Skip to main content
Log in

Overexpression of LEAFY in apple leads to a columnar phenotype with shorter internodes

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

To break the juvenile stage of apple (Malus × domestica Borkh.) we transferred the LFY gene of Arabidopsis into the genome of the apple cv. ‘Pinova’. A total of five transgenic clones constitutively overexpressing the LFY gene were obtained. Approximately, 20 shoots of each clone were rooted and transferred to the glasshouse. No flowers were obtained on transgenic plants during the first 2 years of cultivation. Evaluation of the expression of possible LFY targets revealed that no transcripts could be detected for MdAP1-1 and MdAP1-2. MdTFL1 was unaffected. Based on the absence of the LFY core-binding sequence within promoter sequences of MdAP1-1 and MdAP1-2, it was concluded that LFY was not able to induce these genes. The LFY genes of apple were unaffected in transgenic plants and sequence alignments of the C-terminal amino acid sequence showed a high conservation of these proteins. A change in binding ability to DNA can therefore be excluded. Instead of early flowering, the transgenic plants showed an altered phenotype, which is similar to the columnar phenotype of the ‘McIntosh Wijcik’ mutant of apple. The transgenic plants showed shortened internodes and a significantly reduced length of the regrowing shoot. A negative correlation was observed between the length of the regrowing shoot and the LFY mRNA transcript level. Furthermore, the LFY transgenic apple plants showed an increased shoot diameter at node 20, which was positively correlated with the LFY mRNA transcript level. Based on our results, we assume an alternative role of LFY in apple.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AFL:

Apple FLORICAULA/LEAFY-like

AG:

AGAMOUS

AGL15:

AGAMOUS-like 15

AP1:

APETALA1

AP3:

APETALA3

CAL:

CAULIFLOWER

FLO:

FLORICAULA

FUL:

FRUITFUL

LFY:

LEAFY

PI:

PISTILLATA

RFL:

Rice FLORICAULA/LEAFY-homolog

RNAPOL II:

RNA polymerase subunit II

RUBISCO:

Ribulose-1, 5-bisphosphate carboxylase/oxygenase

TFL1:

TERMINAL FLOWER 1

UNI:

UNIFOLIATA

References

  • Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78

    Article  CAS  PubMed  Google Scholar 

  • Aldwinckle HS (1976) Early flowering of cultivated apple seedlings forced in the greenhouse. Acta Hortic 56:201–203

    Google Scholar 

  • Bate N, Twell D (1998) Functional architecture of a late pollen promoter: pollen-specific transcription is developmentally regulated by multiple stage-specific and co-dependent activator elements. Plant Mol Biol 37:859–869

    Article  CAS  PubMed  Google Scholar 

  • Blázquez MA, Ferrandiz C, Madueno F, Parcy F (2006) How floral meristems are built. Plant Mol Biol 60:855–870

    Article  Google Scholar 

  • Bulley SM, Malnoy M, Atkinson RG, Aldwinckle HS (2007) Transformed apples: traits of significance to growers and consumers. Transgenic Plant J 1:267–279

    Google Scholar 

  • Busch MA, Bomblies K, Weigel D (1999) Activation of a floral homeotic gene in Arabidopsis. Science 285:585–587

    Article  CAS  PubMed  Google Scholar 

  • Chinnusamy V, Schumaker K, Zhu JK (2004) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J Exp Bot 55:225–236

    Article  CAS  PubMed  Google Scholar 

  • Deyholos MK, Sieburth LE (2000) Separable whorl-specific expression and negative regulation by enhancer elements within the AGAMOUS second intron. Plant Cell 12:1799–1810

    Article  CAS  PubMed  Google Scholar 

  • Eulgem T, Rushton PJ, Schmelzer E, Hahlbrock K, Somssich IE (1999) Early nuclear events in plant defence signalling: rapid gene activation by WRKY transcription factors. EMBO J 18:4689–4699

    Article  CAS  PubMed  Google Scholar 

  • Ferrandiz C, Gu Q, Martienssen R, Yanofsky MF (2000) Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development 127:725–734

    CAS  PubMed  Google Scholar 

  • Fischer C (1994) Shortening of the juvenile period in apple breeding. In: Schmidt H, Kellerhals M (eds) Developments in plant breeding: progress in temperate fruit breeding. Kluwer, London, pp 161–164

  • Flachowsky H, Peil A, Sopanen T, Elo A, Hanke V (2007) Overexpression of BpMADS4 from silver birch (Betula pendula Roth.) induces early flowering in apple (Malus × domestica Borkh.). Plant Breed 126:137–145

    Article  CAS  Google Scholar 

  • Flachowsky H, Riedel M, Reim S, Hanke M-V (2008) Evaluation of the uniformity and stability of T-DNA integration and gene expression in transgenic apple plants. Electron J Biotechnol 11(1) (online). Available from: http://www.ejbiotechnology.info/content/vol11/issue1/full/11/. ISSN 0717-3458. Cited 15 Jan 2008

  • Flachowsky H, Hanke M-V, Peil A, Strauss SH, Fladung M (2009) A review on transgenic approaches to accelerate breeding of woody plants. Plant Breed 128:217–226

    Article  CAS  Google Scholar 

  • Folter S, Angenent GC (2006) Trans meets cis in MADS science. Trends Plant Sci 11:224–231

    Article  PubMed  Google Scholar 

  • Galbraith DW, Harkins KR, Maddox JR, Ayres NM, Sharma DP, Firoozabady E (1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220:1049–1051

    Article  CAS  PubMed  Google Scholar 

  • Gilmartin PM, Sarokin L, Memelink J, Chua N-H (1990) Molecular light switches for plant genes. Plant Cell 2:369–378

    Article  CAS  PubMed  Google Scholar 

  • Gowik U, Burscheidt J, Akyildiz M, Schlue U, Koczor M, Streubel M, Westhoff P (2004) cis-Regulatory elements for mesophyll-specific gene expression in the C4 plant Flaveria trinervia, the promoter of the C4 phosphoenolpyruvate carboxylase gene. Plant Cell 16:1077–1090

    Article  CAS  PubMed  Google Scholar 

  • Hamès C, Ptchelkine D, Grimm C, Thevenon E, Moyroud E, Gérard F, Martiel J-L, Benlloch R, Parcy F, Müller CW (2008) Structural basis for LEAFY floral switch function and similarity with helix-turn-helix proteins. EMBO J 27:2628–2637

    Article  PubMed  Google Scholar 

  • Hanke V, Hiller I, Klotzsche G, Richter K, Norelli JL, Aldwinckle HS (2000) Transformation in apple for increased disease resistance. Acta Hortic 538:611–616

    Google Scholar 

  • Hanke M-V, Flachowsky H, Peil A, Hättasch C (2007) No flower no fruit: genetic potentials to trigger flowering in fruit trees. Genes Genomes Genomics 1:1–20

    Google Scholar 

  • Hartmann U, Sagasser M, Mehrtens F, Stracke R, Weisshaar B (2005) Differential combinatorial interactions of cis-acting elements recognized by R2R3-MYB, BZIP, and BHLH factors control light-responsive and tissue-specific activation of phenylpropanoid biosynthesis genes. Plant Mol Biol 57:155–171

    Article  CAS  PubMed  Google Scholar 

  • He ZH, Zhu Q, Dabi T, Li DB, Weigel D, Lamb C (2000) Transformation of rice with the Arabidopsis floral regulator LEAFY causes early heading. Transgenic Res 9:223–227

    Article  CAS  PubMed  Google Scholar 

  • Hemmat M, Weeden NF, Conner PJ, Brown SK (1997) A DNA marker for columnar growth habit in apple contains a simple sequence repeat. J Am Soc Hortic Sci 122:347–349

    CAS  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300

    Article  CAS  PubMed  Google Scholar 

  • Hofer J, Turner L, Hellens R, Ambrose M, Matthews P, Michael A, Ellis N (1997) UNIFOLIATA regulates leaf and flower morphogenesis in pea. Curr Biol 7:581–587

    Article  CAS  PubMed  Google Scholar 

  • Hudson ME, Quail PH (2003) Identification of promoter motifs involved in the network of phytochrome A-regulated gene expression by combined analysis of genomic sequence and microarray data. Plant Physiol 133:1605–1616

    Article  CAS  PubMed  Google Scholar 

  • Kagaya Y, Ohmiya K, Hattori T (1999) RAV1, a novel DNA-binding protein, binds to bipartite recognition sequence through two distinct DNA-binding domains uniquely found in higher plants. Nucleic Acids Res 27:470–478

    Article  CAS  PubMed  Google Scholar 

  • Kotoda N, Wada M, Komori S, Kidou S, Abe K, Masuda T, Soejima J (2000) Expression pattern of homologues of floral meristem identity genes LFY and AP1 during flower development in apple. J Am Soc Hortic Sci 125:398–403

    CAS  Google Scholar 

  • Kotoda N, Wada M, Kusaba S, Kano-Murakami Y, Masuda T, Soejima J (2002) Overexpression of MdMADS5, an APETALA1-like gene of apple, causes early flowering in transgenic Arabidopsis. Plant Sci 162:679–687

    Article  CAS  Google Scholar 

  • Kotoda N, Wada M, Masuda T, Soejima J (2003) The breakthrough in the reduction of juvenile phase in apple using transgenic approaches. Acta Hortic 625:337–343

    CAS  Google Scholar 

  • Kotoda N, Iwanami H, Takahashi S, Abe K (2006) Antisense expression of MdTFL1, a TFL1-like gene, reduces the juvenile phase in apple. J Am Soc Hortic Sci 131:74–81

    CAS  Google Scholar 

  • Lamb RS, Hill TA, Tan QKG, Irish VF (2002) Regulation of APETALA3 floral homeotic gene expression by meristem identity genes. Development 129:2079–2086

    CAS  PubMed  Google Scholar 

  • Liu YG, Chen Y, Zhang Q (2005) Amplification of genomic sequences flanking T-DNA insertions by thermal asymmetric interlaced polymerase chain reaction. Methods Mol Biol 286:341–348

    CAS  PubMed  Google Scholar 

  • Lohmann J, Huong R, Hobe M, Busch M, Parcy F, Simon R, Weigel D (2001) A molecular link between stem cell regulation and floral patterning in Arabidopsis. Cell 105:793–803

    Article  CAS  PubMed  Google Scholar 

  • Moyroud E, Tichtinsky G, Parcy F (2009) The LEAFY floral regulators in angiosperms: conserved proteins with diverse roles. J Plant Biol 52:177–185

    Article  CAS  Google Scholar 

  • Nilsson O, Weigel D (1997) Modulating the timing of flowering. Curr Opin Biotechnol 8:195–199

    Article  CAS  PubMed  Google Scholar 

  • Norelli JL, Jones AL, Aldwinckle HS (2003) Fire blight management in twenty-first century. Plant Dis 87:756–765

    Article  Google Scholar 

  • Parcy F (2005) Flowering: a time for integration. Int J Dev Biol 49:585–593

    Article  PubMed  Google Scholar 

  • Parcy F, Nilsson O, Busch MA, Lee I, Weigel D (1998) A genetic framework for floral patterning. Nature 395:561–566

    Article  CAS  PubMed  Google Scholar 

  • Peña L, Martin-Trillo M, Juarez J, Pina JA, Navarro L, Martinez-Zapater JM (2001) Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their generation time. Nat Biotechnol 19:263–267

    Article  PubMed  Google Scholar 

  • Quinn JM, Merchant S (1995) Two copper-responsive elements associated with the Chlamydomonas Cyc6 gene function as targets for transcriptional activators. Plant Cell 7:623–628

    Article  CAS  PubMed  Google Scholar 

  • Rao NN, Prasad K, Kumar PR, Vijayraghavan U (2008) Distinct regulatory role for RFL, the rice LFY homolog, in determining flowering time and plant architecture. Proc Natl Acad Sci USA 105:3646–3651

    Article  CAS  PubMed  Google Scholar 

  • Roßberg D (2003) NEPTUN 2001—Erhebung von Daten zum tatsächlichen Einsatz chemischer Pflanzenschutzmittel im Obstbau, im Hopfen und in Erdbeeren. Ber Biol Bundesanst 122

  • Rogers HJ, Bate N, Combe J, Sullivan J, Sweetman J, Swan C, Lonsdale DM, Twell D (2001) Functional analysis of cis-regulatory elements within the promoter of the tobacco late pollen gene g10. Plant Mol Biol 45:577–585

    Article  CAS  PubMed  Google Scholar 

  • Ross EJ, Stone JM, Elowsky CG, Arredondo-Peter R, Klucas RV, Sarath G (2004) Activation of the Oryza sativa non-symbiotic haemoglobin-2 promoter by the cytokinin-regulated transcription factor, ARR1. J Exp Bot 55:1721–1731

    Article  CAS  PubMed  Google Scholar 

  • Rottmann WH, Meilan R, Sheppard LA, Brunner AM, Skinner JS, Ma C, Cheng S, Jouanin L, Pilate G, Strauss SH (2000) Diverse effects of overexpression of LEAFY and PTLF, a poplar (Populus) homolog of LEAFY/FLORICAULA, in transgenic poplar and Arabidopsis. Plant J 22:235–245

    Article  CAS  PubMed  Google Scholar 

  • Sablowski R (2007) Flowering and determinacy in Arabidopsis. J Exp Bot 58:899–907

    Article  CAS  PubMed  Google Scholar 

  • Shirsat A, Wilford N, Croy R, Boulter D (1989) Sequences responsible for the tissue-specific promoter activity of a pea legumin gene in tobacco. Mol Gen Genet 215:326–331

    Article  CAS  PubMed  Google Scholar 

  • Solano R, Nieto C, Avila J, Canas L, Diaz I, Paz-Ares J (1995) Dual DNA-binding specificity of a petal epidermis-specific MYB transcription factor (MYB.Ph3) from Petunia hybrida. EMBO J 14:1773–1784

    CAS  PubMed  Google Scholar 

  • Terzaghi WB, Cashmore AR (1995) Light-regulated transcription. Annu Rev Plant Physiol Plant Mol Biol 46:445–474

    Article  CAS  Google Scholar 

  • Tobutt KR (1985) Breeding columnar apples at East Malling. Acta Hortic 159:63–68

    Google Scholar 

  • Villain P, Mache R, Zhou DX (1996) The mechanism of GT element-mediated cell type-specific transcriptional control. J Biol Chem 271:32593–32598

    Article  CAS  PubMed  Google Scholar 

  • Visser T (1964) Juvenile phase and growth of apple and pear seedlings. Euphytica 13:119–129

    Google Scholar 

  • Wada M, Cao QF, Kotoda N, Soejima J, Masuda T (2002) Apple has two orthologues of FLORICAULA/LEAFY genes involved in flowering. Plant Mol Biol 49:567–577

    Article  CAS  PubMed  Google Scholar 

  • Wagner D, Sablowski RWM, Meyerowitz EM (1999) Transcriptional activation of APETALA1 by LEAFY. Science 285:582–584

    Article  CAS  PubMed  Google Scholar 

  • Weigel D, Nilsson O (1995) A developmental switch sufficient for flower initiation in diverse plants. Nature 377:495–500

    Article  CAS  PubMed  Google Scholar 

  • Wenkel S, Turck F, Singer K, Gissot L, Le Gourrierec J, Samach A, Coupland G (2006) CONSTANS and the CCAAT box binding complex share a functionally important domain and interact to regulate flowering of Arabidopsis. Plant Cell 18:2971–2984

    Article  CAS  PubMed  Google Scholar 

  • William DA, Su Y, Smith MR, Lu M, Baldwin DA, Wagner D (2004) Genomic identification of direct target genes of LEAFY. Proc Natl Acad Sci USA 101:1775–1780

    Article  CAS  PubMed  Google Scholar 

  • Xue GP (2003) The DNA-binding activity of an AP2 transcriptional activator HvCBF2 involved in regulation of low-temperature responsive genes in barley is modulated by temperature. Plant J 33:373–383

    Article  CAS  PubMed  Google Scholar 

  • Yanagisawa S, Schmidt RJ (1999) Diversity and similarity among recognition sequences of Dof transcription factors. Plant J 17:209–214

    Article  CAS  PubMed  Google Scholar 

  • Yao JL, Dong YH, Kvarnheden A, Morris B (1999) Seven MADS-box genes in apple are expressed in different parts of the fruit. J Am Soc Hortic Sci 124:8–13

    CAS  Google Scholar 

Download references

Acknowledgments

We grateful acknowledge the financial support by the Federal Ministry for Education and Research (BMBF), Germany, as well as the European research project ‘ISAFRUIT’. We thank Prof. Dr. D. Weigel of the Max Planck Institute for Developmental Biology in Tübingen for providing us the binary plasmid vector pDW151. Jarod Rollins is gratefully acknowledged for correcting the English text. Furthermore, we gratefully acknowledge Ines Hiller, Katrin Winkler, Ines Polster, Uta Hille, Simone Schöber and Kerstin Neumann for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magda-Viola Hanke.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary tables (PDF 27 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flachowsky, H., Hättasch, C., Höfer, M. et al. Overexpression of LEAFY in apple leads to a columnar phenotype with shorter internodes. Planta 231, 251–263 (2010). https://doi.org/10.1007/s00425-009-1041-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-009-1041-0

Keywords

Navigation