Skip to main content
Log in

Over-expression of an FT-homologous gene of apple induces early flowering in annual and perennial plants

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The protein encoded by the FLOWERING LOCUS T (FT) gene from Arabidopsis thaliana seems to be the long-searched florigen, and over-expression of FT orthologues resulted in accelerated flower development in annual and perennial plants. In the present study, we isolated two allelic mRNA sequences of an FT-homologous gene from apple, which was designated as MdFT1. Using a SSR motif this gene was mapped on LG 12 of apple. Over-expression of MdFT1 in Arabidopsis and the commercially important tree species poplar and apple itself using the CaMV 35S or the Arabidopsis Suc2 promoter resulted in significant accelerated flowering compared with wild-type plants. Transgenic T0 plants of Arabidopsis flowered 4–6 days on average earlier than wild-type Arabidopsis under LD conditions. Under short-day conditions Suc2::MdFT1 plants of the T1-generation flowered after 66 ± 18 days, while wild-type plants flowered about 22 days later. All transgenic Arabidopsis plants showed a normal habit except for the early flowering phenotype. Early flowering was detected 6–10 months after transformation in transgenic polar clones containing MdFT1 driven by the CaMV 35S, whereas plants of the transgenic apple clone T780 set up its first flowers during in vitro cultivation. Based on our results we conclude that MdFT1 is responsible for inducing flowering and that the function of the apple FT1 gene is conserved in annual herbaceous species as well as perennial woody species. Furthermore, we discuss the role of MdFT1 in flower development with regard to the findings of genetic studies on apple.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AFLP:

Amplified fragment length polymorphism

AP1:

APETALA1

CO:

CONSTANS

COL:

CONSTANS like

FT:

FLOWERING LOCUS T

FUL:

FRUITFULL

GFP:

GREEN FLUORESCENT PROTEIN

LD:

Long day

LFY:

LEAFY

LG:

Linkage group

RNAPOLII:

RNA POLYMERASE SUBUNIT II

SD:

Short day

SEP3:

SEPALLATA3

SOC1:

SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1

SSR:

Simple sequence repeat

Suc2:

Arabidopsis sucrose-H+ symporter gene

TFL1:

TERMINAL FLOWER 1

References

  • Abbott DL (1977) Fruit bud formation in Cox’s Orange Pippin. Report of Long Ashton Research Station for 1976, pp 167–176

  • Ahn JH, Miller D, Winter VJ, Banfield MJ, Lee JH, Yoo SY, Henz SR, Brady RL, Weigel D (2006) A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. EMBO J 25:605–614

    Article  CAS  PubMed  Google Scholar 

  • An H, Roussot C, Suarez-Lopez P, Corbesier L, Vincent C, Pineiro M, Hepworth S, Mouradov A, Justin S, Turnbull C, Coupland G (2004) CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis. Development 131:3615–3626

    Article  CAS  PubMed  Google Scholar 

  • Blackman BK, Strasburg JL, Raduski AR, Michaels SD, Rieseberg LH (2010) The role of recently derived FT paralogs in sunflower domestication. Curr Biol 20:629–635

    Article  CAS  PubMed  Google Scholar 

  • Böhlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S, Strauss SH, Nilsson O (2006) CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312:1040–1043

    Article  PubMed  Google Scholar 

  • Boss PK, Bastow RM, Mylne JS, Dean C (2004) Multiple pathways in the decision to flower: enabling, promoting, and resetting. Plant Cell 16:18–31

    Article  Google Scholar 

  • Carmona MJ, Calonje M, Martinez-Zapater JM (2007) The FT/TFL1 gene family in grapevine. Plant Mol Biol 63:637–650

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral Dip: a simplified method for Agrobacterium- mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316:1030–1033

    Article  CAS  PubMed  Google Scholar 

  • Danilevskaya ON, Meng X, Hou Z, Ananiev EV, Simmons CR (2008) A genomic and expression compendium of the expanded PEBP gene family from maize. Plant Physiol 146:250–264

    Article  CAS  PubMed  Google Scholar 

  • Dumolin S, Demesure B, Petit RJ (1995) Inheritance of chloroplast and mitochondrial genomes in pedunculate oak investigated with an efficient PCR method. Theor Appl Genet 91:1253–1256

    Article  CAS  Google Scholar 

  • Dunemann F, Ulrich D, Boudichevskaia A, Grafe C, Weber WE (2009) QTL mapping of aroma compounds analysed by headspace solid-phase microextraction gas chromatography in the apple progeny ‘Discovery’ × ‘Prima’. Mol Breeding 23:501–521

    Article  CAS  Google Scholar 

  • Endo T, Shimada T, Fujii H, Kobayashi Y, Araki T, Omura M (2005) Ectopic expression of a FT homolog from Citrus confers an early flowering phenotype on trifoliate orange (Poncirus trifoliata L. Raf.). Transgenic Res 14:703–712

    Article  CAS  PubMed  Google Scholar 

  • Esumi T, Tao R, Yonemori K (2005) Isolation of LEAFY and TERMINAL FLOWER 1 homologues from six fruit tree species in the subfamily Maloideae of the Rosaceae. Sex Plant Reprod 17:277–287

    Article  CAS  Google Scholar 

  • Evans RC, Campbell CS (2002) The origin of the apple subfamily (Maloideae; Rosaceae) is clarified by DNA sequence data from duplicated GBSSI genes. Am J Bot 89:1478–1484

    Article  CAS  Google Scholar 

  • Faure S, Higgins J, Turner A, Laurie DA (2007) The FLOWERING LOCUS T-like gene family in barley (Hordeum vulgare). Genetics 176:599–609

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (2004) PHYLIP (Phylogeny Inference Package), computer software version 3.6. Department of Genome Sciences, University of Washington. Seattle, Washington, USA

    Google Scholar 

  • Flachowsky H, Peil A, Sopanen T, Elo A, Hanke V (2007) Overexpression of BpMADS4 from silver birch (Betula pendula Roth.) induces early-flowering in apple (Malus × domestica Borkh.). Plant Breed 126:137–145

    Article  CAS  Google Scholar 

  • Flachowsky H, Hanke M-V, Peil A, Strauss SH, Fladung M (2009) A review on transgenic approaches to accelerate breeding of woody plants. Plant Breed 128:217–226

    Article  CAS  Google Scholar 

  • Flachowsky H, Hättasch C, Höfer M, Peil A, Hanke MV (2010) Overexpression of LEAFY in apple leads to a columnar phenotype with shorter internodes. Planta 231:251–263

    Article  CAS  PubMed  Google Scholar 

  • Fladung M, Ahuja MR (1995) ‘Sandwich’ method for non-radioactive hybridizations. Biotechniques 18:3–5

    Google Scholar 

  • Fladung M, Kumar S, Ahuja R (1997) Genetic transformation of Populus genotypes with different chimaeric gene constructs: transformation efficiency and molecular analysis. Transgenic Res 6:111–121

    Article  CAS  Google Scholar 

  • Fladung M, Schenk TMH, Polak O, Becker D (2009) Elimination of marker genes and targeted integration via FLP/FRT recombination system from yeast in hybrid aspen (Populus tremula L. × P. tremuloides Michx.). Tree Genet Genomes 6:205–217

    Article  Google Scholar 

  • Foster T, Johnston R, Seleznyova A (2003) A morphological and quantitative characterization of early floral development in apple (Malus × domestica Borkh.). Ann Bot 92:199–206

    Article  PubMed  Google Scholar 

  • Gao ZS, van de Weg WE, Schaart JG, Shouten HJ, Tran DH, Kodde LP, van der Meer IM, van der Geest AHM, Kodde J, Breiteneder H, Hoffmann-Sommergruber K, Bosch D, Gilissen Lj WJ (2005) Genomic cloning and linkage mapping of the Mal d 1 (PR10) gene family in apple (Malus domestica). Theor Appl Genet 111:171–183

    Article  CAS  PubMed  Google Scholar 

  • Hanke M-V (1981) Histologische Untersuchungen zur Blütenknospendifferenzierung bei Malus domestica Borkh. (Golden Delicious). Ph.D. thesis, Akademie der Landwirtschaftswissenschaften DDR

  • Hanke M-V, Flachowsky H, Peil A, Hättasch C (2007) No flower no fruit—genetic potentials to trigger flowering in fruit trees. Genes, Genomes Genomics 1:1–20

    Google Scholar 

  • Hanzawa Y, Money T, Bradley D (2005) A single amino acid converts a repressor to an activator of flowering. Proc Natl Acad Sci USA 102:7748–7753

    Article  CAS  PubMed  Google Scholar 

  • Hättasch C, Flachowsky H, Kapturska D, Hanke MV (2008) Isolation of flowering genes and seasonal changes in their transcript levels related to flower induction and initiation in apple (Malus domestica). Tree Physiol 28:1459–1466

    PubMed  Google Scholar 

  • Hättasch C, Flachowsky H, Hanke M-V, Lehmann S, Gau A, Kapturska D (2009) The switch to flowering: genes involved in floral induction of the apple cultivar ‘Pinova’ and the role of the flowering gene MdFT. Acta Hortic 839:701–705

    Google Scholar 

  • Hayama R, Agashe B, Luley E, King R, Coupland G (2007) A circadian rhythm set by dusk determines the expression of FT homologs and the short-day photoperiodic flowering response in Pharbitis. Plant Cell 19:2988–3000

    Article  CAS  PubMed  Google Scholar 

  • Hirst PM, Ferree D (1995) Rootstock effects on the flowering of ‘Delicious’ apple. I. Bud development. J Am Soc Hortic Sci 20:1010–1017

    Google Scholar 

  • Hirst PM, Ferree DC (1996) Effects of rootstock on bud development and flower formation of ‘Starkspur Supreme Delicious’ apple. Fruit Varieties J 50:25–34

    Google Scholar 

  • Hoenicka H, Nowitzki O, Hanelt D, Fladung M (2008) Heterologous overexpression of the birch FRUITFULL-like MADS-box gene BpMADS4 prevents normal senescence and winter dormancy in Populus tremula L. Planta 227:1001–1011

    Article  CAS  PubMed  Google Scholar 

  • Hsu CY, Liu Y, Luthe DS, Yuceer C (2006) Poplar FT2 shortens the juvenile phase and promotes seasonal flowering in poplar trees. Plant Cell 18:1846–1861

    Article  CAS  PubMed  Google Scholar 

  • Jaeger KE, Wigge PA (2007) FT Protein acts as a long-range signal in Arabidopsis. Curr Biol 17:1050–1054

    Article  CAS  PubMed  Google Scholar 

  • Jung C, Müller AE (2009) Flowering time control and applications in plant breeding. Trends Plant Sci 14:563–573

    Article  CAS  PubMed  Google Scholar 

  • Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Chory J, Harrison MJ, Weigel D (1999) Activation tagging of the floral inducer FT. Science 286:1962–1965

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T (1999) A pair of related genes with antagonistic roles in mediating flowering signals. Science 286:1960–1962

    Article  CAS  PubMed  Google Scholar 

  • Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M (2002) Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol 43:1096–1105

    Article  CAS  PubMed  Google Scholar 

  • Kotoda N, Wada M, Masuda T, Soejima J (2003) The break-trough in the reduction of juvenile phase in apple using transgenic approaches. Acta Hortic 625:337–343

    CAS  Google Scholar 

  • Kotoda N, Iwanami H, Takahashi S, Abe K (2006) Antisense expression of MdTFL1, a TFL1-like gene, reduces the juvenile phase in apple. J Am Soc Hortic Sci 131:74–81

    CAS  Google Scholar 

  • Lawson DM, Hemmat M, Weeden NF (1995) The use of molecular markers to analyze the inheritance of morphological and developmental traits in apple. J Am Soc Hort Sci 120:532–537

    Google Scholar 

  • Liebhard R, Gianfranceschi L, Koller B, Ryder CD, Tarchini R, Van de Weg E, Gessler C (2002) Development and characterisation of 140 new microsatellites in apple (Malus × domestica Borkh.). Mol Breed 10:217–241

    Article  CAS  Google Scholar 

  • Liebhard R, Kellerhals M, Pfammatter W, Jertmini M, Gessler C (2003) Mapping quantitative physiological traits in apple (Malus × domestica Borkh.). Plant Mol Biol 52:511–526

    Article  CAS  PubMed  Google Scholar 

  • Lifschitz E, Eviastar T, Rozman A, Shalit A, Goldschmidt A, Amsellem Z, Alvarez JP, Eshed Y (2006) The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli. Proc Natl Acad Sci USA 103:6398–6403

    Article  CAS  PubMed  Google Scholar 

  • Lin MK, Belanger H, Lee YL, Varkonyl-Gasic E, Taoka KI, Miura E, Xoconostie-Cazares B, Gendler M, Jorgensen RA, Phinney B, Lough TJ, Lucas WJ (2007) FLOWERING LOCUS T protein may act as the long-distance florigenic signal in the Cucurbits. Plant Cell 19:1488–1506

    Article  CAS  PubMed  Google Scholar 

  • Matsuda N, Ikeda K, Kurosaka M, Takashina T, Isuzugawa K, Endo T, Omura M (2009) Early flowering phenotype in transgenic pears (Pyrus communis L.) expressing the CiFT gene. J Jpn Soc Hort Sci 78:410–416

    Article  CAS  Google Scholar 

  • Meilan R (1997) Floral induction in woody angiosperms. New Forests 14:179–202

    Article  Google Scholar 

  • Moon J, Lee H, Kim M, Lee I (2005) Analysis of flowering pathway integrators in Arabidopsis. Plant Cell Physiol 46:292–299

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Notaguchi M, Abe M, Kimura T, Daimon Y, Kobayashi T, Yamaguchi A, Tomita Y, Dohi K, Mori M, Araki T (2008) Long-distance, graft-transmissible action of Arabidopsis FLOWERING LOCUS T protein to promote flowering. Plant Cell Physiol 49:1645–1658

    Article  CAS  PubMed  Google Scholar 

  • Putterill J, Laurie R, Macknight R (2004) It’s time to flower: the genetic control of flowering time. Bioassays 26:363–373

    Article  CAS  Google Scholar 

  • Roger OS, Bendich AJ (1985) Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol 5:69–76

    Article  Google Scholar 

  • Rottmann WH, Meilan R, Sheppard LA, Brunner AM, Skinner JS, Ma C, Cheng S, Jouanin L, Pilate G, Strauss SH (2000) Diverse effects of overexpression of LEAFY and PTLF, a poplar (Populus) homolog of LEAFY/FLORICAULA, in transgenic poplar and Arabidopsis. Plant J 22:235–245

    Article  CAS  PubMed  Google Scholar 

  • Searle I, He Y, Turck F, Vincent C, Fornara F, Kröber S, Amasino RA, Coupland G (2006) The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Gene Dev 20:898–912

    Article  CAS  PubMed  Google Scholar 

  • Shalit A, Rozmana A, Goldshmidt A, Alvarez JB, Bowman JL, Eshed Y, Lifschitz E (2009) The flowering hormone florigen functions as a general systemic regulator of growth and termination. Proc Natl Acad Sci USA 106:8392–8397

    Article  CAS  PubMed  Google Scholar 

  • Suárez-López P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G (2001) CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410:1116–1120

    Article  PubMed  Google Scholar 

  • Teper-Bamnolker P, Samach A (2005) The flowering integrator FT regulates SEPALLATA3 and FRUITFULL accumulation in Arabidopsis leaves. Plant Cell 17:2661–2675

    Article  CAS  PubMed  Google Scholar 

  • Van Ooijen JW (2006) JoinMap® 4, Software for the calculation of genetic linkage maps in experimental populations. Kyazma B.V, Wageningen, Netherlands

    Google Scholar 

  • Van Roggen PPM, Gielen JJL, Pin P, Wremerth Weich ESI (2010) Engineering of bolting resistance in sugar beet by means of the transgenic expression of the beet homologue of flowering time control gene FT. Patent WO 2010/025888A2

  • Wada M, Cao QF, Kotoda N, Soejima J, Masuda T (2002) Apple has two orthologues of FLORICAULA/LEAFY involved in flowering. Plant Mol Biol 49:567–577

    Article  CAS  PubMed  Google Scholar 

  • Weigel D, Nilsson O (1995) A developmental switch sufficient for flower initiation in diverse plants. Nature 377:495–500

    Article  CAS  PubMed  Google Scholar 

  • Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, Lohmann JU, Weigel D (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309:1056–1059

    Article  CAS  PubMed  Google Scholar 

  • Yoo SK, Chung KS, Kim J, Lee JH, Hong SM, Yoo SJ, Yoo SY, Lee JS, Ahn JH (2005) CONSTANS activates SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 through FLOWERING LOCUS T to promote flowering in Arabidopsis. Plant Physiol 139:770–778

    Article  CAS  PubMed  Google Scholar 

  • Zeevaart JAD (2007) FT protein, not mRNA, is the phloem-mobile signal for flowering, Plant Physiol (Online Essay 25.2)

  • Zhang H, Harry DE, Ma C, Yuceer C, Hsu C-Y, Vikram V, Shevchenko O, Etherington E, Strauss SH (2010) Precocious flowering in trees: the FLOWERING LOCUS T gene as a research and breeding tool in Populus. J Exp Bot. doi:10.1093/jxp/erq092

  • Zimmerman RH (1973) Juvenility and flowering of fruit trees. Acta Hortic 34:139–142

    Google Scholar 

Download references

Acknowledgments

This research was funded in part by the Federal Ministry for Education and Research (BMBF) as well as by the European research project ISAFRUIT. The ISAFRUIT project is funded by the European Commission under the Thematic Priority 5-Food Quality and Safety of the 6th Framework Program of RTD (Contract no. FP6-FOOD-CT-2006-016279). The authors are grateful to Ines Hiller, Kerstin Neumann, Katrin Winkler, Uta Hille, and Ines Polster for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henryk Flachowsky.

Additional information

C. Tränkner and H. Flachowsky contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tränkner, C., Lehmann, S., Hoenicka, H. et al. Over-expression of an FT-homologous gene of apple induces early flowering in annual and perennial plants. Planta 232, 1309–1324 (2010). https://doi.org/10.1007/s00425-010-1254-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-010-1254-2

Keywords

Navigation