Skip to main content
Log in

Heterologous overexpression of the birch FRUITFULL-like MADS-box gene BpMADS4 prevents normal senescence and winter dormancy in Populus tremula L.

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

MADS-box genes have been shown to be important to flower and vegetative tissue development, senescence and winter dormancy in many plant species. Heterologous overexpression of known MADS-box genes has also been used for unravelling gene regulation mechanisms in forest tree species. The constitutive expression of the BpMADS4 gene from birch in poplar, known to induce early flowering in birch and apple, induced broad changes in senescence and winter dormancy but no early flowering. Other analyses revealed that 35S::BpMADS4 poplars maintained photosynthetic activity, chlorophyll and proteins in leaves under winter conditions. BpMADS4 may be influencing transcription factors regulating the senescence and dormancy process due to homology with poplar proteins related to both traits. Little is known of the regulatory genes that co-ordinate senescence, dormancy, chlorophyll/protein degradation, and photosynthesis at the molecular level. Dissecting the molecular characteristics of senescence regulation will probably involve the understanding of multiple and novel regulatory pathways. The results presented here open new horizons for the identification of regulatory mechanisms related to dormancy and senescence in poplar and other temperate tree species. They confirm recent reports of common signalling intermediates between flowering time and growth cessation in trees (Böhlenius et al. in Science 312:1040–1043, 2006) and additionally indicate similar connections between flowering time signals and senescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Chl:

Chlorophyll

Rubisco:

Ribulose-bisphosphate carboxylase

RbcL:

Ribulose-bisphosphate carboxylase large subunit

PSII:

Photosystem II

Fv/Fm:

Optimum quantum yield of photosystem II

ETR:

Electron transport rate

WC:

Winter conditions

SC:

Summer conditions

References

  • Andersson A, Keskitalo J, Sjodin A, Bhalerao R, Sterky F, Wissel K, Tandre K, Aspeborg H, Moyle R, Ohmiya Y, Bhalerao R, Brunner A, Gustafsson P, Karlsson J, Lundeberg J, Nilsson O, Sandberg G, Strauss S, Sundberg B, Uhlen M, Jansson S, Nilsson P (2004) A transcriptional timetable of autumn senescence. Genome Biol 5:R24

    Article  PubMed  Google Scholar 

  • Bhalerao R, Keskitalo J, Sterky F, Erlandsson R, Bjorkbacka H, Birve SJ, Karlsson J, Gardestrom P, Gustafsson P, Lundeberg J, Jansson S (2003) Gene expression in autumn leaves. Plant Physiol 131:430–442

    Article  PubMed  Google Scholar 

  • Bielenberg DG, Wang Y, Fan S, Reighard GL, Scorza R, Abbott AG (2004) A deletion affecting several gene candidates is present in the evergrowing peach mutant. J Hered 95:436–444

    Article  PubMed  CAS  Google Scholar 

  • Bilger W, Schreiber U, Bock M (1995) Determination of the quantum efficiency of photosystem II and of non-photochemical quenching of chlorophyll fluorescence in the field. Oecologia 102:425–432

    Article  Google Scholar 

  • Bischof K, Hanelt D, Wiencke C (1998) UV-radiation can affect depth-zonation of Antarctic macroalgae. Mar Biol 131:597–605

    Article  Google Scholar 

  • Bleecker AB, Patterson SE (1997) Last exit: senescence, abscission, and meristem arrest in Arabidopsis. Plant Cell 9:1169–1179

    Article  PubMed  CAS  Google Scholar 

  • Böhlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S, Strauss SH, Nilsson O (2006) CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312:1040–1043

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–54

    Article  PubMed  CAS  Google Scholar 

  • Cooke JE, Weih M (2005) Nitrogen storage and seasonal nitrogen cycling in Populus: bridging molecular physiology and ecophysiology. New Phytol 167:19–30

    Article  PubMed  CAS  Google Scholar 

  • Cseke LJ, Podila GK (2004) MADS-box genes in dioecious aspen II: a review of MADS-box genes from trees and their potential in forest biotechnology. Physiol Mol Biol Plants 10:7–28

    CAS  Google Scholar 

  • Dickson RE, Vogelmann TC, Larson PR (1985) Glutamine transfer from xylem to phloem and translocation to developing leaves of Populus deltoides. Plant Physiol 77:412–417

    Article  PubMed  CAS  Google Scholar 

  • Elo A, Lemmetyinen J, Turunen ML, Tikka L, Sopanen T (2001) Three MADS-box genes similar to APETALA1 and FRUITFULL from silver birch (Betula pendula). Physiol Plant 112:95–103

    Article  PubMed  CAS  Google Scholar 

  • Elo A, Lemmetyinen J, Novak A, Keinonen K, Porali I, Hassinen M, Sopanen T (2007) BpMADS4 has a central role in the inflorescence initiation in silver Birch (Betula pendula, Roth). Physiol Plant 131:149–158

    Article  PubMed  CAS  Google Scholar 

  • Fang SC, Fernández DE (2002) Effect of regulated overexpression of the MADS domain factor AGL15 on flower senescence and fruit maturation. Plant Physiol 130:78–89

    Article  PubMed  CAS  Google Scholar 

  • Gan S, Amasino RM (1997) Making sense of senescence (molecular genetic regulation and manipulation of leaf senescence). Plant Physiol 113:313–319

    PubMed  CAS  Google Scholar 

  • Fedoroff N (2002) Cross-talk in abscisic acid signalling. Sci STKE:RE10

  • Fladung M, Großmann K, Ahuja MR (1997) Alterations in hormonal and developmental characteristics in transgenic Populus conditioned by the rolC gene from Agrobacterium rhizogenes. J Plant Physiol 150:420–427

    CAS  Google Scholar 

  • Fernández DE, Heck GR, Perry SE, Patterson SE, Bleecker AB, Fang SC (2000) The embryo MADS domain factor AGL15 acts postembryonically. Inhibition of perianth senescence and abscission via constitutive expression. Plant Cell 12:183–198

    Article  PubMed  Google Scholar 

  • Flachowsky H, Peil A, Sopanen T, Elo A, Hanke V (2007) Overexpression of BpMADS4 from silver birch (Betula pendula) in apple (Malus × domestica) induces early flowering. Plant Breed 126:137–145

    Article  CAS  Google Scholar 

  • Gallardo F, Fu J, Canton FR, García-Gutierrez A, Cánovas FM, Kirby EG (1999) Expression of a conifer glutamine synthetase gene. Planta 210:19–26

    Article  PubMed  CAS  Google Scholar 

  • Hanelt D (1998) Capability of dynamic photoinhibition in marine macroalgae is related to their depth distribution. Mar Biol 131:361–369

    Article  Google Scholar 

  • Hanelt D, Hawes I, Rae R (2006) Reduction of UV-B radiation causes an enhancement of photoinhibition in high light stressed aquatic plants from New Zealand lakes. J Photochem Photobiol B Biol 84:89–201

    Article  CAS  Google Scholar 

  • Henderson IR, Dean C (2004) Control of Arabidopsis flowering: the chill before the bloom. Development 131:3829–3838

    Article  PubMed  CAS  Google Scholar 

  • Hörtensteiner S (2006) Chlorophyll degradation during senescence. Annu Rev Plant Biol 57:55–77

    Article  PubMed  CAS  Google Scholar 

  • Hörtensteiner S, Feller U (2002) Nitrogen metabolism and remobilization during senescence. J Exp Bot 53:927–937

    Article  PubMed  Google Scholar 

  • Horvath DP, Anderson JV, Chao WS, Foley ME (2003) Knowing when to grow: signals regulating bud dormancy. Trends Plant Sci 8:534–540

    Article  PubMed  CAS  Google Scholar 

  • Huala E, Sussex IM (1992) LEAFY interacts with floral homeotic genes to regulate Arabidopsis floral development. Plant Cell 4:901–913

    Article  PubMed  Google Scholar 

  • Jassby AD, Platt T (1976) Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol Oceanogr 21:540–547

    Article  CAS  Google Scholar 

  • Kim SH, Mizuno K, Fujimura T (2002) Isolation of MADS-box genes from sweet potato (Ipomoea batatas (L.) Lam.) expressed specifically in vegetative tissues. Plant Cell Physiol 43:314–322

    Article  PubMed  CAS  Google Scholar 

  • Kyozuka J, Harcourt R, Peacock WJ, Dennis ES (1997) Eucalyptus has functional equivalents of the Arabidopsis AP1 gene. Plant Mol Biol 35:573–584

    Article  PubMed  CAS  Google Scholar 

  • Leseberg CH, Li A, Kang H, Duvall M, Mao L (2006) Genome-wide analysis of the MADS-box gene family in Populus trichocarpa. Gene 378:84–94

    Article  PubMed  CAS  Google Scholar 

  • Lichtenhaler HK, Wellburn AR (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans 11:591–592

    Google Scholar 

  • Noh YS, Amasino RM (1999) Identification of promoter region responsible for the senescence-specific expression of SAG12. Plant Mol Biol 41:181–194

    Article  PubMed  CAS  Google Scholar 

  • Quirino BF, Noh YS, Himelblau E, Amasino RM (2000) Molecular aspects of leaf senescence. Trends Plant Sci 5:278–282

    Article  PubMed  CAS  Google Scholar 

  • Renault J, Hoffman L, Hausman J-F (2005) Biochemical and physiological mechanisms related to cold acclimation and enhanced freezing tolerance in poplar plantlets. Physiol Plant 125:82–94

    Article  CAS  Google Scholar 

  • Rodriguez J, Sherman WB, Scorza R, Wisniewski M, Okie WR (1994) Evergreen peach, its inheritance and dormant behaviour. J Am Soc Hort Sci 119:789–792

    Google Scholar 

  • Rohde A, Bhalerao RP (2007) Plant dormancy in the perennial context. Trends Plant Sci 12:217–223

    Article  PubMed  CAS  Google Scholar 

  • Rosin FM, Hart FK, Horner HT, Davies PJ, Hannapel DJ (2003) Overexpression of a knotted-like homeobox gene of potato alters vegetative development by decreasing gibberellin accumulation. Plant Physiol 132:106–117

    Article  PubMed  CAS  Google Scholar 

  • Rottmann WH, Meilan R, Sheppard LA, Brunner AM, Skinner JS, Ma C, Cheng S, Jouanin L, Pilate G, Strauss SH (2000) Diverse effects of overexpression of LEAFY and PTLF, a poplar (Populus) homolog of LEAFY/FLORICAULA, in transgenic poplar and Arabidopsis.Plant J 22:235–245

    Article  PubMed  CAS  Google Scholar 

  • Saedler H, Becker A, Winter KU, Kirchner C, Theissen G (2001) MADS-box genes are involved in floral development and evolution. Acta Biochim Pol 48:351–358

    PubMed  CAS  Google Scholar 

  • Schreiber U, Bilger W, Neubauer C (1994) Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. Ecol Stud 100:49–70

    CAS  Google Scholar 

  • Smart CM (1994) Tansley Review N° 64: gene expression during leaf senescence. New Phytol 126:419–448

    Article  CAS  Google Scholar 

  • Stitt M, Schulze D (1994) Does Rubisco control the rate of photosynthesis and plant growth? An exercise in molecular ecophysiology. Plant Cell Environ 17:465–487

    Article  CAS  Google Scholar 

  • Theissen G, Becker A, Di Rosa A, Kanno A, Kim JT, Munster T, Winter KU, Saedler H (2000) A short history of MADS-box genes in plants. Plant Mol Biol 42:115–149

    Article  PubMed  CAS  Google Scholar 

  • Thompson MM, Smith DC, Burgess JE (1985) Non-dormant mutants in a temperate tree species, Corylus avellana L. Theor Appl Genet 70:687–692

    Article  Google Scholar 

  • Van Doorn WG, Balk PA, van Houwelingen AM, Hoeberichts FA, Hall RD, Vorst O, van der Schoot C, van Wordragen MF (2003) Gene expression during anthesis and senescence in Iris flowers. Plant Mol Biol 53:845–863

    Article  PubMed  Google Scholar 

  • Vrebalov J, Ruezinsky D, Padmanabhan V, White R, Medrano D, Drake R, Schuch W, Giovannoni J (2002) A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus. Science 296:343–346

    Article  PubMed  CAS  Google Scholar 

  • Weigel D, Nilsson (1995) A developmental switch sufficient for flower initiation in diverse plants. Nature 377:495–500

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Federal Ministry for Research and Education (BMBF). We would like to thank Tuomas Sopanen (University of Joensuu, Finland) for providing the binary vector pAKE1, our co-workers in the Institute of Forest Genetics and Forest Tree Breeding (D. Boedecker, D. Ebbinghaus, E. Moek, A. Pusch, A. Schellhorn, L. Schindler, S. Stern, J. Struss, M. Wellern) for their valuable support, two anonymous reviewers for their very helpful comments during reviewing process, and Dr. Trevor Fenning for language correction as well as other comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Fladung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoenicka, H., Nowitzki, O., Hanelt, D. et al. Heterologous overexpression of the birch FRUITFULL-like MADS-box gene BpMADS4 prevents normal senescence and winter dormancy in Populus tremula L.. Planta 227, 1001–1011 (2008). https://doi.org/10.1007/s00425-007-0674-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-007-0674-0

Keywords

Navigation