Skip to main content
Log in

Influence of over-expression of the FLOWERING PROMOTING FACTOR 1 gene (FPF1) from Arabidopsis on wood formation in hybrid poplar (Populus tremula L. × P. tremuloides Michx.)

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Constitutive expression of the FPF1 gene in hybrid aspen (Populus tremula L. × P. tremuloides Michx.) showed a strong effect on wood formation but no effect on flowering time. Gene expression studies showed that activity of flowering time genes PtFT1, PtCO2, and PtFUL was not increased in FPF1 transgenic plants. However, the SOC1/TM3 class gene PTM5, which has been related to wood formation and flowering time, showed a strong activity in stems of all transgenic lines studied. Wood density was lower in transgenic plants, despite significantly reduced vessel frequency which was overcompensated by thinner fibre cell walls. Chemical screening of the wood by pyrolysis GC/MS showed that FPF1 transgenics have higher fractions of cellulose and glucomannan products as well as lower lignin content. The latter observation was confirmed by UV microspectrophotometry on a cellular level. Topochemical lignin distribution revealed a slower increase of lignin incorporation in the developing xylem of the transgenics when compared with the wild-type plants. In line with the reduced wood density, micromechanical wood properties such as stiffness and ultimate stress were also significantly reduced in all transgenic lines. Thus, we provide evidence that FPF1 class genes may play a regulatory role in both wood formation and flowering in poplar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

DIG:

Digoxigenine

Ef1a :

Elongation Factor 1 Alpha

FT :

Flowering Locus T

FTi:

Flowering time

FDR:

Fisher’s discriminant ratio

FPF1 :

Flowering Promoting Factor 1

LFY :

Leafy

PCA:

Principle component analysis

PtCO2 :

CONSTANS paralogous gene

PtFT1 :

Flowering Locus T paralogous gene

PtFUL :

FRUITFULL homologous gene

PTLF :

Leafy homologous gene

PTM5 :

Poplar MADS-box gene

References

  • Albani MC, Coupland G (2010) Comparative analysis of flowering in annual and perennial plants. Curr Top Dev Biol 91:323–348

    Google Scholar 

  • Arend M, Fromm J (2007) Seasonal change in the drought response of wood cell development in poplar. Tree Physiol 27:985–992

    Article  PubMed  Google Scholar 

  • Battey NH, Tooke F (2002) Molecular control and variation in the floral transition. Curr Opin Plant Biol 5(1):62–68

    Google Scholar 

  • Bäurle I, Dean C (2006) The timing of developmental transitions in plants. Cell 125:655–664

    Article  PubMed  Google Scholar 

  • Bjurhager I, Olsson A-M, Zhang B, Gerber L, Kumar M, Berglund L, Burgert I, Sundberg B, Salmén L (2010) Ultra-structure and mechanical properties of Populus wood with reduced lignin content caused by transgenic down-regulation of cinnamate 4-hydroxylase. Biomacromolecules 11:2359–2365

    Article  PubMed  CAS  Google Scholar 

  • Böhlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S, Strauss SH, Nilsson O (2006) CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312:1040–1043

    Article  PubMed  Google Scholar 

  • Bremer J (1991) Quantifizierung der Gerüstsubstanzen von Lignocellulosen durch analytische Pyrolyse–Gaschromatographie/Massenspektrometrie. Dissertation, University of Hamburg, Germany

  • Cseke LJ, Zheng J, Podila GK (2003) Characterization of PTM5 in aspen trees: a MADS-box gene expressed during woody vascular development. Gene 318:55–67

    Article  PubMed  CAS  Google Scholar 

  • Cseke LJ, Ravinder N, Pandey AK, Podila GK (2007) Identification of PTM5 protein interaction partners, a MADS-box gene involved in aspen tree vegetative development. Gene 391:209–222

    Article  PubMed  CAS  Google Scholar 

  • Demura T, Fukuda H (2006) Transcriptional regulation in wood formation. Trends Plant Sci 12:64–70

    Article  Google Scholar 

  • Dünisch O, Funada R, Nakaba S, Fladung M (2006) Influence of overexpression of a gibberellin 20-oxidase gene on the kinetics of xylem cell development in hybrid poplar (Populus tremula L × P tremuloides Michx). Holzforschung 60:608–617

    Article  Google Scholar 

  • Elo A, Lemmetyinen J, Turunen ML, Tikka L, Sopanen T (2001) Three MADS-box genes similar to APETALA1 and FRUITFULL from silver birch (Betula pendula). Physiol Plant 112(1):95–103

    Google Scholar 

  • Elo A, Lemmetyinen J, Novak A, Keinonen K, Porali I, Hassinen M, Sopanen T (2007) BpMADS4 has a central role in the inflorescence initiation in silver Birch (Betula pendula, Roth). Physiol Plant 131:149–158

    Article  PubMed  CAS  Google Scholar 

  • Escalante-Perez M, Lautner S, Nehls U, Selle A, Teuber M, Schnitzler JP, Teichmann T, Fayyaz P, Hartung W, Polle A, Fromm J, Hedrich R, Ache P (2009) Salt stress affects xylem differentiation of grey poplar (Populus × canescens). Planta 229:299–309

    Article  PubMed  CAS  Google Scholar 

  • Fengel D, Wegener G (1989) Wood—chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin

  • Flachowsky H, Peil A, Sopanen T, Elo A, Hanke V (2007) Overexpression of BpMADS4 from silver birch (Betula pendula Roth.) induces early flowering in apple (Malus × domestica Borkh.). Plant Breed 126:37–145

    Google Scholar 

  • Flachowsky H, Hanke MV, Peil A, Strauss SH, Fladung M (2009) A review on transgenic approaches to accelerate breeding of woody plants. Plant Breed 128:217–226

    Article  CAS  Google Scholar 

  • Flachowsky H, Hättasch C, Höfer M, Peil A, Hanke MV (2010) Overexpression of LEAFY in apple leads to a columnar phenotype with shorter internodes. Planta 231:251–263

    Article  PubMed  CAS  Google Scholar 

  • Fladung M, Ahuja MR (1995) ‘Sandwich’ method for non-radioactive hybridizations. Biotechniques 18:3–5

    Google Scholar 

  • Fladung M, Muhs HJ, Ahuja MR (1996) Morphological changes observed in transgenic Populus carrying the rolC gene from Agrobacterium rhizogenes. Silvae Genet 45:349–354

    Google Scholar 

  • Fladung M, Kumar S, Ahuja MR (1997) Genetic transformation of Populus genotypes with different chimeric gene constructs: transformation efficiency and molecular analysis. Transgenic Res 6:111–121

    Article  CAS  Google Scholar 

  • Greenup AG, Sasani S, Oliver SN, Talbot MJ, Dennis ES, Hemming MN, Trevaskis B (2010) ODDSOC2 is a MADS box floral repressor that is down-regulated by vernalization in temperate cereals. Plant Physiol 153:1062–1073

    Article  PubMed  CAS  Google Scholar 

  • Haimer E, Wendland M, Potthast A, Henniges U, Rosenau T, Liebner F (2010) Controlled precipitation and purification of hemicellulose from DMSO and DMSO/water mixtures by carbon dioxide as anti-solvent. J Supercrit Fluids 53:121–130

    Article  CAS  Google Scholar 

  • Hoenicka H, Nowitzki O, Debener T, Fladung M (2006) Faster evaluation of induced floral sterility in transgenic early flowering poplar. Silvae Genetica 55:241–292

    Google Scholar 

  • Hoenicka H, Nowitzki O, Hanelt D, Fladung M (2008) Heterologous overexpression of the birch FRUITFULL-like MADS-box gene BpMADS4 prevents normal senescence and winter dormancy in Populus tremula L. Planta 227:1001–1011

    Article  PubMed  CAS  Google Scholar 

  • Holtorf S, Apel K, Bohlmann H (1995) Comparison of different constitutive and inducible promoters for the overexpression of transgenes in Arabidopsis thaliana. Plant Mol Biol 29:637–646

    Article  PubMed  CAS  Google Scholar 

  • Hosoya T, Kawamoto H, Saka S (2007) Pyrolysis behaviors of wood and its constituent polymers at gasification temperature. J Anal Appl Pyrolysis 78:328–336

    Article  CAS  Google Scholar 

  • Jeong JH, Song HR, Ko JH, Jeong YM, Kwon YE, Seol JH, Amasino RM, Noh B, Noh YS (2009) Repression of FLOWERING LOCUS T chromatin by functionally redundant histone H3 lysine 4 demethylases in Arabidopsis. PLoS One 25:e8033

    Article  Google Scholar 

  • Joshi CP, Thammannagowda S, Fujino T, Gou JQ, Avci U, Haigler CH, McDonnell LM, Mansfield SD, Mengesha B, Carpita NC, Harris D, Debolt S, Peter GF (2011) Perturbation of wood cellulose synthesis causes pleiotropic effects in transgenic aspen. Mol Plant 4:331–345

    Article  PubMed  CAS  Google Scholar 

  • Kania T, Russenberger D, Peng S, Apel K, Melzer S (1997) FPF1 promotes flowering in Arabidopsis. Plant Cell 9:1327–1338

    Article  PubMed  CAS  Google Scholar 

  • Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Chory J, Harrison MJ, Weigel D (1999) Activation tagging of the floral inducer FT. Science 286:1962–1965

    Article  PubMed  CAS  Google Scholar 

  • Kleen M, Gellerstedt G (1995) Influence of inorganic species on the formation of polysaccharide and lignin degradation products in the analytical pyrolysis of pulps. J Anal Appl Pyrolysis 35:15–41

    Article  CAS  Google Scholar 

  • Koch G, Grünwald C (2004) Application of UV microspectrophotometry for the topochemical detection of lignin and phenolic extractives in wood fibre cell walls. In: Schmitt U et al (eds) Wood fibre cell walls: methods to study their formation, structure and properties. Swedish University of Agricultural Sciences, Sweden, pp 119–130

    Google Scholar 

  • Koch G, Kleist G (2001) Application of scanning UV microspectrophotometry to localise lignins and phenolic extractives in plant cell walls. Holzforschung 55:563–567

    Article  CAS  Google Scholar 

  • Langer K, Ache P, Geiger D, Stinzing A, Arend M, Wind C, Regan S, Fromm J, Hedrich R (2002) Poplar potassium transporters capable of controlling K+ homeostasis and K+-dependent xylogenesis. Plant J 32:997–1009

    Article  PubMed  CAS  Google Scholar 

  • Lautner S, Ehlting B, Windeisen E, Rennenberg H, Matyssek R, Fromm J (2007) Calcium nutrition has a significant influence on wood formation in poplar. New Phytol 173:743–752

    Article  PubMed  CAS  Google Scholar 

  • Martín-Trillo M, Martínez-Zapater JM (2002) Growing up fast: manipulating the generation time of trees. Curr Opin Biotechnol. 13(2):151–155

    Google Scholar 

  • Meilan R (2007) Floral induction in woody angiosperms. New Forest 14:179–202

    Article  Google Scholar 

  • Melzer S, Kampmann G, Chandler J, Apel K (1999) FPF1 modulates the competence to flowering in Arabidopsis. Plant J 18:395–405

    Article  PubMed  CAS  Google Scholar 

  • Melzer S, Lens F, Gennen J, Vanneste S, Rohde A, Beeckman T (2008) Flowering-time genes modulate meristem determinacy and growth form in Arabidopsis thaliana. Nat Genet 40:1489–1492

    Article  PubMed  CAS  Google Scholar 

  • Merchan F, de Lorenzo L, Rizzo SG, Niebel A, Manyani H, Frugier F, Sousa C, Crespi M (2007) Identification of regulatory pathways involved in the reacquisition of root growth after salt stress in Medicago truncatula. Plant J 51:1–17

    Article  PubMed  CAS  Google Scholar 

  • Nilsson O, Weigel D (1997) Modulating the timing of flowering. Curr Opin Biotechnol 8:195–199

    Article  PubMed  CAS  Google Scholar 

  • Nishikawa F, Endo T, Shimada T, Fujii H, Shimizu T, Kobayashi Y, Araki T, Omura M (2010) Transcriptional changes in CiFT-introduced transgenic trifoliate orange (Poncirus trifoliata L. Raf). Tree Physiol 30:431–439

    Article  PubMed  CAS  Google Scholar 

  • Nunes CA, Lima CF, Barbosa LCA, Colodette JL, Gouveia AFG, Silverio FO (2010) Determination of Eucalyptus spp lignin S/G ratio: a comparison between methods. Bioresour Technol 101:4056–4061

    Article  PubMed  CAS  Google Scholar 

  • Peña L, Martín-Trillo M, Juárez J, Pina JA, Navarro L, Martínez-Zapater JM (2001) Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their generation time. Nat Biotechnol 19(3):263–267

    Google Scholar 

  • Rodrigues J, Meier D, Faix O, Pereira H (1999) Determination of tree to tree variation in syringyl/guaiacyl ratio of Eucalyptus globulus wood lignin by analytical pyrolysis. J Anal Appl Pyrolysis 48:121–128

    Article  CAS  Google Scholar 

  • Rohde A, Bhalerao RP (2007) Plant dormancy in the perennial context. Trends Plant Sci 12(5):217–223

    Google Scholar 

  • Rottmann WH, Meilan R, Sheppard LA, Brunner AM, Skinner JS, Ma C, Cheng S, Jouanin L, Pilate G, Strauss SH (2000) Diverse effects of overexpression of LEAFY and PTLF, a poplar (Populus) homolog of LEAFY/FLORICAULA, in transgenic poplar and Arabidopsis. Plant J 22:24–235

    Article  Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: Methods in molecular biology. Humana Press, Totowa, pp 365–386

    Google Scholar 

  • Salehi H, Ransom CB, Oraby HF, Seddighi Z, Sticklen MB (2005) Delay in flowering and increase in biomass of transgenic tobacco expressing the Arabidopsis floral repressor gene FLOWERING LOCUS C. J Plant Physiol 162(6):717–717

    Google Scholar 

  • Savidge RA (1996) Xylogenesis, genetic and environmental regulation. IAWA J 17:269–310

    Google Scholar 

  • Shen DK, Gu S, Bridgwater AV (2010) The thermal performance of the polysaccharides extracted from hardwood: Cellulose and hemicellulose. Carbohydr Polym 82:39–45

    Article  CAS  Google Scholar 

  • Sibout R, Plantegenet S, Hardtke CS (2008) Flowering as a condition for xylem expansion in Arabidopsis hypocotyl and root. Curr Biol 18:458–463

    Article  PubMed  CAS  Google Scholar 

  • Smykal P, Gleissner R, Corbesier L, Apel K, Melzer S (2004) Modulation of flowering responses in different Nicotiana varieties. Plant Mol Biol 55:253–262

    Article  PubMed  CAS  Google Scholar 

  • Spurr AR (1969) A low viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43

    Article  PubMed  CAS  Google Scholar 

  • Sundberg B, Uggla C, Tuominen H (2000) Cambial growth and auxin gradients. In: Savidge RA, Barnett JR, Napier R (eds) Cell and molecular biology of wood formation. BIOS Scient Publ, Oxford, pp 169–188

    Google Scholar 

  • Suzuki S, Li L, Sun YH, Chiang VL (2006) The cellulose synthase gene superfamily and biochemical functions of xylem-specific cellulose synthase-like genes in Populus trichocarpa. Plant Physiol 142:1233–1245

    Article  PubMed  CAS  Google Scholar 

  • Töpfer R, Matzeit V, Gronenborn B, Schell J, Steinbiss HH (1987) A set of plant expression vectors for transcriptional and translational fusions. Nucl Acids Res 15:5890

    Article  PubMed  Google Scholar 

  • Tränkner C, Lehmann S, Hoenicka H, Hanke MV, Fladung M, Lenhardt D, Dunemann F, Gau A, Schlangen K, Malnoy M, Flachowsky H (2010) Over-expression of an FT-homologous gene of apple induces early flowering in annual and perennial plants. Planta 232:1309–1324

    Article  PubMed  Google Scholar 

  • Wang H, Ge L, Ye HC, Chong K, Liu BY, Li GF (2004) Studies on the effects of fpf1 gene on Artemisia annua flowering time and on the linkage between flowering and artemisinin biosynthesis. Planta Med 70:347–352

    Article  PubMed  CAS  Google Scholar 

  • Weigel D, Nilsson (1995) A developmental switch sufficient for flower initiation in diverse plants. Nature 377:495–500

  • Weiss SM, Indurkhya N (1998) Predictive data mining: a practical guide. Morgan Kaufmann Publishers Inc, San Francisco

    Google Scholar 

  • Wind C, Arend M, Fromm J (2004) Potassium-dependent cambial growth in poplar. Plant Biol 6:30–37

    Article  PubMed  CAS  Google Scholar 

  • Xu ML, Jiang JF, Ge L, Xu YY, Chen H, Zhao Y, Bi YR, Wen JQ, Chong K (2005) FPF1 transgene leads to altered flowering time and root development in rice. Plant Cell Rep 24:79–85

    Article  PubMed  CAS  Google Scholar 

  • Xu M, Zhang B, Su X, Zhang S, Huang M (2011) Reference gene selection for quantitative real-time polymerase chain reaction in Populus. Anal Biochem 408:337–339

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Elo A, Helariutta Y (2010) Arabidopsis as a model for wood formation. Curr Opin Biotechnol 22:1–7

    Google Scholar 

Download references

Acknowledgments

This work was supported by a grant to MF by the German Ministry of Education and Research. We thank Olaf Polak, Susann Weichold and Gabriele Wienskol for helpful technical assistance in the lab, and greenhouse staff (Matthias Hunger, Gundel Wiemann, Monika Spauszus) for plant cultivation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Fladung.

Additional information

H. Hoenicka and S. Lautner contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoenicka, H., Lautner, S., Klingberg, A. et al. Influence of over-expression of the FLOWERING PROMOTING FACTOR 1 gene (FPF1) from Arabidopsis on wood formation in hybrid poplar (Populus tremula L. × P. tremuloides Michx.). Planta 235, 359–373 (2012). https://doi.org/10.1007/s00425-011-1507-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-011-1507-8

Keywords

Navigation