Skip to main content
Log in

Mediation of Herbicide Effects by Hormone Interactions

  • Thematic Article
  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Chemical manipulation of the phytohormone system involves the use of herbicides for weed control in modern crop production. In the latter case, only compounds interacting with the auxin system have gained practical importance. Auxin herbicides mimic the overdose effects of indole-3-acetic acid (IAA), the principal natural auxin in higher plants. With their ability to control, particularly, dicotyledonous weeds in cereal crops, the synthetic auxins have been among the most successful herbicides used in agriculture. A newly discovered sequential hormone interaction plays a decisive role in their mode of action. The induction of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase in ethylene biosynthesis is the primary target process, following auxin herbicide signalling. Although the exact molecular target site has yet to be identified, it appears likely to be at the level of auxin receptor(s) for perception or signalling, leading ultimately to species- and organ-specific de novo enzyme synthesis. In sensitive dicots, ethylene causes epinastic growth and tissue swelling. Ethylene also triggers the biosynthesis of abscisic acid (ABA), mainly through the stimulated cleavage of xanthophylls to xanthoxal, catalyzed by 9-cis-epoxycarotenoid dioxygenase (NCED). ABA mediates stomatal closure which limits photosynthetic activity and biomass production, accompanied by an overproduction of reactive oxygen species. Growth inhibition, senescence and tissue decay are the consequences. Recent results suggest that ethylene-triggered ABA is not restricted to the action of auxin herbicides. It may function as a module in the signalling of a variety of stimuli leading to plant growth regulation. An additional phenomenon is caused by the auxin herbicide quinclorac which also controls grass weeds. Here, quinclorac induces the accumulation of phytotoxic levels of cyanide, a co-product of ethylene, which ultimately derives from herbicide-induced ACC synthase activity in the tissue. Phytotropins are a further group of hormone-related compounds which are used as herbicides. They inhibit polar auxin transport by interacting with a regulatory protein, the NPA-binding protein, of the auxin efflux carrier. This causes an abnormal accumulation of IAA and applied synthetic auxins in plant meristems. Growth inhibition, loss of tropic responses and, in combination with auxin herbicides, synergistic effects are the consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. S Abel A Theologis (1996) ArticleTitleEarly genes and auxin action. Plant Physiol 111 9–17 Occurrence Handle1:CAS:528:DyaK28XivFektL4%3D Occurrence Handle8685277 Occurrence Handle10.1104/pp.111.1.9

    Article  CAS  PubMed  Google Scholar 

  2. FB Abeles PW Morgan ME Saltveit (1992) Ethylene in plant biology. Academic Press San Diego

    Google Scholar 

  3. N Beaudoin C Serizet F Gosti J Giraudat (2000) ArticleTitleInteractions between abscisic acid and ethylene signalling cascades. Plant Cell 12 1103–1115 Occurrence Handle1:CAS:528:DC%2BD3cXlslygtLo%3D Occurrence Handle10899977 Occurrence Handle10.1105/tpc.12.7.1103

    Article  CAS  PubMed  Google Scholar 

  4. S Bowe M Landes J Best G Schmitz M Graben (1999) ArticleTitleBAS 662H: an innovative herbicide for weed control in corn. Brighton Crop Protection Conf – Weeds 35–40

    Google Scholar 

  5. JT Chernys JAD Zeevaart (2000) ArticleTitleCharacterization of the 9-cis-epoxycarotenoid dioxygenase gene family and the regulation of abscisic acid biosynthesis in avocado. Plant Physiol 124 343–353 Occurrence Handle1:CAS:528:DC%2BD3cXmvVGhtLc%3D Occurrence Handle10982448 Occurrence Handle10.1104/pp.124.1.343

    Article  CAS  PubMed  Google Scholar 

  6. AH Cobb (1992) Auxin-type herbicides. AH Cobb (Eds) Herbicides and plant physiology. Chapman and Hall London 82–106

    Google Scholar 

  7. DJ Cosgrove (2000) ArticleTitleExpansive growth of plant cell walls. Plant Physiol Biochem 38 109–124 Occurrence Handle1:CAS:528:DC%2BD3cXisVWrsLc%3D Occurrence Handle11543185 Occurrence Handle10.1016/S0981-9428(00)00164-9

    Article  CAS  PubMed  Google Scholar 

  8. SP Chatfield P Stirnberg BG Forde O Leyser (2000) ArticleTitleThe hormonal regulation of axillary bud growth in Arabidopsis. Plant J 24 159–169 Occurrence Handle1:CAS:528:DC%2BD3cXosFSrt70%3D Occurrence Handle11069691 Occurrence Handle10.1046/j.1365-313x.2000.00862.x

    Article  CAS  PubMed  Google Scholar 

  9. J Dat S Vandenabeele E Vranova M Van montagu D Inze F Van Breusegem (2000) ArticleTitleDual action of the active oxygen species during plant stress responses. CMLS Cell Mol Life Sci 57 779–795 Occurrence Handle1:CAS:528:DC%2BD3cXksFyisrk%3D Occurrence Handle10.1007/s000180050041

    Article  CAS  Google Scholar 

  10. PJ Davies (1995) Introduction. PJ Davies (Eds) Plant hormones. Physiology, biochemistry and molecular biology. Kluwer Academic Publishers Dordrecht 1–12

    Google Scholar 

  11. M Devine SO Duke C Fedtke (1993) Physiology of herbicide action. PTR Prentice-Hall Englewood Cliffs

    Google Scholar 

  12. JA Farrimond MC Elliott DW Clack (1978) ArticleTitleCharge separation as a component of the structural requirements for hormone activity. Nature 274 401–402 Occurrence Handle1:CAS:528:DyaE1MXjsVynsw%3D%3D Occurrence Handle10.1038/274401a0

    Article  CAS  Google Scholar 

  13. J Friml J Wisniewska E Benkova K Mendgen K Palme (2002) ArticleTitleLateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415 806–809 Occurrence Handle11845211

    PubMed  Google Scholar 

  14. N Geldner J Friml Y-D Stierhof G Jürgens K Palme (2001) ArticleTitleAuxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413 425–428 Occurrence Handle1:CAS:528:DC%2BD3MXntl2gtb0%3D Occurrence Handle11574889 Occurrence Handle10.1038/35096571

    Article  CAS  PubMed  Google Scholar 

  15. M Ghassemian E Nambara S Cutler H Kawaide Y Kamiya P McCourt (2000) ArticleTitleRegulation of abscisic acid signalling by the ethylene response pathway in Arabidopsis. Plant Cell 12 1117–1126 Occurrence Handle1:CAS:528:DC%2BD3cXlslygtLs%3D Occurrence Handle10899978 Occurrence Handle10.1105/tpc.12.7.1117

    Article  CAS  PubMed  Google Scholar 

  16. TJ Gianfagna (1995) Natural and synthetic growth regulators and their use in horticultural and agronomic crops. PJ Davies (Eds) Plant hormones. Physiology, biochemistry and molecular biology. Kluwer Academic Publishers Dordrecht 751–773

    Google Scholar 

  17. FA Gilbert (1946) ArticleTitleThe status of plant-growth substances and herbicides in 1945. Chem Rev 39 199–218 Occurrence Handle1:CAS:528:DyaH2sXovFA%3D Occurrence Handle21000142 Occurrence Handle10.1021/cr60123a001

    Article  CAS  PubMed  Google Scholar 

  18. WM Gray S Kepinski D Rouse O Leyser M Estelle (2001) ArticleTitleAuxin regulates SCF TIR1-dependent degradation of AUX/IAA proteins. Nature 414 271–276 Occurrence Handle1:CAS:528:DC%2BD3MXovFaqtb4%3D Occurrence Handle11713520 Occurrence Handle10.1038/35104500

    Article  CAS  PubMed  Google Scholar 

  19. K Grossmann (1990) ArticleTitlePlant growth retardants as tools in physiological research. Physiol Plant 78 640–648 Occurrence Handle1:CAS:528:DyaK3cXktVehsL0%3D Occurrence Handle10.1111/j.1399-3054.1990.tb05254.x

    Article  CAS  Google Scholar 

  20. K Grossmann J Kwiatkowski (1993) ArticleTitleSelective induction of ethylene and cyanide biosynthesis appears to be involved in the selectivity of the herbicide quinclorac between rice and barnyard grass. J Plant Physiol 14 457–466

    Google Scholar 

  21. K Grossmann J Kwiatkowski (1995) ArticleTitleEvidence for a causative role of cyanide, derived from ethylene biosynthesis, in the herbicidal mode of action of quinclorac in barnyard grass. Pestic Biochem Physiol 51 150–160 Occurrence Handle1:CAS:528:DyaK2MXltFGqtLg%3D Occurrence Handle10.1006/pest.1995.1015

    Article  CAS  Google Scholar 

  22. K Grossmann T Schmülling (1995) ArticleTitleThe effects of the herbicide quinclorac on the shoot growth in tomato is alleviated by inhibitors of ethylene biosynthesis and by the presence of an antisense construct to the 1-aminocyclopropane-1-carboxylic acid (ACC) synthase gene in transgenic plants. Plant Growth Regul 16 183–188 Occurrence Handle1:CAS:528:DyaK2MXkvVCju74%3D Occurrence Handle10.1007/BF00029539

    Article  CAS  Google Scholar 

  23. K Grossmann (1996) ArticleTitleA role for cyanide, derived from ethylene biosynthesis, in the development of stress symptoms. Physiol Plant 97 772–775 Occurrence Handle1:CAS:528:DyaK28XltVCntb0%3D Occurrence Handle10.1111/j.1399-3054.1996.tb00543.x

    Article  CAS  Google Scholar 

  24. K Grossmann F Scheltrup J Kwiatkowski G Caspar (1996) ArticleTitleInduction of abscisic acid is a common effect of auxin herbicides in susceptible plants. J Plant Physiol 149 475–478 Occurrence Handle1:CAS:528:DyaK28XmtFKjsr8%3D

    CAS  Google Scholar 

  25. K Grossmann G Retzlaff (1997) ArticleTitleBioregulatory effects of the fungicidal strobilurin kresoxim-methyl in wheat (Triticum aestivum). Pesticide Sci 50 11–20 Occurrence Handle1:CAS:528:DyaK2sXjvVSjsrs%3D Occurrence Handle10.1002/(SICI)1096-9063(199705)50:1<11::AID-PS556>3.0.CO;2-8

    Article  CAS  Google Scholar 

  26. K Grossmann F Scheltrup (1997) ArticleTitleSelective induction of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase activity is involved in the selectivity of the auxin herbicide quinclorac between barnyard grass and rice. Pestic Biochem Physiol 58 145–153 Occurrence Handle1:CAS:528:DyaK1cXptV2ksg%3D%3D Occurrence Handle10.1006/pest.1997.2290

    Article  CAS  Google Scholar 

  27. K Grossmann F Scheltrup (1998) ArticleTitleStudies on the mechanism of selectivity of the auxin herbicide quinmerac. Pesticide Sci 52 111–118 Occurrence Handle1:CAS:528:DyaK1cXhtlWqt7g%3D Occurrence Handle10.1002/(SICI)1096-9063(199802)52:2<111::AID-PS695>3.0.CO;2-#

    Article  CAS  Google Scholar 

  28. K Grossmann (2000a) The mode of action of quinclorac: a case study of a new auxin-type herbicide. AH Cobb RC Kirkwood (Eds) Herbicides and their mechanisms of action Sheffield Academic Press Sheffield 181–214

    Google Scholar 

  29. K Grossmann (2000b) ArticleTitleThe mode of action of auxin herbicides: a new ending to a long, drawn out story. Trends Plant Sci 5 506–508 Occurrence Handle1:STN:280:DC%2BD3M7gvVeguw%3D%3D Occurrence Handle10.1016/S1360-1385(00)01791-X

    Article  CAS  Google Scholar 

  30. K Grossmann J Kwiatkowski (2000) ArticleTitleThe mechanism of quinclorac selectivity in grasses. Pesticide Biochem Physiol 66 83–91 Occurrence Handle1:CAS:528:DC%2BD3cXotlSgtw%3D%3D Occurrence Handle10.1006/pest.1999.2461

    Article  CAS  Google Scholar 

  31. K Grossmann H Hansen (2001) ArticleTitleEthylene-triggered abscisic acid: a principle in plant growth regulation? Physiol Plant 113 9–14 Occurrence Handle1:CAS:528:DC%2BD3MXmsF2ju7w%3D Occurrence Handle10.1034/j.1399-3054.2001.1130102.x

    Article  CAS  Google Scholar 

  32. K Grossmann J Kwiatkowski S Tresch (2001) ArticleTitleAuxin herbicides induce H2O2 overproduction and tissue damage in cleavers (Galium aparine L.). J Exp Bot 52 1811–1816 Occurrence Handle1:CAS:528:DC%2BD3MXms12ks7o%3D Occurrence Handle11520869 Occurrence Handle10.1093/jexbot/52.362.1811

    Article  CAS  PubMed  Google Scholar 

  33. K Grossmann G Caspar J Kwiatkowski SJ Bowe (2002) ArticleTitleOn the mechanism of selectivity of the corn herbicide BAS 662H: a combination of the novel auxin transport inhibitor diflufenzopyr and the auxin herbicide dicamba. Pest Manag Sci 58 1002–1014 Occurrence Handle1:CAS:528:DC%2BD38Xnsl2ms70%3D Occurrence Handle12400439 Occurrence Handle10.1002/ps.549

    Article  CAS  PubMed  Google Scholar 

  34. K Grossmann (2003) News from old compounds: the mode of action of auxin herbicides. G Voss G Ramos (Eds) Chemistry of crop protection. Progress and prospects in science and regulation. Wiley-VCH Weinheim 131–142

    Google Scholar 

  35. TJ Guilfoyle G Hagen (2001) ArticleTitleAuxin response factors. J Plant Growth Regul 20 281–291 Occurrence Handle1:CAS:528:DC%2BD38XjtVCnuw%3D%3D Occurrence Handle10.1007/s003440010026

    Article  CAS  Google Scholar 

  36. JC Hall PK Bassi MS Spencer WH Vanden Born (1985) ArticleTitleAn evaluation of the role of ethylene in herbicidal injury induced by picloram or clopyralid in rapeseed and sunflower plants. Plant Physiol 79 :18–23 Occurrence Handle1:CAS:528:DyaL2MXlsleqt7s%3D Occurrence Handle10.1104/pp.79.1.18

    Article  CAS  Google Scholar 

  37. H Hansen K Grossmann (2000) ArticleTitleAuxin-induced ethylene triggers abscisic acid biosynthesis and growth inhibition. Plant Physiol 124 1437–1448 Occurrence Handle1:CAS:528:DC%2BD3cXotlWqsLY%3D Occurrence Handle11080318 Occurrence Handle10.1104/pp.124.3.1437

    Article  CAS  PubMed  Google Scholar 

  38. OL Hoffman AE Smith (1949) ArticleTitleA new group of plant growth regulators. Science 109 588 Occurrence Handle10.1126/science.109.2841.588

    Article  Google Scholar 

  39. S Iuchi M Kobayashi T Taji M Naramoto M Seki T Kato S Tabata Y Kakubari K Yamaguchi-Shinozaki K Shinozaki (2001) ArticleTitleRegulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J 27 325–333 Occurrence Handle1:CAS:528:DC%2BD3MXmvFKrtLY%3D Occurrence Handle11532178 Occurrence Handle10.1046/j.1365-313x.2001.01096.x

    Article  CAS  PubMed  Google Scholar 

  40. AM Jones K-H Im MA Savka M-J Wu NG DeWitt R Shillito AN Binns (1998) ArticleTitleAuxin-dependent cell expansion mediated by overexpressed auxin-binding protein 1. Science 282 1114–1117 Occurrence Handle1:CAS:528:DyaK1cXntlejs74%3D Occurrence Handle9804548 Occurrence Handle10.1126/science.282.5391.1114

    Article  CAS  PubMed  Google Scholar 

  41. J Jung (1985) Plant bioregulators: overview, use, and development. PA Hedin (Eds) Bioregulators for pest control. ACS Symposium Series Washington 276:95–107

    Google Scholar 

  42. H Kende JAD Zeevaart (1997) ArticleTitleThe five classical plant hormones. Plant Cell 9 1197–1210 Occurrence Handle1:CAS:528:DyaK2sXlt1Shtbk%3D Occurrence Handle12237383 Occurrence Handle10.1105/tpc.9.7.1197

    Article  CAS  PubMed  Google Scholar 

  43. O Leyser (2001) ArticleTitleAuxin signalling: the beginning, the middle and the end. Curr Opin Plant Biol 4 382–386 Occurrence Handle1:CAS:528:DC%2BD3MXmvFKgtr4%3D Occurrence Handle11597494 Occurrence Handle10.1016/S1369-5266(00)00189-8

    Article  CAS  PubMed  Google Scholar 

  44. K Ljung AK Hull M Kowalczyk A Marchant J Celenza JD Cohen G Sandberg (2002) ArticleTitleBiosynthesis, conjugation, catabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana. Plant Mol Biol 49 249–272 Occurrence Handle1:CAS:528:DC%2BD38XktlSqtrY%3D Occurrence Handle12036253 Occurrence Handle10.1023/A:1015298812300

    Article  CAS  PubMed  Google Scholar 

  45. C Luschnig GR Fink (1999) ArticleTitleTwo pieces of the auxin puzzle. Trends Plant Sci 4 162–164 Occurrence Handle10322552 Occurrence Handle10.1016/S1360-1385(99)01406-5

    Article  PubMed  Google Scholar 

  46. JM McMahon J Smith RN Arteca (2000) ArticleTitleMolecular control of ethylene production by cyanide in Arabidopsis thaliana. Physiol Plant 109 180–187 Occurrence Handle10.1034/j.1399-3054.2000.100210.x

    Article  Google Scholar 

  47. PW Morgan (1976) Effect of ethylene physiology. LJ Audus (Eds) Herbicides: physiology, biochemistry and ecology. Academic Press New York 256–280

    Google Scholar 

  48. GK Muday A DeLong (2001) ArticleTitlePolar auxin transport: controlling where and how much. Trends Plant Sci 6 535–542 Occurrence Handle1:CAS:528:DC%2BD3MXovFGksLc%3D Occurrence Handle11701382 Occurrence Handle10.1016/S1360-1385(01)02101-X

    Article  CAS  PubMed  Google Scholar 

  49. AS Murphy KR Hoogner WA Peer L Taiz (2002) ArticleTitleIdentification, purification, and molecular cloning of N-1-naphthylphthalamic acid-binding plasma membrane-associated aminopeptidases from Arabidopsis. Plant Physiol 128 935–950 Occurrence Handle1:CAS:528:DC%2BD38Xit1Gqt7o%3D Occurrence Handle11891249 Occurrence Handle10.1104/pp.010519

    Article  CAS  PubMed  Google Scholar 

  50. Phillips McDougall 2000. AgriService.

  51. X Qin JAD Zeevaart (1999) ArticleTitleThe 9-cis-epoxycarotenoid cleavage reaction is the key regulatory stepp of abscisic acid biosynthesis in water-stressed bean. Proc Natl Acad Sci USA 96 15354–15361 Occurrence Handle1:CAS:528:DC%2BD3cXhtFehug%3D%3D Occurrence Handle10611388 Occurrence Handle10.1073/pnas.96.26.15354

    Article  CAS  PubMed  Google Scholar 

  52. W Rademacher (2000) ArticleTitleGrowth retardants: effects on gibberellin biosynthesis and other metabolic pathways. Annu Rev Plant Physiol Plant Mol Biol 51 501–531 Occurrence Handle1:CAS:528:DC%2BD3cXlsVymt7g%3D Occurrence Handle15012200 Occurrence Handle10.1146/annurev.arplant.51.1.501

    Article  CAS  PubMed  Google Scholar 

  53. CP Romano ML Cooper HJ Klee (1993) ArticleTitleUncoupling auxin and ethylene effects in transgenic tobacco and Arabidopsis plants. Plant Cell 5 181–189 Occurrence Handle1:CAS:528:DyaK3sXitlSgsrs%3D Occurrence Handle12271061 Occurrence Handle10.1105/tpc.5.2.181

    Article  CAS  PubMed  Google Scholar 

  54. JJ Ross DP O’Neill CM Wolbang GM Symons JB Reid (2002) ArticleTitleAuxin-gibberellin interactions and their role in plant growth. J Plant Growth Regul 20 346–353

    Google Scholar 

  55. F Scheltrup K Grossmann (1995) ArticleTitleAbscisic acid is a causative factor in the mode of action of the auxinic herbicide quinmerac in cleaver (Galium aparine L.). J Plant Physiol 147 118–126 Occurrence Handle1:CAS:528:DyaK2MXpsVKju78%3D

    CAS  Google Scholar 

  56. P Schopfer (2001) ArticleTitleHydroxyl radical-induced cell-wall loosening in vitro and in vivo: implications for the control of elongation growth. Plant J 28 679–688 Occurrence Handle1:CAS:528:DC%2BD38XhtV2ktL4%3D Occurrence Handle11851914 Occurrence Handle10.1046/j.1365-313x.2001.01187.x

    Article  CAS  PubMed  Google Scholar 

  57. RE Sharp (2002) ArticleTitleInteraction with ethylene: changing views on the role of abscisic acid in root and shoot growth responses to water stress. Plant Cell Environm 25 211–222 Occurrence Handle1:CAS:528:DC%2BD38Xhslaktbc%3D Occurrence Handle10.1046/j.1365-3040.2002.00798.x

    Article  CAS  Google Scholar 

  58. F Siefert C Langebartels T Boller K Grossmann (1994) ArticleTitleAre ethylene and 1-aminocyclopropane-1-carboxylic acid involved in the induction of chitinase and β-1,3-glucanase activity in sunflower cell-suspension cultures? Planta 192 431–440 Occurrence Handle1:CAS:528:DyaK2cXhvVOhtL4%3D Occurrence Handle10.1007/BF00198580

    Article  CAS  Google Scholar 

  59. F Siefert J Kwiatkowski S Sarkar K Grossmann (1995) ArticleTitleChanges in endogenous cyanide and 1-aminocyclopropane-1-carboxylic acid levels during the hypersensitive response of tobacco mosaic virus-infected tobacco leaves. Plant Growth Regul 17 109–113 Occurrence Handle1:CAS:528:DyaK2MXovVSmsrs%3D Occurrence Handle10.1007/BF00024169

    Article  CAS  Google Scholar 

  60. TM Sterling JC Hall (1997) Mechanism of action of natural auxins and the auxinic herbicides. RM Roe JD Burton RJ Kuhr (Eds) Herbicide activity: toxicology, biochemistry and molecular biology IOS Press Amsterdam 111–141

    Google Scholar 

  61. MV Subramanian P Bernasconi BC Patel J Reagan (1997) ArticleTitleRevisting auxin transport inhibition as a mode of action for herbicides. Weed Sci 45 621–627 Occurrence Handle1:CAS:528:DyaK2sXmt12mtLY%3D

    CAS  Google Scholar 

  62. L Taiz E Zeiger (1998) Plant physiology. Sinauer Associates Sunderland

    Google Scholar 

  63. C Timpte (2001) ArticleTitleAuxin binding protein: curiouser and curiouser. Trends Plant Sci 6 586–590 Occurrence Handle1:CAS:528:DC%2BD3MXpt1GgsLk%3D Occurrence Handle11738384 Occurrence Handle10.1016/S1360-1385(01)02150-1

    Article  CAS  PubMed  Google Scholar 

  64. FL Tittle JS Goudey MS Spencer (1990) ArticleTitleEffect of 2,4-dichlorophenoxyacetic acid on endogenous cyanide, β-cyanoalanine synthase activity, and ethylene evolution in seedlings of soybean and barley. Plant Physiol 94 1143–1148 Occurrence Handle1:CAS:528:DyaK3MXhvFequg%3D%3D Occurrence Handle16667809 Occurrence Handle10.1104/pp.94.3.1143

    Article  CAS  PubMed  Google Scholar 

  65. J Van Overbeek (1964) Survey of mechanisms of herbicide action. LJ Audus (Eds) The physiology and biochemistry of herbicide action. Academic Press New York 387–400

    Google Scholar 

  66. D Veselov M Langhans W Hartung R Aloni I Feussner C Götz S Veselova S Schlomski C Dickler K Bächmann CI Ullrich (2003) ArticleTitleDevelopment of Agrobacterium tumefaciens C58-induced plant tumors and impact on host shoots are controlled by a cascade of jasmonic acid, auxin, cytokinin, ethylene and abscisic acid. Planta 216 512–522 Occurrence Handle1:CAS:528:DC%2BD3sXhtlOitbk%3D Occurrence Handle12520344

    CAS  PubMed  Google Scholar 

  67. KL-C Wang H Li JR Ecker (2002) ArticleTitleEthylene biosynthesis and signaling networks. Plant Cell Suppl IssueIDSuppl S131–S151

    Google Scholar 

  68. SP Ward M Estelle (2001) ArticleTitleAuxin signaling involves regulated protein degradation by the ubiquitin-proteasome pathway. J Plant Growth Regul 20 265–273 Occurrence Handle1:CAS:528:DC%2BD38XjtVCntQ%3D%3D Occurrence Handle10.1007/s003440010023

    Article  CAS  Google Scholar 

  69. YD Wei H-G Zheng JC Hall (2000) ArticleTitleRole of auxinic herbicide-induced ethylene on hypocotyl elongation and root/hypocotyl radial expansion. Pest Manage Sci 56 377–387 Occurrence Handle1:CAS:528:DC%2BD3cXislGrsLk%3D Occurrence Handle10.1002/(SICI)1526-4998(200005)56:5<377::AID-PS154>3.0.CO;2-M

    Article  CAS  Google Scholar 

  70. KE Woeste JP Vogel JJ Kieber (1999) ArticleTitleFactors regulating ethylene biosynthesis in etiolated Arabidopsis thaliana seedlings. Physiol Plant 105 478–484 Occurrence Handle1:CAS:528:DyaK1MXjsFSisLY%3D Occurrence Handle10.1034/j.1399-3054.1999.105312.x

    Article  CAS  Google Scholar 

  71. H-G Zheng JC Hall (2001) ArticleTitleUnderstanding auxinic herbicide resistance in wild mustard: physiological, biochemical, and molecular genetic approaches. Weed Sci 49 276–281 Occurrence Handle1:CAS:528:DC%2BD3MXlsVejtbY%3D Occurrence Handle10.1614/0043-1745(2001)049[0276:UAHRIW]2.0.CO;2

    Article  CAS  Google Scholar 

  72. PW Zimmerman F Wilcoxon (1935) ArticleTitleSeveral chemical growth substances which cause initiation of roots and other responses in plants. Contrib Boyce Thompson Inst 7 209–229 Occurrence Handle1:CAS:528:DyaA28XhtVyjsQ%3D%3D

    CAS  Google Scholar 

Download references

Acknowledgements

The author thanks Dr. Hauke Hansen (supported by a postdoctoral fellowship from the Deutsche Forschungsgemeinschaft) and his former Ph.D. students, Dr. Florene Scheltrup and Dr. Frank Siefert for their important contributions to this work. Jacek Kwiatkowski, Günter Caspar and Stefan Tresch are gratefully acknowledged for excellent technical assistance and Alan Akers (BASF Agricultural Center) for critical reading of the English manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Grossmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grossmann, K. Mediation of Herbicide Effects by Hormone Interactions . J Plant Growth Regul 22, 109–122 (2003). https://doi.org/10.1007/s00344-003-0020-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-003-0020-0

Keywords

Navigation