

  • Schwark A, Schierle J (1992) Interaction of ethylene and auxin in the regulation of hook growth I. The role of auxin in different growing regions of the hypocotyl hook of Phaseolus vulgaris. J Plant Physiol 140(5):562–570

    Article  CAS  Google Scholar 

  • Shibaoka H (1994) Plant hormone-induced changes in the orientation of cortical microtubules: alterations in the cross-linking between microtubules and the plasma membrane. Annu Rev Plant Physiol 45:527–544

    Article  CAS  Google Scholar 

  • Shin K, Lee S, Song WY, Lee RA, Lee I, Ha K, Koo JC, Park SK, Nam HG, Lee Y, Soh MS (2015) Genetic identification of ACC-RESISTANT2 reveals involvement of LYSINE HISTIDINE TRANSPORTER1 in the uptake of 1-aminocyclopropane-1-carboxylic acid in Arabidopsis thaliana. Plant Cell Physiol 56(3):572–582. doi:10.1093/pcp/pcu201

    Article  CAS  PubMed  Google Scholar 

  • Simmons S, Oelke E, Wiersma J, Lueschen W, Warnes D (1988) Spring wheat and barley responses to ethephon. Agron J 80(5):829–834

    Article  CAS  Google Scholar 

  • Simon S, Petrasek J (2011) Why plants need more than one type of auxin. Plant Sci 180(3):454–460. doi:10.1016/j.plantsci.2010.12.007

    Article  CAS  PubMed  Google Scholar 

  • Skottke KR, Yoon GM, Kieber JJ, DeLong A (2011) Protein phosphatase 2A controls ethylene biosynthesis by differentially regulating the turnover of ACC synthase isoforms. PLoS Genet 7(4):e1001370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smalle J, Haegman M, Kurepa J, VanMontagu M, Van Der Straeten D (1997) Ethylene can stimulate Arabidopsis hypocotyl elongation in the light. P Natl Acad Sci USA 94(6):2756–2761

    Article  CAS  Google Scholar 

  • Smet D, Žádníková P, Vandenbussche F, Benková E, Van Der Straeten D (2014) Dynamic infrared imaging analysis of apical hook development in Arabidopsis: the case of brassinosteroids. New Phytol 202(4):1398–1411

    Article  CAS  PubMed  Google Scholar 

  • Soeno K, Goda H, Ishii T, Ogura T, Tachikawa T, Sasaki E, Yoshida S, Fujioka S, Asami T, Shimada Y (2010) Auxin biosynthesis inhibitors, identified by a genomics-based approach, provide insights into auxin biosynthesis. Plant Cell Physiol 51(4):524–536. doi:10.1093/pcp/pcq032

    Article  CAS  PubMed  Google Scholar 

  • Spartz AK, Lee SH, Wenger JP, Gonzalez N, Itoh H, Inze D, Peer WA, Murphy AS, Overvoorde PJ, Gray WM (2012) The SAUR19 subfamily of SMALL AUXIN UP RNA genes promote cell expansion. Plant J. doi:10.1111/j.1365-313X.2012.04946.x

    PubMed  PubMed Central  Google Scholar 

  • Staswick PE (2009) The tryptophan conjugates of jasmonic and indole-3-acetic acids are endogenous auxin inhibitors. Plant Physiol 150(3):1310–1321. doi:10.1104/pp.109.138529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staswick PE, Tiryaki I (2004) The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 16(8):2117–2127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steen DA, Chadwick AV (1981) Ethylene effects in Pea stem tissue. Plant Physiol 67:460–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stepanova AN, Hoyt JM, Hamilton AA, Alonso JM (2005) A Link between ethylene and auxin uncovered by the characterization of two root-specific ethylene-insensitive mutants in Arabidopsis. Plant Cell 17(8):2230–2242. doi:10.1105/tpc.105.033365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stepanova AN, Yun J, Likhacheva AV, Alonso JM (2007) Multilevel interactions between ethylene and auxin in Arabidopsis roots. Plant Cell 19(7):2169–2185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stepanova AN, Robertson-Hoyt J, Yun J, Benavente LM, Xie DY, DoleZal K, Schlereth A, Jurgens G, Alonso JM (2008) TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133(1):177–191. doi:10.1016/j.cell.2008.01.047

    Article  CAS  PubMed  Google Scholar 

  • Stepanova AN, Yun J, Robles LM, Novak O, He W, Guo H, Ljung K, Alonso JM (2011) The Arabidopsis YUCCA1 flavin monooxygenase functions in the indole-3-pyruvic acid branch of auxin biosynthesis. Plant Cell 23(11):3961–3973. doi:10.1105/tpc.111.088047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strader LC, Bartel B (2011) Transport and metabolism of the endogenous auxin precursor indole-3-butyric acid. Mol Plant 4(3):477–486. doi:10.1093/mp/ssr006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strader LC, Zhao Y (2016) Auxin perception and downstream events. Curr Opin Plant Biol 33:8–14. doi:10.1016/j.pbi.2016.04.004

    Article  CAS  PubMed  Google Scholar 

  • Strader LC, Chen GL, Bartel B (2010) Ethylene directs auxin to control root cell expansion. Plant J 64(5):874–884. doi:10.1111/j.1365-313X.2010.04373.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Street IH, Aman S, Zubo Y, Ramzan A, Wang X, Shakeel SN, Kieber JJ, Schaller GE (2015) Ethylene inhibits cell proliferation of the Arabidopsis root meristem. Plant Physiol 169(1):338–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugawara S, Hishiyama S, Jikumaru Y, Hanada A, Nishimura T, Koshiba T, Zhao Y, Kamiya Y, Kasahara H (2009) Biochemical analyses of indole-3-acetaldoxime-dependent auxin biosynthesis in Arabidopsis. Proc Natl Acad Sci USA 106(13):5430–5435. doi:10.1073/pnas.0811226106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sukumar P, Edwards KS, Rahman A, Delong A, Muday GK (2009) PINOID kinase regulates root gravitropism through modulation of PIN2-dependent basipetal auxin transport in Arabidopsis. Plant Physiol 150(2):722–735. doi:10.1104/pp.108.131607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suttle JC (1988) Effect of ethylene treatment on polar IAA transport, net IAA uptake and specific binding of N-1-naphthylphthalamic acid in tissues and microsomes isolated from etiolated pea epicotyls. Plant Physiol 88(3):795–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swarup R, Friml J, Marchant A, Ljung K, Sandberg G, Palme K, Bennett M (2001) Localization of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex. Genes Dev 15(20):2648–2653. doi:10.1101/gad.210501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swarup R, Kramer EM, Perry P, Knox K, Leyser HMO, Haseloff J, Beemster GTS, Bhalerao R, Bennett MJ (2005) Root gravitropism requires lateral root cap and epidermal cells for transport and response to a mobile auxin signal. Nat Cell Biol 7(11):1057–1065

    Article  CAS  PubMed  Google Scholar 

  • Swarup R, Perry P, Hagenbeek D, Van Der Straeten D, Beemster GT, Sandberg G, Bhalerao R, Ljung K, Bennett MJ (2007) Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation. Plant Cell 19(7):2186–2196. doi:10.1105/tpc.107.052100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swarup K, Benkova E, Swarup R, Casimiro I, Peret B, Yang Y, Parry G, Nielsen E, De Smet I, Vanneste S, Levesque MP, Carrier D, James N, Calvo V, Ljung K, Kramer E, Roberts R, Graham N, Marillonnet S, Patel K, Jones JD, Taylor CG, Schachtman DP, May S, Sandberg G, Benfey P, Friml J, Kerr I, Beeckman T, Laplaze L, Bennett MJ (2008) The auxin influx carrier LAX3 promotes lateral root emergence. Nat Cell Biol 10(8):946–954. doi:10.1038/ncb1754

    Article  CAS  PubMed  Google Scholar 

  • Tam YY, Epstein E, Normanly J (2000) Characterization of auxin conjugates in Arabidopsis. Low steady-state levels of indole-3-acetyl-aspartate, indole-3-acetyl-glutamate, and indole-3-acetyl-glucose. Plant Physiol 123(2):589–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan X, Calderon-Villalobos LI, Sharon M, Zheng C, Robinson CV, Estelle M, Zheng N (2007) Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446(7136):640–645. doi:10.1038/nature05731

    Article  CAS  PubMed  Google Scholar 

  • Tanimoto M, Roberts K, Dolan L (1995) Ethylene is a positive regulator of root hair development in Arabidopsis thaliana. Plant J 8(6):943–948

    Article  CAS  PubMed  Google Scholar 

  • Tao Y, Ferrer J-L, Ljung K, Pojer F, Hong F, Long JA, Li L, Moreno JE, Bowman ME, Ivans LJ, Cheng Y, Lim J, Zhao Y, Ballaré CL, Sandberg G, Noel JP, Chory J (2008) Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133(1):164–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatematsu K, Kumagai S, Muto H, Sato A, Watahiki MK, Harper RM, Liscum E, Yamamoto KT (2004) MASSUGU2 encodes Aux/IAA19, an auxin-regulated protein that functions together with the transcriptional activator NPH4/ARF7 to regulate differential growth responses of hypocotyl and formation of lateral roots in Arabidopsis thaliana. Plant Cell 16(2):379–393. doi:10.1105/tpc.018630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomann A, Lechner E, Hansen M, Dumbliauskas E, Parmentier Y, Kieber J, Scheres B, Genschik P (2009) Arabidopsis CULLIN3 genes regulate primary root growth and patterning by ethylene-dependent and -independent mechanisms. PLoS Genet 5(1):e1000328. doi:10.1371/journal.pgen.1000328

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thomson K-S, Hertel R, Müller S, Tavares JE (1973) 1-N-naphthylphthalamic acid and 2, 3, 5-triiodobenzoic acid. Planta 109(4):337–352

    Article  CAS  PubMed  Google Scholar 

  • Tian Q, Reed JW (1999) Control of auxin-regulated root development by the Arabidopsis thaliana SHY2/IAA3 gene. Development 126(4):711–721

    CAS  PubMed  Google Scholar 

  • Timpte C, Lincoln C, Pickett FB, Turner J, Estelle M (1995) The AXR1 and AUX1 genes of Arabidopsis function in separate auxin-response pathways. Plant J 8(4):561–569

    Article  CAS  PubMed  Google Scholar 

  • Tivendale ND, Davies NW, Molesworth PP, Davidson SE, Smith JA, Lowe EK, Reid JB, Ross JJ (2010) Reassessing the role of N-hydroxytryptamine in auxin biosynthesis. Plant Physiol 154(4):1957–1965. doi:10.1104/pp.110.165803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tivendale ND, Ross JJ, Cohen JD (2014) The shifting paradigms of auxin biosynthesis. Trends Plant Sci 19(1):44–51. doi:10.1016/j.tplants.2013.09.012

    Article  CAS  PubMed  Google Scholar 

  • Tsang DL, Edmond C, Harrington JL, Nuhse TS (2011) Cell wall integrity controls root elongation via a general 1-aminocyclopropane-1-carboxylic acid-dependent, ethylene-independent pathway. Plant Physiol 156(2):596–604. doi:10.1104/pp.111.175372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuchisaka A, Theologis A (2004) Unique and overlapping expression patterns among the Arabidopsis 1- amino-cyclopropane-1-carboxylate synthase gene family members. Plant Physiol 136(2):2982–3000. doi:10.1104/pp.104.049999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuchisaka A, Yu G, Jin H, Alonso JM, Ecker JR, Zhang X, Gao S, Theologis A (2009) A combinatorial interplay among the 1-aminocyclopropane-1-carboxylate isoforms regulates ethylene biosynthesis in Arabidopsis thaliana. Genetics 183(3):979–1003. doi:10.1534/genetics.109.107102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tucker M, Wen C-K (2015) Research tool: ethylene preparation: treatment with ethylene and its replacements. In: Ethylene in plants. Springer, Netherlands, pp 245–261

    Google Scholar 

  • Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ (1997) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9(11):1963–1971. doi:10.1105/tpc.9.11.1963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uzunova VV, Quareshy M, del Genio C, Napier R (2016) Tomographic docking suggests the mechanism of auxin receptor TIR1 selectivity. bioRxiv. doi:10.1101/081794

  • Van de Poel B, Van Der Straeten D (2014) 1-aminocyclopropane-1-carboxylic acid (ACC) in plants: more than just the precursor of ethylene! Front Plant Sci 5:640. doi:10.3389/fpls.2014.00640

    PubMed  PubMed Central  Google Scholar 

  • Vandenbussche F, Petrasek J, Zadnikova P, Hoyerova K, Pesek B, Raz V, Swarup R, Bennett M, Zazimalova E, Benkova E, Van Der Straeten D (2010) The auxin influx carriers AUX1 and LAX3 are involved in auxin–ethylene interactions during apical hook development in Arabidopsis thaliana seedlings. Development 137(4):597–606. doi:10.1242/Dev.040790

    Article  CAS  PubMed  Google Scholar 

  • Vandenbussche F, Callebert P, Zadnikova P, Benkova E, Van Der Straeten D (2013) Brassinosteroid control of shoot gravitropism interacts with ethylene and depends on auxin signaling components. Am J Bot 100(1):215–225. doi:10.3732/ajb.1200264

    Article  CAS  PubMed  Google Scholar 

  • Vanneste S, Friml J (2009) Auxin: a trigger for change in plant development. Cell 136(6):1005–1016. doi:10.1016/j.cell.2009.03.001

    Article  CAS  PubMed  Google Scholar 

  • Vaseva II, Vandenbussche F, Simon D, Vissenberg K, Van Der Straeten D (2016) Cell type specificity of plant hormonal signals: case studies and reflections on ethylene. Russ J Plant Physiol 63(5):577–586. doi:10.1134/s1021443716050149

    Article  CAS  Google Scholar 

  • Vatulescu AD, Fortunato AS, Sa MC, Amancio S, Ricardo CP, Jackson PA (2004) Cloning and characterisation of a basic IAA oxidase associated with root induction in Vitis vinifera. Plant Physiol Biochem 42(7–8):609–615. doi:10.1016/j.plaphy.2004.06.009

    Article  CAS  PubMed  Google Scholar 

  • Verbelen JP, De Cnodder T, Le J, Vissenberg K, Baluska F (2006) The root apex of Arabidopsis thaliana consists of four distinct zones of growth activities: meristematic zone, transition zone, fast elongation zone and growth terminating zone. Plant Signal Behav 1(6):296–304

    Article  PubMed  PubMed Central  Google Scholar 

  • Vernoux T, Brunoud G, Farcot E, Morin V, Van den Daele H, Legrand J, Oliva M, Das P, Larrieu A, Wells D, Guedon Y, Armitage L, Picard F, Guyomarc’h S, Cellier C, Parry G, Koumproglou R, Doonan JH, Estelle M, Godin C, Kepinski S, Bennett M, De Veylder L, Traas J (2011) The auxin signalling network translates dynamic input into robust patterning at the shoot apex. Mol Syst Biol 7:508. doi:10.1038/msb.2011.39

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vogel JP, Woeste KE, Theologis A, Kieber JJ (1998) Recessive and dominant mutations in the ethylene biosynthetic gene ACS5 of Arabidopsis confer cytokinin insensitivity and ethylene overproduction, respectively. Proc Natl Acad Sci USA 95(8):4766–4771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang R, Estelle M (2014) Diversity and specificity: auxin perception and signaling through the TIR1/AFB pathway. Curr Opin Plant Biol 21C:51–58. doi:10.1016/j.pbi.2014.06.006

    Article  CAS  Google Scholar 

  • Wang B, Chu J, Yu T, Xu Q, Sun X, Yuan J, Xiong G, Wang G, Wang Y, Li J (2015) Tryptophan-independent auxin biosynthesis contributes to early embryogenesis in Arabidopsis. Proc Natl Acad Sci USA 112(15):4821–4826. doi:10.1073/pnas.1503998112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wasteneys GO (2004) Progress in understanding the role of microtubules in plant cells. Curr Opin Plant Biol 7(6):651–660. doi:10.1016/j.pbi.2004.09.008

    Article  CAS  PubMed  Google Scholar 

  • Wend S, Dal Bosco C, Kampf MM, Ren F, Palme K, Weber W, Dovzhenko A, Zurbriggen MD (2013) A quantitative ratiometric sensor for time-resolved analysis of auxin dynamics. Sci Rep 3:2052. doi:10.1038/srep02052

    Article  PubMed  PubMed Central  Google Scholar 

  • Went FW, Thimann KV (1937) Phytohormones. The Macmillan Company, New York. doi:http://dx.doi.org/10.5962/bhl.title.5695

  • Williams M (2010) Introduction to phytohormones. Plant Cell 22:1–9

    Article  CAS  Google Scholar 

  • Willige BC, Ogiso-Tanaka E, Zourelidou M, Schwechheimer C (2012) WAG2 represses apical hook opening downstream from gibberellin and PHYTOCHROME INTERACTING FACTOR 5. Development 139(21):4020–4028. doi:10.1242/dev.081240

    Article  CAS  PubMed  Google Scholar 

  • Wilson AK, Pickett FB, Turner JC, Estelle M (1990) A dominant mutation in Arabidopsis confers resistance to auxin, ethylene and abscisic acid. Mol Gen Genet 222(2–3):377–383

    Article  CAS  PubMed  Google Scholar 

  • Woeste KE, Ye C, Kieber JJ (1999) Two Arabidopsis mutants that overproduce ethylene are affected in the posttranscriptional regulation of 1-aminocyclopropane-1-carboxylic acid synthase. Plant Physiol 119(2):521–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Won C, Shen X, Mashiguchi K, Zheng Z, Dai X, Cheng Y, Kasahara H, Kamiya Y, Chory J, Zhao Y (2011) Conversion of tryptophan to indole-3-acetic acid by TRYPTOPHAN AMINOTRANSFERASES OF ARABIDOPSIS and YUCCAs in Arabidopsis. Proc Natl Acad Sci USA 108(45):18518–18523. doi:10.1073/pnas.1108436108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G, Cameron JN, Ljung K, Spalding EP (2010) A role for ABCB19-mediated polar auxin transport in seedling photomorphogenesis mediated by cryptochrome 1 and phytochrome B. Plant J 62(2):179–191. doi:10.1111/j.1365-313X.2010.04137.x

    Article  CAS  PubMed  Google Scholar 

  • Xu SL, Rahman A, Baskin TI, Kieber JJ (2008) Two leucine-rich repeat receptor kinases mediate signaling, linking cell wall biosynthesis and ACC synthase in Arabidopsis. Plant Cell 20(11):3065–3079. doi:10.1105/tpc.108.063354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Hoffman N (1984) Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol 35:155–189

    Article  CAS  Google Scholar 

  • Yang X, Lee S, So JH, Dharmasiri S, Dharmasiri N, Ge L, Jensen C, Hangarter R, Hobbie L, Estelle M (2004) The IAA1 protein is encoded by AXR5 and is a substrate of SCF(TIR1). Plant J 40(5):772–782. doi:10.1111/j.1365-313X.2004.02254.x

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Hammes UZ, Taylor CG, Schachtman DP, Nielsen E (2006) High-affinity auxin transport by the AUX1 influx carrier protein. Curr Biol 16(11):1123–1127. doi:10.1016/j.cub.2006.04.029

    Article  CAS  PubMed  Google Scholar 

  • Yang BJ, Han XX, Yin LL, Xing MQ, Xu ZH, Xue HW (2016) Arabidopsis PROTEASOME REGULATOR1 is required for auxin-mediated suppression of proteasome activity and regulates auxin signalling. Nat Commun 7:11388. doi:10.1038/ncomms11388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Y, Wang J, Zhang Z, Quan R, Zhang H, Deng XW, Ma L, Huang R (2013) Ethylene promotes hypocotyl growth and HY5 degradation by enhancing the movement of COP1 to the nucleus in the light. PLoS Genet 9(12):e1004025. doi:10.1371/journal.pgen.1004025

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zadnikova P, Petrasek J, Marhavy P, Raz V, Vandenbussche F, Ding ZJ, Schwarzerova K, Morita MT, Tasaka M, Hejatko J, Van Der Straeten D, Friml J, Benkova E (2010) Role of PIN-mediated auxin efflux in apical hook development of Arabidopsis thaliana. Development 137(4):607–617. doi:10.1242/Dev.041277

    Article  CAS  PubMed  Google Scholar 

  • Zadnikova P, Smet D, Zhu Q, Van Der Straeten D, Benkova E (2015) Strategies of seedlings to overcome their sessile nature: auxin in mobility control. Front Plant Sci 6:218. doi:10.3389/fpls.2015.00218

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao Y (2010) Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol 61:49–64. doi:10.1146/annurev-arplant-042809-112308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y (2014) Auxin biosynthesis. Arabidopsis Book 12:e0173. doi:10.1199/tab.0173

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Christensen SK, Fankhauser C, Cashman JR, Cohen JD, Weigel D, Chory J (2001) A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291(5502):306–309. doi:10.1126/science.291.5502.306

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Hull AK, Gupta NR, Goss KA, Alonso J, Ecker JR, Normanly J, Chory J, Celenza JL (2002) Trp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450 s CYP79B2 and CYP79B3. Genes Dev 16(23):3100–3112. doi:10.1101/gad.1035402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng D, Han X, An YI, Guo H, Xia X, Yin W (2013a) The nitrate transporter NRT2.1 functions in the ethylene response to nitrate deficiency in Arabidopsis. Plant Cell Environ 36(7):1328–1337. doi:10.1111/pce.12062

    Article  CAS  PubMed  Google Scholar 

  • Zheng Z, Guo Y, Novak O, Dai X, Zhao Y, Ljung K, Noel JP, Chory J (2013b) Coordination of auxin and ethylene biosynthesis by the aminotransferase VAS1. Nat Chem Biol 9(4):244–246. doi:10.1038/nchembio.1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong S, Shi H, Xue C, Wang L, Xi Y, Li J, Quail PH, Deng XW, Guo H (2012) A molecular framework of light-controlled phytohormone action in Arabidopsis. Curr Biol 22(16):1530–1535. doi:10.1016/j.cub.2012.06.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zolman BK, Yoder A, Bartel B (2000) Genetic analysis of indole-3-butyric acid responses in Arabidopsis thaliana reveals four mutant classes. Genetics 156(3):1323–1337

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

DVDS gratefully acknowledges the Research Foundation Flanders (FWO, G.0306.12N and G.0656.13N) and Ghent University (Bijzonder Onderzoeksfonds, BOF-BAS 01B02112) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Van Der Straeten.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Vandenbussche, F. & Van Der Straeten, D. Regulation of seedling growth by ethylene and the ethylene–auxin crosstalk. Planta 245, 467–489 (2017). https://doi.org/10.1007/s00425-017-2651-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-017-2651-6

Keywords

Navigation