Skip to main content

Advertisement

Log in

Metabolic surgery—principles and current concepts

  • Review Article
  • Published:
Langenbeck's Archives of Surgery Aims and scope Submit manuscript

Abstract

Introduction

In the almost six decades of bariatric surgery, a variety of surgical approaches to treating morbid obesity have been developed.

History and evolution

Rather than prior techniques being continually superseded by new ones, a broad choice of surgical solutions based on restrictive, malabsorptive, humoral effects, or combinations thereof, is now available. In fact, in recent years, the advent of surgically modifying human metabolism promises new approaches to ameliorate traditionally medically treated metabolic entities, i.e., diabetes, even in the non-obese. The understanding of the various metabolic effects have led to a paradigm shift from bariatric surgery as a solely weight-reducing procedure to metabolic surgery affecting whole body metabolism.

Conclusion

The bariatric surgeon now faces the challenge and opportunity of selecting the most suitable technique for each individual case. To assist in such decision-making, this review, Metabolic surgery—principles and current concepts, is presented, tracing the historical development; describing the various surgical techniques; elucidating the mechanisms by which glycemic control can be achieved that involve favorable changes in insulin secretion and insulin sensitivity, gut hormones, adipokines, energy expenditure, appetite, and preference for low glycemic index foods; as well as exploring the fascinating future potential of this new interdisciplinary field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kopelman PG (2000) Obesity as a medical problem. Nature 404(6778):635–643. doi:10.1038/35007508

    PubMed  CAS  Google Scholar 

  2. Sturm R (2007) Increases in morbid obesity in the USA: 2000–2005. Public Health 121(7):492–496. doi:j.jhep.2010.12.004/j.puhe.2007.01.006

    Article  PubMed  CAS  Google Scholar 

  3. Karra E, Chandarana K, Batterham RL (2009) The role of peptide YY in appetite regulation and obesity. J Physiol 587(Pt 1):19–25. doi:10.1113/jphysiol.2008.164269

    Article  PubMed  CAS  Google Scholar 

  4. Flegal KM, Graubard BI, Williamson DF, Gail MH (2005) Excess deaths associated with underweight, overweight, and obesity. Jama 293(15):1861–1867. doi:10.1001/jama.293.15.1861

    Article  PubMed  CAS  Google Scholar 

  5. Flegal KM, Graubard BI, Williamson DF, Gail MH (2007) Cause-specific excess deaths associated with underweight, overweight, and obesity. Jama 298(17):2028–2037. doi:10.1001/jama.298.17.2028

    Article  PubMed  CAS  Google Scholar 

  6. Schneider H, Schmid A (2004) Die Kosten der Adipositas in der Schweiz. Schlussbericht des Bundesamt für Gesundheit (BAG)Bern, Schweiz.

  7. Sjostrom L, Lindroos AK, Peltonen M, Torgerson J, Bouchard C, Carlsson B, Dahlgren S, Larsson B, Narbro K, Sjostrom CD, Sullivan M, Wedel H (2004) Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N Engl J Med 351(26):2683–2693. doi:10.1056/NEJMoa035622

    Article  PubMed  Google Scholar 

  8. Sjostrom L, Narbro K, Sjostrom CD, Karason K, Larsson B, Wedel H, Lystig T, Sullivan M, Bouchard C, Carlsson B, Bengtsson C, Dahlgren S, Gummesson A, Jacobson P, Karlsson J, Lindroos AK, Lonroth H, Naslund I, Olbers T, Stenlof K, Torgerson J, Agren G, Carlsson LM (2007) Effects of bariatric surgery on mortality in Swedish obese subjects. N Engl J Med 357(8):741–752. doi:10.1056/NEJMoa066254

    Article  PubMed  Google Scholar 

  9. Adams TD, Gress RE, Smith SC, Halverson RC, Simper SC, Rosamond WD, Lamonte MJ, Stroup AM, Hunt SC (2007) Long-term mortality after gastric bypass surgery. N Engl J Med 357(8):753–761. doi:10.1056/NEJMoa066603

    Article  PubMed  CAS  Google Scholar 

  10. Buchwald H, Buchwald JN (2002) Evolution of operative procedures for the management of morbid obesity 1950–2000. Obes Surg 12(5):705–717. doi:10.1381/096089202321019747

    Article  PubMed  Google Scholar 

  11. Hocking MP, Duerson MC, O'Leary JP, Woodward ER (1983) Jejunoileal bypass for morbid obesity. Late follow-up in 100 cases. N Engl J Med 308(17):995–999. doi:10.1056/NEJM198304283081703

    Article  PubMed  CAS  Google Scholar 

  12. Halverson JD, Wise L, Wazna MF, Ballinger WF (1978) Jejunoileal bypass for morbid obesity. A critical appraisal. Am J Med 64(3):461–475

    Article  PubMed  CAS  Google Scholar 

  13. Schwartz MZ, Varco RL, Buchwald H (1973) Preoperative preparation, operative technique, and postoperative care of patients undergoing jejunoileal bypass for massive exogenous obesity. J Surg Res 14(2):147–150

    Article  PubMed  CAS  Google Scholar 

  14. MacDonald KG Jr, Long SD, Swanson MS, Brown BM, Morris P, Dohm GL, Pories WJ (1997) The gastric bypass operation reduces the progression and mortality of non-insulin-dependent diabetes mellitus. J Gastrointest Surg 1(3):213–220, discussion 220

    Article  PubMed  Google Scholar 

  15. Demaria EJ, Winegar DA, Pate VW, Hutcher NE, Ponce J, Pories WJ (2010) Early postoperative outcomes of metabolic surgery to treat diabetes from sites participating in the ASMBS bariatric surgery center of excellence program as reported in the Bariatric Outcomes Longitudinal Database. Ann Surg 252(3):559–566. doi:10.1097/SLA.0b013e3181f2aed0, discussion 566–557

    PubMed  Google Scholar 

  16. Buchwald H, Estok R, Fahrbach K, Banel D, Jensen MD, Pories WJ, Bantle JP, Sledge I (2009) Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am J Med 122(3):248–256. doi:j.jhep.2010.12.004/j.amjmed.2008.09.041, e245

    Article  PubMed  Google Scholar 

  17. Buchwald H, Avidor Y, Braunwald E, Jensen MD, Pories W, Fahrbach K, Schoelles K (2004) Bariatric surgery: a systematic review and meta-analysis. Jama 292(14):1724–1737. doi:10.1001/jama.292.14.1724

    Article  PubMed  CAS  Google Scholar 

  18. le Roux CW, Aylwin SJ, Batterham RL, Borg CM, Coyle F, Prasad V, Shurey S, Ghatei MA, Patel AG, Bloom SR (2006) Gut hormone profiles following bariatric surgery favor an anorectic state, facilitate weight loss, and improve metabolic parameters. Ann Surg 243(1):108–114

    Article  PubMed  Google Scholar 

  19. Bueter M, Lowenstein C, Olbers T, Wang M, Cluny NL, Bloom SR, Sharkey KA, Lutz TA, le Roux CW (2010) Gastric bypass increases energy expenditure in rats. Gastroenterology 138(5):1845–1853. doi:10.1053/j.gastro.2009.11.012

    Article  PubMed  Google Scholar 

  20. Steele KE, Prokopowicz GP, Schweitzer MA, Magunsuon TH, Lidor AO, Kuwabawa H, Kumar A, Brasic J, Wong DF (2010) Alterations of central dopamine receptors before and after gastric bypass surgery. Obes Surg 20(3):369–374. doi:10.1007/s11695-009-0015-4

    Article  PubMed  Google Scholar 

  21. Cummings DE, Overduin J, Foster-Schubert KE, Carlson MJ (2007) Role of the bypassed proximal intestine in the anti-diabetic effects of bariatric surgery. Surg Obes Relat Dis 3(2):109–115. doi:j.jhep.2010.12.004/j.soard.2007.02.003

    Article  PubMed  Google Scholar 

  22. Drucker DJ (2002) Biological actions and therapeutic potential of the glucagon-like peptides. Gastroenterology 122(2):531–544

    Article  PubMed  CAS  Google Scholar 

  23. Kremen AJ, Linner JH, Nelson CH (1954) An experimental evaluation of the nutritional importance of proximal and distal small intestine. Ann Surg 140(3):439–448

    Article  PubMed  CAS  Google Scholar 

  24. Payne JH, DeWind LT (1969) Surgical treatment of obesity. Am J Surg 118(2):141–147

    Article  PubMed  CAS  Google Scholar 

  25. Buchwald H, Varco RL (1971) A bypass operation for obese hyperlipidemic patients. Surgery 70(1):62–70

    PubMed  CAS  Google Scholar 

  26. Buchwald H, Rucker RD (1987) The rise and fall of jejunoileal bypass. In: Nelson RL, Nyhus LM (eds) Surgery of the small intestine. Appleton Century Crofts, Norwalk, CT, pp 529–541

    Google Scholar 

  27. Gustavsson S, Westling A (2002) Laparoscopic adjustable gastric banding: complications and side effects responsible for the poor long-term outcome. Semin Laparosc Surg 9(2):115–124

    Article  PubMed  Google Scholar 

  28. Buchwald H, Oien DM (2009) Metabolic/bariatric surgery worldwide 2008. Obes Surg 19(12):1605–1611. doi:10.1007/s11695-009-0014-5

    Article  PubMed  Google Scholar 

  29. Printen KJ, Mason EE (1973) Gastric surgery for relief of morbid obesity. Arch Surg 106(4):428–431

    PubMed  CAS  Google Scholar 

  30. Gomez CA (1979) Gastroplasty in morbid obesity. Surg Clin North Am 59(6):1113–1120

    PubMed  CAS  Google Scholar 

  31. Mason EE (1982) Vertical banded gastroplasty for obesity. Arch Surg 117(5):701–706

    PubMed  CAS  Google Scholar 

  32. Eckhout GV, Willbanks OL, Moore JT (1986) Vertical ring gastroplasty for morbid obesity. Five year experience with 1,463 patients. Am J Surg 152(6):713–716

    Article  PubMed  CAS  Google Scholar 

  33. Forsell P, Hallberg D, Hellers G (1993) Gastric banding for morbid obesity: initial experience with a new adjustable band. Obes Surg 3(4):369–374. doi:10.1381/096089293765559052

    Article  PubMed  Google Scholar 

  34. Kuzmak LI (1991) A review of seven years' experience with silicone gastric banding. Obes Surg 1(4):403–408. doi:10.1381/096089291765560809

    Article  PubMed  Google Scholar 

  35. Peterli R, Wolnerhanssen BK, Peters T, Kern B, Ackermann C, von Flue M (2007) Prospective study of a two-stage operative concept in the treatment of morbid obesity: primary lap-band followed if needed by sleeve gastrectomy with duodenal switch. Obes Surg 17(3):334–340

    Article  PubMed  Google Scholar 

  36. Wolnerhanssen BK, Peters T, Kern B, Schotzau A, Ackermann C, von Flue M, Peterli R (2008) Predictors of outcome in treatment of morbid obesity by laparoscopic adjustable gastric banding: results of a prospective study of 380 patients. Surg Obes Relat Dis 4(4):500–506. doi:j.jhep.2010.12.004/j.soard.2008.03.252

    Article  PubMed  Google Scholar 

  37. Van Nieuwenhove Y, Ceelen W, Stockman A, Vanommeslaeghe H, Snoeck E, Van Renterghem K, Van de Putte D, Pattyn P (2011) Long-term results of a prospective study on laparoscopic adjustable gastric banding for morbid obesity. Obes Surg 21(5):582–587. doi:10.1007/s11695-010-0341-6

    Article  PubMed  Google Scholar 

  38. Boza C, Gamboa C, Awruch D, Perez G, Escalona A, Ibanez L (2010) Laparoscopic Roux-en-Y gastric bypass versus laparoscopic adjustable gastric banding: five years of follow-up. Surg Obes Relat Dis 6(5):470–475. doi:10.1016/j.soard.2010.02.045

    Article  PubMed  Google Scholar 

  39. Boza C, Gamboa C, Perez G, Crovari F, Escalona A, Pimentel F, Raddatz A, Guzman S, Ibanez L (2011) Laparoscopic adjustable gastric banding (LAGB): surgical results and 5-year follow-up. Surg Endosc 25(1):292–297. doi:10.1007/s00464-010-1176-x

    Article  PubMed  Google Scholar 

  40. Dixon AF, Dixon JB, O'Brien PE (2005) Laparoscopic adjustable gastric banding induces prolonged satiety: a randomized blind crossover study. J Clin Endocrinol Metab 90(2):813–819. doi:10.1210/jc.2004-1546

    Article  PubMed  CAS  Google Scholar 

  41. O'Brien PE, Dixon JB (2003) Laparoscopic adjustable gastric banding in the treatment of morbid obesity. Arch Surg 138(4):376–382. doi:10.1001/archsurg.138.4.376

    Article  PubMed  Google Scholar 

  42. O'Brien PE, Dixon JB, Laurie C, Skinner S, Proietto J, McNeil J, Strauss B, Marks S, Schachter L, Chapman L, Anderson M (2006) Treatment of mild to moderate obesity with laparoscopic adjustable gastric banding or an intensive medical program: a randomized trial. Ann Intern Med 144(9):625–633

    PubMed  Google Scholar 

  43. O'Brien PE, Sawyer SM, Laurie C, Brown WA, Skinner S, Veit F, Paul E, Burton PR, McGrice M, Anderson M, Dixon JB (2010) Laparoscopic adjustable gastric banding in severely obese adolescents: a randomized trial. Jama 303(6):519–526. doi:10.1001/jama.2010.81

    Article  PubMed  Google Scholar 

  44. Dixon JB, O'Brien PE, Playfair J, Chapman L, Schachter LM, Skinner S, Proietto J, Bailey M, Anderson M (2008) Adjustable gastric banding and conventional therapy for type 2 diabetes: a randomized controlled trial. Jama 299(3):316–323. doi:10.1001/jama.299.3.316

    Article  PubMed  CAS  Google Scholar 

  45. Mason EE, Ito C (1967) Gastric bypass in obesity. Surg Clin North Am 47(6):1345–1351

    PubMed  CAS  Google Scholar 

  46. Griffen WO Jr, Young VL, Stevenson CC (1977) A prospective comparison of gastric and jejunoileal bypass procedures for morbid obesity. Ann Surg 186(4):500–509

    Article  PubMed  Google Scholar 

  47. Wittgrove AC, Clark GW, Schubert KR (1996) Laparoscopic gastric bypass, Roux-en-Y: technique and results in 75 patients with 3–30 months follow-up. Obes Surg 6(6):500–504. doi:10.1381/096089296765556412

    Article  PubMed  Google Scholar 

  48. Nguyen NT, Root J, Zainabadi K, Sabio A, Chalifoux S, Stevens CM, Mavandadi S, Longoria M, Wilson SE (2005) Accelerated growth of bariatric surgery with the introduction of minimally invasive surgery. Arch Surg 140(12):1198–1202. doi:10.1001/archsurg.140.12.1198, discussion 1203

    Article  PubMed  Google Scholar 

  49. Weber M, Muller MK, Bucher T, Wildi S, Dindo D, Horber F, Hauser R, Clavien PA (2004) Laparoscopic gastric bypass is superior to laparoscopic gastric banding for treatment of morbid obesity. Ann Surg 240(6):975–982, discussion 982–973

    Article  PubMed  Google Scholar 

  50. Marceau P, Biron S, Bourque RA, Potvin M, Hould FS, Simard S (1993) Biliopancreatic diversion with a new type of gastrectomy. Obes Surg 3(1):29–35. doi:10.1381/096089293765559728

    Article  PubMed  Google Scholar 

  51. Hess DS, Hess DW (1998) Biliopancreatic diversion with a duodenal switch. Obes Surg 8(3):267–282. doi:10.1381/096089298765554476

    Article  PubMed  CAS  Google Scholar 

  52. Regan JP, Inabnet WB, Gagner M, Pomp A (2003) Early experience with two-stage laparoscopic Roux-en-Y gastric bypass as an alternative in the super-super obese patient. Obes Surg 13(6):861–864. doi:10.1381/096089203322618669

    Article  PubMed  CAS  Google Scholar 

  53. Cottam D, Qureshi FG, Mattar SG, Sharma S, Holover S, Bonanomi G, Ramanathan R, Schauer P (2006) Laparoscopic sleeve gastrectomy as an initial weight-loss procedure for high-risk patients with morbid obesity. Surg Endosc 20(6):859–863. doi:10.1007/s00464-005-0134-5

    Article  PubMed  CAS  Google Scholar 

  54. Felberbauer FX, Langer F, Shakeri-Manesch S, Schmaldienst E, Kees M, Kriwanek S, Prager M, Prager G (2008) Laparoscopic sleeve gastrectomy as an isolated bariatric procedure: intermediate-term results from a large series in three Austrian centers. Obes Surg 18(7):814–818. doi:10.1007/s11695-008-9483-1

    Article  PubMed  Google Scholar 

  55. Scopinaro N, Gianetta E, Civalleri D, Bonalumi U, Bachi V (1979) Bilio-pancreatic bypass for obesity: II. Initial experience in man. Br J Surg 66(9):618–620

    Article  PubMed  CAS  Google Scholar 

  56. Marceau P, Hould FS, Simard S, Lebel S, Bourque RA, Potvin M, Biron S (1998) Biliopancreatic diversion with duodenal switch. World J Surg 22(9):947–954

    Article  PubMed  CAS  Google Scholar 

  57. Paiva D, Bernardes L, Suretti L (2001) Laparoscopic biliopancreatic diversion for the treatment of morbid obesity: initial experience. Obes Surg 11(5):619–622. doi:10.1381/09608920160556832

    Article  PubMed  CAS  Google Scholar 

  58. Flores-Riveros JR, McLenithan JC, Ezaki O, Lane MD (1993) Insulin down-regulates expression of the insulin-responsive glucose transporter (GLUT4) gene: effects on transcription and mRNA turnover. Proc Natl Acad Sci U S A 90(2):512–516

    Article  PubMed  CAS  Google Scholar 

  59. Rubino F, Gagner M, Gentileschi P, Kini S, Fukuyama S, Feng J, Diamond E (2004) The early effect of the Roux-en-Y gastric bypass on hormones involved in body weight regulation and glucose metabolism. Ann Surg 240(2):236–242

    Article  PubMed  Google Scholar 

  60. Rubino F, Marescaux J (2004) Effect of duodenal-jejunal exclusion in a non-obese animal model of type 2 diabetes: a new perspective for an old disease. Ann Surg 239(1):1–11. doi:10.1097/01.sla.0000102989.54824.fc

    Article  PubMed  Google Scholar 

  61. Rubino F, Forgione A, Cummings DE, Vix M, Gnuli D, Mingrone G, Castagneto M, Marescaux J (2006) The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes. Ann Surg 244(5):741–749. doi:10.1097/01.sla.0000224726.61448.1b

    Article  PubMed  Google Scholar 

  62. Rubino F, Zizzari P, Tomasetto C, Bluet-Pajot MT, Forgione A, Vix M, Grouselle D, Marescaux J (2005) The role of the small bowel in the regulation of circulating ghrelin levels and food intake in the obese Zucker rat. Endocrinology 146(4):1745–1751. doi:10.1210/en.2004-1181

    Article  PubMed  CAS  Google Scholar 

  63. Rubino F, R'Bibo SL, del Genio F, Mazumdar M, McGraw TE (2010) Metabolic surgery: the role of the gastrointestinal tract in diabetes mellitus. Nat Rev Endocrinol 6(2):102–109. doi:10.1038/nrendo.2009.268

    Article  PubMed  Google Scholar 

  64. Rubino F, Schauer PR, Kaplan LM, Cummings DE (2010) Metabolic surgery to treat type 2 diabetes: clinical outcomes and mechanisms of action. Annu Rev Med 61:393–411. doi:10.1146/annurev.med.051308.105148

    Article  PubMed  CAS  Google Scholar 

  65. Rodriguez-Grunert L, Galvao Neto MP, Alamo M, Ramos AC, Baez PB, Tarnoff M (2008) First human experience with endoscopically delivered and retrieved duodenal-jejunal bypass sleeve. Surg Obes Relat Dis 4(1):55–59. doi:10.1016/j.soard.2007.07.012

    Article  PubMed  Google Scholar 

  66. Tarnoff M, Shikora S, Lembo A, Gersin K (2008) Chronic in vivo experience with an endoscopically delivered and retrieved duodenal-jejunal bypass sleeve in a porcine model. Surg Endosc 22(4):1023–1028. doi:10.1007/s00464-007-9652-7

    Article  PubMed  CAS  Google Scholar 

  67. Koopmans HS, Sclafani A (1981) Control of body weight by lower gut signals. Int J Obes 5(5):491–495

    PubMed  CAS  Google Scholar 

  68. de Paula AL, Macedo AL, Prudente AS, Queiroz L, Schraibman V, Pinus J (2006) Laparoscopic sleeve gastrectomy with ileal interposition ("neuroendocrine brake")—pilot study of a new operation. Surg Obes Relat Dis 2(4):464–467. doi:10.1016/j.soard.2006.03.005

    Article  PubMed  Google Scholar 

  69. Holst JJ (2007) The physiology of glucagon-like peptide 1. Physiol Rev 87(4):1409–1439. doi:10.1152/physrev.00034.2006

    Article  PubMed  CAS  Google Scholar 

  70. Nogueiras R, Williams LM, Dieguez C (2010) Ghrelin: new molecular pathways modulating appetite and adiposity. Obes Facts 3(5):285–292. doi:10.1159/000321265

    Article  PubMed  CAS  Google Scholar 

  71. Camina JP (2006) Cell biology of the ghrelin receptor. J Neuroendocrinol 18(1):65–76. doi:10.1111/j.1365-2826.2005.01379.x

    Article  PubMed  CAS  Google Scholar 

  72. Gauna C, Delhanty PJ, van Aken MO, Janssen JA, Themmen AP, Hofland LJ, Culler M, Broglio F, Ghigo E, van der Lely AJ (2006) Unacylated ghrelin is active on the INS-1E rat insulinoma cell line independently of the growth hormone secretagogue receptor type 1a and the corticotropin releasing factor 2 receptor. Mol Cell Endocrinol 251(1–2):103–111. doi:10.1016/j.mce.2006.03.040

    Article  PubMed  CAS  Google Scholar 

  73. Cummings DE (2009) Endocrine mechanisms mediating remission of diabetes after gastric bypass surgery. Int J Obes (Lond) 33(1):S33–40. doi:10.1038/ijo.2009.15

    Article  CAS  Google Scholar 

  74. Fruhbeck G, Diez Caballero A, Gil MJ (2004) Fundus functionality and ghrelin concentrations after bariatric surgery. N Engl J Med 350(3):308–309. doi:10.1056/NEJM200401153500323

    Article  PubMed  Google Scholar 

  75. van der Lely AJ, Tschop M, Heiman ML, Ghigo E (2004) Biological, physiological, pathophysiological, and pharmacological aspects of ghrelin. Endocr Rev 25(3):426–457. doi:10.1210/er.2002-0029

    Article  PubMed  CAS  Google Scholar 

  76. Cummings DE, Purnell JQ, Frayo RS, Schmidova K, Wisse BE, Weigle DS (2001) A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 50(8):1714–1719

    Article  PubMed  CAS  Google Scholar 

  77. Cummings DE, Frayo RS, Marmonier C, Aubert R, Chapelot D (2004) Plasma ghrelin levels and hunger scores in humans initiating meals voluntarily without time- and food-related cues. Am J Physiol Endocrinol Metab 287(2):E297–304. doi:10.1152/ajpendo.00582.2003

    Article  PubMed  CAS  Google Scholar 

  78. Zwirska-Korczala K, Konturek SJ, Sodowski M, Wylezol M, Kuka D, Sowa P, Adamczyk-Sowa M, Kukla M, Berdowska A, Rehfeld JF, Bielanski W, Brzozowski T (2007) Basal and postprandial plasma levels of PYY, ghrelin, cholecystokinin, gastrin and insulin in women with moderate and morbid obesity and metabolic syndrome. J Physiol Pharmacol 58(Suppl 1):13–35

    PubMed  Google Scholar 

  79. Cummings DE, Overduin J (2007) Gastrointestinal regulation of food intake. J Clin Invest 117(1):13–23. doi:10.1172/JCI30227

    Article  PubMed  CAS  Google Scholar 

  80. Asakawa A, Inui A, Kaga T, Yuzuriha H, Nagata T, Ueno N, Makino S, Fujimiya M, Niijima A, Fujino MA, Kasuga M (2001) Ghrelin is an appetite-stimulatory signal from stomach with structural resemblance to motilin. Gastroenterology 120(2):337–345

    Article  PubMed  CAS  Google Scholar 

  81. Arnold M, Mura A, Langhans W, Geary N (2006) Gut vagal afferents are not necessary for the eating-stimulatory effect of intraperitoneally injected ghrelin in the rat. J Neurosci 26(43):11052–11060. doi:10.1523/JNEUROSCI.2606-06.2006

    Article  PubMed  CAS  Google Scholar 

  82. Vincent RP, Ashrafian H, le Roux CW (2008) Mechanisms of disease: the role of gastrointestinal hormones in appetite and obesity. Nat Clin Pract Gastroenterol Hepatol 5(5):268–277. doi:10.1038/ncpgasthep1118

    Article  PubMed  CAS  Google Scholar 

  83. Tymitz K, Engel A, McDonough S, Hendy MP, Kerlakian G (2011) Changes in ghrelin levels following bariatric surgery: review of the literature. Obes Surg 21(1):125–130. doi:10.1007/s11695-010-0311-z

    Article  PubMed  Google Scholar 

  84. Cummings DE, Weigle DS, Frayo RS, Breen PA, Ma MK, Dellinger EP, Purnell JQ (2002) Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N Engl J Med 346(21):1623–1630. doi:10.1056/NEJMoa012908

    Article  PubMed  Google Scholar 

  85. Lin E, Gletsu N, Fugate K, McClusky D, Gu LH, Zhu JL, Ramshaw BJ, Papanicolaou DA, Ziegler TR, Smith CD (2004) The effects of gastric surgery on systemic ghrelin levels in the morbidly obese. Arch Surg 139(7):780–784. doi:10.1001/archsurg.139.7.780

    Article  PubMed  Google Scholar 

  86. Geloneze B, Tambascia MA, Pilla VF, Geloneze SR, Repetto EM, Pareja JC (2003) Ghrelin: a gut-brain hormone: effect of gastric bypass surgery. Obes Surg 13(1):17–22. doi:10.1381/096089203321136539

    Article  PubMed  Google Scholar 

  87. Chan JL, Mun EC, Stoyneva V, Mantzoros CS, Goldfine AB (2006) Peptide YY levels are elevated after gastric bypass surgery. Obesity (Silver Spring) 14(2):194–198. doi:10.1038/oby.2006.25

    Article  CAS  Google Scholar 

  88. Leonetti F, Silecchia G, Iacobellis G, Ribaudo MC, Zappaterreno A, Tiberti C, Iannucci CV, Perrotta N, Bacci V, Basso MS, Basso N, Di Mario U (2003) Different plasma ghrelin levels after laparoscopic gastric bypass and adjustable gastric banding in morbid obese subjects. J Clin Endocrinol Metab 88(9):4227–4231

    Article  PubMed  CAS  Google Scholar 

  89. Fruhbeck G, Rotellar F, Hernandez-Lizoain JL, Gil MJ, Gomez-Ambrosi J, Salvador J, Cienfuegos JA (2004) Fasting plasma ghrelin concentrations 6 months after gastric bypass are not determined by weight loss or changes in insulinemia. Obes Surg 14(9):1208–1215. doi:10.1381/0960892042386904

    Article  PubMed  Google Scholar 

  90. Morinigo R, Casamitjana R, Moize V, Lacy AM, Delgado S, Gomis R, Vidal J (2004) Short-term effects of gastric bypass surgery on circulating ghrelin levels. Obes Res 12(7):1108–1116. doi:10.1038/oby.2004.139

    Article  PubMed  Google Scholar 

  91. Langer FB, Reza Hoda MA, Bohdjalian A, Felberbauer FX, Zacherl J, Wenzl E, Schindler K, Luger A, Ludvik B, Prager G (2005) Sleeve gastrectomy and gastric banding: effects on plasma ghrelin levels. Obes Surg 15(7):1024–1029. doi:10.1381/0960892054621125

    Article  PubMed  CAS  Google Scholar 

  92. Karamanakos SN, Vagenas K, Kalfarentzos F, Alexandrides TK (2008) Weight loss, appetite suppression, and changes in fasting and postprandial ghrelin and peptide-YY levels after Roux-en-Y gastric bypass and sleeve gastrectomy: a prospective, double blind study. Ann Surg 247(3):401–407. doi:10.1097/SLA.0b013e318156f012

    Article  PubMed  Google Scholar 

  93. Kotidis EV, Koliakos G, Papavramidis TS, Papavramidis ST (2006) The effect of biliopancreatic diversion with pylorus-preserving sleeve gastrectomy and duodenal switch on fasting serum ghrelin, leptin and adiponectin levels: is there a hormonal contribution to the weight-reducing effect of this procedure? Obes Surg 16(5):554–559. doi:10.1381/096089206776944940

    Article  PubMed  Google Scholar 

  94. Stoeckli R, Chanda R, Langer I, Keller U (2004) Changes of body weight and plasma ghrelin levels after gastric banding and gastric bypass. Obes Res 12(2):346–350. doi:10.1038/oby.2004.43

    Article  PubMed  CAS  Google Scholar 

  95. Schindler K, Prager G, Ballaban T, Kretschmer S, Riener R, Buranyi B, Maier C, Luger A, Ludvik B (2004) Impact of laparoscopic adjustable gastric banding on plasma ghrelin, eating behaviour and body weight. Eur J Clin Invest 34(8):549–554. doi:10.1111/j.1365-2362.2004.01382.x

    Article  PubMed  CAS  Google Scholar 

  96. Haider DG, Schindler K, Prager G, Bohdjalian A, Luger A, Wolzt M, Ludvik B (2007) Serum retinol-binding protein 4 is reduced after weight loss in morbidly obese subjects. J Clin Endocrinol Metab 92(3):1168–1171. doi:10.1210/jc.2006-1839

    Article  PubMed  CAS  Google Scholar 

  97. Uzzan B, Catheline JM, Lagorce C, Airinei G, Bon C, Cohen R, Perret GY, Aparicio T, Benamouzig R (2007) Expression of ghrelin in fundus is increased after gastric banding in morbidly obese patients. Obes Surg 17(9):1159–1164

    Article  PubMed  Google Scholar 

  98. Faraj M, Havel PJ, Phelis S, Blank D, Sniderman AD, Cianflone K (2003) Plasma acylation-stimulating protein, adiponectin, leptin, and ghrelin before and after weight loss induced by gastric bypass surgery in morbidly obese subjects. J Clin Endocrinol Metab 88(4):1594–1602

    Article  PubMed  CAS  Google Scholar 

  99. Holdstock C, Engstrom BE, Ohrvall M, Lind L, Sundbom M, Karlsson FA (2003) Ghrelin and adipose tissue regulatory peptides: effect of gastric bypass surgery in obese humans. J Clin Endocrinol Metab 88(7):3177–3183

    Article  PubMed  CAS  Google Scholar 

  100. Sundbom M, Holdstock C, Engstrom BE, Karlsson FA (2007) Early changes in ghrelin following Roux-en-Y gastric bypass: influence of vagal nerve functionality? Obes Surg 17(3):304–310. doi:10.1007/s11695-007-9056-8

    Article  PubMed  Google Scholar 

  101. Whitson BA, Leslie DB, Kellogg TA, Maddaus MA, Buchwald H, Billington CJ, Ikramuddin S (2007) Entero-endocrine changes after gastric bypass in diabetic and nondiabetic patients: a preliminary study. J Surg Res 141(1):31–39. doi:10.1016/j.jss.2007.02.022

    Article  PubMed  CAS  Google Scholar 

  102. Kotidis EV, Koliakos GG, Baltzopoulos VG, Ioannidis KN, Yovos JG, Papavramidis ST (2006) Serum ghrelin, leptin and adiponectin levels before and after weight loss: comparison of three methods of treatment—a prospective study. Obes Surg 16(11):1425–1432. doi:10.1381/096089206778870058

    Article  PubMed  Google Scholar 

  103. Foschi D, Corsi F, Colombo F, Vago T, Bevilaqua M, Rizzi A, Trabucchi E (2008) Different effects of vertical banded gastroplasty and Roux-en-Y gastric bypass on meal inhibition of ghrelin secretion in morbidly obese patients. J Invest Surg 21(2):77–81. doi:10.1080/08941930701883624

    Article  PubMed  CAS  Google Scholar 

  104. Foschi D, Corsi F, Rizzi A, Asti E, Carsenzuola V, Vago T, Bevilacqua M, Riva P, Trabucchi E (2005) Vertical banded gastroplasty modifies plasma ghrelin secretion in obese patients. Obes Surg 15(8):1129–1132. doi:10.1381/0960892055002338

    Article  PubMed  CAS  Google Scholar 

  105. Stratis C, Alexandrides T, Vagenas K, Kalfarentzos F (2006) Ghrelin and peptide YY levels after a variant of biliopancreatic diversion with Roux-en-Y gastric bypass versus after colectomy: a prospective comparative study. Obes Surg 16(6):752–758. doi:10.1381/096089206777346772

    Article  PubMed  Google Scholar 

  106. Ram E, Vishne T, Diker D, Gal-Ad I, Maayan R, Lerner I, Dreznik Z, Seror D, Vardi P, Weizman A (2005) Impact of gastric banding on plasma ghrelin, growth hormone, cortisol, DHEA and DHEA-S levels. Obes Surg 15(8):1118–1123. doi:10.1381/0960892055002329

    Article  PubMed  Google Scholar 

  107. Couce ME, Cottam D, Esplen J, Schauer P, Burguera B (2006) Is ghrelin the culprit for weight loss after gastric bypass surgery? A negative answer. Obes Surg 16(7):870–878. doi:10.1381/096089206777822151

    Article  PubMed  Google Scholar 

  108. Mancini MC, Costa AP, de Melo ME, Cercato C, Giannella-Neto D, Garrido AB Jr, Rosberg S, Albertsson-Wikland K, Villares SM, Halpern A (2006) Effect of gastric bypass on spontaneous growth hormone and ghrelin release profiles. Obesity (Silver Spring) 14(3):383–387. doi:10.1038/oby.2006.51

    Article  CAS  Google Scholar 

  109. Borg CM, le Roux CW, Ghatei MA, Bloom SR, Patel AG, Aylwin SJ (2006) Progressive rise in gut hormone levels after Roux-en-Y gastric bypass suggests gut adaptation and explains altered satiety. Br J Surg 93(2):210–215. doi:10.1002/bjs.5227

    Article  PubMed  CAS  Google Scholar 

  110. Liou JM, Lin JT, Lee WJ, Wang HP, Lee YC, Chiu HM, Wu MS (2008) The serial changes of ghrelin and leptin levels and their relations to weight loss after laparoscopic minigastric bypass surgery. Obes Surg 18(1):84–89. doi:10.1007/s11695-007-9305-x

    Article  PubMed  Google Scholar 

  111. Olivan B, Teixeira J, Bose M, Bawa B, Chang T, Summe H, Lee H, Laferrere B (2009) Effect of weight loss by diet or gastric bypass surgery on peptide YY3-36 levels. Ann Surg 249(6):948–953. doi:10.1097/SLA.0b013e3181a6cdb0

    Article  PubMed  Google Scholar 

  112. Bose M, Machineni S, Olivan B, Teixeira J, McGinty JJ, Bawa B, Koshy N, Colarusso A, Laferrere B (2010) Superior appetite hormone profile after equivalent weight loss by gastric bypass compared to gastric banding. Obesity (Silver Spring) 18(6):1085–1091. doi:10.1038/oby.2009.473

    Article  CAS  Google Scholar 

  113. Korner J, Inabnet W, Febres G, Conwell IM, McMahon DJ, Salas R, Taveras C, Schrope B, Bessler M (2009) Prospective study of gut hormone and metabolic changes after adjustable gastric banding and Roux-en-Y gastric bypass. Int J Obes (Lond) 33(7):786–795. doi:10.1038/ijo.2009.79

    Article  CAS  Google Scholar 

  114. Baltasar A, Serra C, Perez N, Bou R, Bengochea M, Ferri L (2005) Laparoscopic sleeve gastrectomy: a multi-purpose bariatric operation. Obes Surg 15(8):1124–1128. doi:10.1381/0960892055002248

    Article  PubMed  Google Scholar 

  115. Akamizu T, Shinomiya T, Irako T, Fukunaga M, Nakai Y, Kangawa K (2005) Separate measurement of plasma levels of acylated and desacyl ghrelin in healthy subjects using a new direct ELISA assay. J Clin Endocrinol Metab 90(1):6–9. doi:10.1210/jc.2004-1640

    Article  PubMed  CAS  Google Scholar 

  116. Peterli R, Wolnerhanssen B, Peters T, Devaux N, Kern B, Christoffel-Courtin C, Drewe J, von Flue M, Beglinger C (2009) Improvement in glucose metabolism after bariatric surgery: comparison of laparoscopic Roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy: a prospective randomized trial. Ann Surg 250(2):234–241. doi:10.1097/SLA.0b013e3181ae32e3

    Google Scholar 

  117. Peterli R, Steinert RE, Woelnerhanssen B, Peters T, Christoffel-Courtin C, Gass M, Kern B, von Fluee M, Beglinger C (2011) Hormonal and metabolic implications of weight loss after laparoscopic Roux-en-Y gastric bypass and sleeve gastrectomy: a randomized, prospective trial (submitted)

  118. Bohdjalian A, Langer FB, Shakeri-Leidenmuhler S, Gfrerer L, Ludvik B, Zacherl J, Prager G (2010) Sleeve gastrectomy as sole and definitive bariatric procedure: 5-year results for weight loss and ghrelin. Obes Surg 20(5):535–540. doi:10.1007/s11695-009-0066-6

    Article  PubMed  Google Scholar 

  119. Vettor R, Fabris R, Pagano C, Federspil G (2002) Neuroendocrine regulation of eating behavior. J Endocrinol Invest 25(10):836–854

    PubMed  CAS  Google Scholar 

  120. Lieverse RJ, Jansen JB, Masclee AA, Lamers CB (1995) Satiety effects of a physiological dose of cholecystokinin in humans. Gut 36(2):176–179

    Article  PubMed  CAS  Google Scholar 

  121. Gaylinn BD, Thorner MO (2010) Luminal influences to orchestrate gastroenterological hormone secretion: the fat, long-chain fatty acid, cholecystokinin, glucagon-like peptide 1 axis. J Clin Endocrinol Metab 95(2):503–504. doi:10.1210/jc.2009-2353

    Article  PubMed  CAS  Google Scholar 

  122. Beglinger S, Drewe J, Schirra J, Goke B, D'Amato M, Beglinger C (2010) Role of fat hydrolysis in regulating glucagon-like peptide-1 secretion. J Clin Endocrinol Metab 95(2):879–886. doi:10.1210/jc.2009-1062

    Article  PubMed  CAS  Google Scholar 

  123. Kellum JM, Kuemmerle JF, O'Dorisio TM, Rayford P, Martin D, Engle K, Wolf L, Sugerman HJ (1990) Gastrointestinal hormone responses to meals before and after gastric bypass and vertical banded gastroplasty. Ann Surg 211(6):763–770, discussion 770–761

    Article  PubMed  CAS  Google Scholar 

  124. Foschi D, Corsi F, Pisoni L, Vago T, Bevilacqua M, Asti E, Righi I, Trabucchi E (2004) Plasma cholecystokinin levels after vertical banded gastroplasty: effects of an acidified meal. Obes Surg 14(5):644–647. doi:10.1381/096089204323093426

    Article  PubMed  Google Scholar 

  125. Cho YM, Kieffer TJ (2010) K-cells and glucose-dependent insulinotropic polypeptide in health and disease. Vitam Horm 84:111–150. doi:10.1016/B978-0-12-381517-0.00004-7

    Article  PubMed  CAS  Google Scholar 

  126. Siegel EG, Creutzfeldt W (1985) Stimulation of insulin release in isolated rat islets by GIP in physiological concentrations and its relation to islet cyclic AMP content. Diabetologia 28(11):857–861

    Article  PubMed  CAS  Google Scholar 

  127. Ross SA, Dupre J (1978) Effects of ingestion of triglyceride or galactose on secretion of gastric inhibitory polypeptide and on responses to intravenous glucose in normal and diabetic subjects. Diabetes 27(3):327–333

    Article  PubMed  CAS  Google Scholar 

  128. Ehses JA, Casilla VR, Doty T, Pospisilik JA, Winter KD, Demuth HU, Pederson RA, McIntosh CH (2003) Glucose-dependent insulinotropic polypeptide promotes beta-(INS-1) cell survival via cyclic adenosine monophosphate-mediated caspase-3 inhibition and regulation of p38 mitogen-activated protein kinase. Endocrinology 144(10):4433–4445. doi:10.1210/en.2002-0068

    Article  PubMed  CAS  Google Scholar 

  129. Creutzfeldt W (2001) The entero-insular axis in type 2 diabetes—incretins as therapeutic agents. Exp Clin Endocrinol Diabetes 109(Suppl 2):S288–303. doi:10.1055/s-2001-18589

    Article  PubMed  CAS  Google Scholar 

  130. Cheeseman CI, O'Neill D (1998) Basolateral d-glucose transport activity along the crypt-villus axis in rat jejunum and upregulation induced by gastric inhibitory peptide and glucagon-like peptide-2. Exp Physiol 83(5):605–616

    PubMed  CAS  Google Scholar 

  131. Elahi D, Andersen DK, Muller DC, Tobin JD, Brown JC, Andres R (1984) The enteric enhancement of glucose-stimulated insulin release. The role of GIP in aging, obesity, and non-insulin-dependent diabetes mellitus. Diabetes 33(10):950–957

    Article  PubMed  CAS  Google Scholar 

  132. Vilsboll T, Krarup T, Sonne J, Madsbad S, Volund A, Juul AG, Holst JJ (2003) Incretin secretion in relation to meal size and body weight in healthy subjects and people with type 1 and type 2 diabetes mellitus. J Clin Endocrinol Metab 88(6):2706–2713

    Article  PubMed  CAS  Google Scholar 

  133. Knop FK, Vilsboll T, Hojberg PV, Larsen S, Madsbad S, Holst JJ, Krarup T (2007) The insulinotropic effect of GIP is impaired in patients with chronic pancreatitis and secondary diabetes mellitus as compared to patients with chronic pancreatitis and normal glucose tolerance. Regul Pept 144(1–3):123–130. doi:10.1016/j.regpep.2007.07.002

    Article  PubMed  CAS  Google Scholar 

  134. Lynn FC, Pamir N, Ng EH, McIntosh CH, Kieffer TJ, Pederson RA (2001) Defective glucose-dependent insulinotropic polypeptide receptor expression in diabetic fatty Zucker rats. Diabetes 50(5):1004–1011

    Article  PubMed  CAS  Google Scholar 

  135. Gniuli D, Calcagno A, Dalla Libera L, Calvani R, Leccesi L, Caristo ME, Vettor R, Castagneto M, Ghirlanda G, Mingrone G (2010) High-fat feeding stimulates endocrine, glucose-dependent insulinotropic polypeptide (GIP)-expressing cell hyperplasia in the duodenum of Wistar rats. Diabetologia 53(10):2233–2240. doi:10.1007/s00125-010-1830-9

    Article  PubMed  CAS  Google Scholar 

  136. Rao RS, Kini S (2011) GIP and bariatric surgery. Obes Surg 21(2):244–252. doi:10.1007/s11695-010-0305-x

    Article  PubMed  Google Scholar 

  137. Korner J, Bessler M, Inabnet W, Taveras C, Holst JJ (2007) Exaggerated glucagon-like peptide-1 and blunted glucose-dependent insulinotropic peptide secretion are associated with Roux-en-Y gastric bypass but not adjustable gastric banding. Surg Obes Relat Dis 3(6):597–601. doi:10.1016/j.soard.2007.08.004

    Article  PubMed  Google Scholar 

  138. Laferrere B, Heshka S, Wang K, Khan Y, McGinty J, Teixeira J, Hart AB, Olivan B (2007) Incretin levels and effect are markedly enhanced 1 month after Roux-en-Y gastric bypass surgery in obese patients with type 2 diabetes. Diabetes Care 30(7):1709–1716. doi:10.2337/dc06-1549

    Article  PubMed  CAS  Google Scholar 

  139. Laferrere B, Teixeira J, McGinty J, Tran H, Egger JR, Colarusso A, Kovack B, Bawa B, Koshy N, Lee H, Yapp K, Olivan B (2008) Effect of weight loss by gastric bypass surgery versus hypocaloric diet on glucose and incretin levels in patients with type 2 diabetes. J Clin Endocrinol Metab 93(7):2479–2485. doi:10.1210/jc.2007-2851

    Article  PubMed  CAS  Google Scholar 

  140. Guidone C, Manco M, Valera-Mora E, Iaconelli A, Gniuli D, Mari A, Nanni G, Castagneto M, Calvani M, Mingrone G (2006) Mechanisms of recovery from type 2 diabetes after malabsorptive bariatric surgery. Diabetes 55(7):2025–2031. doi:10.2337/db06-0068

    Article  PubMed  CAS  Google Scholar 

  141. Mingrone G, Nolfe G, Gissey GC, Iaconelli A, Leccesi L, Guidone C, Nanni G, Holst JJ (2009) Circadian rhythms of GIP and GLP1 in glucose-tolerant and in type 2 diabetic patients after biliopancreatic diversion. Diabetologia 52(5):873–881. doi:10.1007/s00125-009-1288-9

    Article  PubMed  CAS  Google Scholar 

  142. Salinari S, Bertuzzi A, Asnaghi S, Guidone C, Manco M, Mingrone G (2009) First-phase insulin secretion restoration and differential response to glucose load depending on the route of administration in type 2 diabetic subjects after bariatric surgery. Diabetes Care 32(3):375–380. doi:10.2337/dc08-1314

    Article  PubMed  CAS  Google Scholar 

  143. Shak JR, Roper J, Perez-Perez GI, Tseng CH, Francois F, Gamagaris Z, Patterson C, Weinshel E, Fielding GA, Ren C, Blaser MJ (2008) The effect of laparoscopic gastric banding surgery on plasma levels of appetite-control, insulinotropic, and digestive hormones. Obes Surg 18(9):1089–1096. doi:10.1007/s11695-008-9454-6

    Article  PubMed  Google Scholar 

  144. DePaula AL, Macedo AL, Schraibman V, Mota BR, Vencio S (2009) Hormonal evaluation following laparoscopic treatment of type 2 diabetes mellitus patients with BMI 20–34. Surg Endosc 23(8):1724–1732. doi:10.1007/s00464-008-0168-6

    Article  PubMed  Google Scholar 

  145. Cohen RV, Schiavon CA, Pinheiro JS, Correa JL, Rubino F (2007) Duodenal-jejunal bypass for the treatment of type 2 diabetes in patients with body mass index of 22–34 kg/m2: a report of 2 cases. Surg Obes Relat Dis 3(2):195–197. doi:10.1016/j.soard.2007.01.009

    Article  PubMed  Google Scholar 

  146. Lee HC, Kim MK, Kwon HS, Kim E, Song KH (2010) Early changes in incretin secretion after laparoscopic duodenal-jejunal bypass surgery in type 2 diabetic patients. Obes Surg 20(11):1530–1535. doi:10.1007/s11695-010-0248-2

    Article  PubMed  Google Scholar 

  147. Kreymann B, Williams G, Ghatei MA, Bloom SR (1987) Glucagon-like peptide-1 7–36: a physiological incretin in man. Lancet 2(8571):1300–1304

    Article  PubMed  CAS  Google Scholar 

  148. Young AA, Gedulin BR, Rink TJ (1996) Dose-responses for the slowing of gastric emptying in a rodent model by glucagon-like peptide (7–36) NH2, amylin, cholecystokinin, and other possible regulators of nutrient uptake. Metabolism 45(1):1–3

    Article  PubMed  CAS  Google Scholar 

  149. Neary NM, Small CJ, Druce MR, Park AJ, Ellis SM, Semjonous NM, Dakin CL, Filipsson K, Wang F, Kent AS, Frost GS, Ghatei MA, Bloom SR (2005) Peptide YY3–36 and glucagon-like peptide-17–36 inhibit food intake additively. Endocrinology 146(12):5120–5127. doi:10.1210/en.2005-0237

    Article  PubMed  CAS  Google Scholar 

  150. Egan JM, Clocquet AR, Elahi D (2002) The insulinotropic effect of acute exendin-4 administered to humans: comparison of nondiabetic state to type 2 diabetes. J Clin Endocrinol Metab 87(3):1282–1290

    Article  PubMed  CAS  Google Scholar 

  151. Kolterman OG, Buse JB, Fineman MS, Gaines E, Heintz S, Bicsak TA, Taylor K, Kim D, Aisporna M, Wang Y, Baron AD (2003) Synthetic exendin-4 (exenatide) significantly reduces postprandial and fasting plasma glucose in subjects with type 2 diabetes. J Clin Endocrinol Metab 88(7):3082–3089

    Article  PubMed  CAS  Google Scholar 

  152. DeFronzo RA, Ratner RE, Han J, Kim DD, Fineman MS, Baron AD (2005) Effects of exenatide (exendin-4) on glycemic control and weight over 30 weeks in metformin-treated patients with type 2 diabetes. Diabetes Care 28(5):1092–1100

    Article  PubMed  CAS  Google Scholar 

  153. Raz I, Hanefeld M, Xu L, Caria C, Williams-Herman D, Khatami H (2006) Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin as monotherapy in patients with type 2 diabetes mellitus. Diabetologia 49(11):2564–2571. doi:10.1007/s00125-006-0416-z

    Article  PubMed  CAS  Google Scholar 

  154. Goldstein BJ, Feinglos MN, Lunceford JK, Johnson J, Williams-Herman DE (2007) Effect of initial combination therapy with sitagliptin, a dipeptidyl peptidase-4 inhibitor, and metformin on glycemic control in patients with type 2 diabetes. Diabetes Care 30(8):1979–1987. doi:10.2337/dc07-0627

    Article  PubMed  CAS  Google Scholar 

  155. Nauck MA, Meininger G, Sheng D, Terranella L, Stein PP (2007) Efficacy and safety of the dipeptidyl peptidase-4 inhibitor, sitagliptin, compared with the sulfonylurea, glipizide, in patients with type 2 diabetes inadequately controlled on metformin alone: a randomized, double-blind, non-inferiority trial. Diabetes Obes Metab 9(2):194–205. doi:10.1111/j.1463-1326.2006.00704.x

    Article  PubMed  CAS  Google Scholar 

  156. le Roux CW, Welbourn R, Werling M, Osborne A, Kokkinos A, Laurenius A, Lonroth H, Fandriks L, Ghatei MA, Bloom SR, Olbers T (2007) Gut hormones as mediators of appetite and weight loss after Roux-en-Y gastric bypass. Ann Surg 246(5):780–785. doi:10.1097/SLA.0b013e3180caa3e3

    Article  PubMed  Google Scholar 

  157. Morinigo R, Lacy AM, Casamitjana R, Delgado S, Gomis R, Vidal J (2006) GLP-1 and changes in glucose tolerance following gastric bypass surgery in morbidly obese subjects. Obes Surg 16(12):1594–1601. doi:10.1381/096089206779319338

    Article  PubMed  Google Scholar 

  158. Valverde I, Puente J, Martin-Duce A, Molina L, Lozano O, Sancho V, Malaisse WJ, Villanueva-Penacarrillo ML (2005) Changes in glucagon-like peptide-1 (GLP-1) secretion after biliopancreatic diversion or vertical banded gastroplasty in obese subjects. Obes Surg 15(3):387–397. doi:10.1381/0960892053576613

    Article  PubMed  Google Scholar 

  159. Lugari R, Dei Cas A, Ugolotti D, Barilli AL, Camellini C, Ganzerla GC, Luciani A, Salerni B, Mittenperger F, Nodari S, Gnudi A, Zandomeneghi R (2004) Glucagon-like peptide 1 (GLP-1) secretion and plasma dipeptidyl peptidase IV (DPP-IV) activity in morbidly obese patients undergoing biliopancreatic diversion. Horm Metab Res 36(2):111–115. doi:10.1055/s-2004-814222

    Article  PubMed  CAS  Google Scholar 

  160. Melissas J, Daskalakis M, Koukouraki S, Askoxylakis I, Metaxari M, Dimitriadis E, Stathaki M, Papadakis JA (2008) Sleeve gastrectomy—a "food limiting" operation. Obes Surg 18(10):1251–1256. doi:10.1007/s11695-008-9634-4

    Article  PubMed  Google Scholar 

  161. Melissas J, Koukouraki S, Askoxylakis J, Stathaki M, Daskalakis M, Perisinakis K, Karkavitsas N (2007) Sleeve gastrectomy: a restrictive procedure? Obes Surg 17(1):57–62. doi:10.1007/s11695-007-9006-5

    Article  PubMed  Google Scholar 

  162. Baumann T, Kuesters S, Grueneberger J, Marjanovic G, Zimmermann L, Schaefer AO, Hopt UT, Langer M, Karcz WK (2011) Time-resolved MRI after ingestion of liquids reveals motility changes after laparoscopic sleeve gastrectomy—preliminary results. Obes Surg 21(1):95–101. doi:10.1007/s11695-010-0317-6

    Article  PubMed  Google Scholar 

  163. Harvey EJ, Arroyo K, Korner J, Inabnet WB (2010) Hormone changes affecting energy homeostasis after metabolic surgery. Mt Sinai J Med 77(5):446–465. doi:10.1002/msj.20203

    Article  PubMed  Google Scholar 

  164. Gehlert DR (1998) Multiple receptors for the pancreatic polypeptide (PP-fold) family: physiological implications. Proc Soc Exp Biol Med 218(1):7–22

    PubMed  CAS  Google Scholar 

  165. Adrian TE, Ferri GL, Bacarese-Hamilton AJ, Fuessl HS, Polak JM, Bloom SR (1985) Human distribution and release of a putative new gut hormone, peptide YY. Gastroenterology 89(5):1070–1077

    PubMed  CAS  Google Scholar 

  166. Deng X, Wood PG, Sved AF, Whitcomb DC (2001) The area postrema lesions alter the inhibitory effects of peripherally infused pancreatic polypeptide on pancreatic secretion. Brain Res 902(1):18–29

    Article  PubMed  CAS  Google Scholar 

  167. Mentlein R, Dahms P, Grandt D, Kruger R (1993) Proteolytic processing of neuropeptide Y and peptide YY by dipeptidyl peptidase IV. Regul Pept 49(2):133–144

    Article  PubMed  CAS  Google Scholar 

  168. Batterham RL, Cowley MA, Small CJ, Herzog H, Cohen MA, Dakin CL, Wren AM, Brynes AE, Low MJ, Ghatei MA, Cone RD, Bloom SR (2002) Gut hormone PYY(3–36) physiologically inhibits food intake. Nature 418(6898):650–654. doi:10.1038/nature02666

    Article  PubMed  CAS  Google Scholar 

  169. Koda S, Date Y, Murakami N, Shimbara T, Hanada T, Toshinai K, Niijima A, Furuya M, Inomata N, Osuye K, Nakazato M (2005) The role of the vagal nerve in peripheral PYY3-36-induced feeding reduction in rats. Endocrinology 146(5):2369–2375. doi:10.1210/en.2004-1266

    Article  PubMed  CAS  Google Scholar 

  170. Acuna-Goycolea C, van den Pol AN (2005) Peptide YY(3–36) inhibits both anorexigenic proopiomelanocortin and orexigenic neuropeptide Y neurons: implications for hypothalamic regulation of energy homeostasis. J Neurosci 25(45):10510–10519. doi:10.1523/JNEUROSCI.2552-05.2005

    Article  PubMed  CAS  Google Scholar 

  171. Vincent RP, le Roux CW (2008) The satiety hormone peptide YY as a regulator of appetite. J Clin Pathol 61(5):548–552. doi:10.1136/jcp.2007.048488

    Article  PubMed  CAS  Google Scholar 

  172. Abbott CR, Monteiro M, Small CJ, Sajedi A, Smith KL, Parkinson JR, Ghatei MA, Bloom SR (2005) The inhibitory effects of peripheral administration of peptide YY(3–36) and glucagon-like peptide-1 on food intake are attenuated by ablation of the vagal-brainstem-hypothalamic pathway. Brain Res 1044(1):127–131. doi:10.1016/j.brainres.2005.03.011

    Article  PubMed  CAS  Google Scholar 

  173. Lavebratt C, Alpman A, Persson B, Arner P, Hoffstedt J (2006) Common neuropeptide Y2 receptor gene variant is protective against obesity among Swedish men. Int J Obes (Lond) 30(3):453–459. doi:10.1038/sj.ijo.0803188

    Article  CAS  Google Scholar 

  174. Ma L, Tataranni PA, Hanson RL, Infante AM, Kobes S, Bogardus C, Baier LJ (2005) Variations in peptide YY and Y2 receptor genes are associated with severe obesity in Pima Indian men. Diabetes 54(5):1598–1602

    Article  PubMed  CAS  Google Scholar 

  175. Nematy M, O'Flynn JE, Wandrag L, Brynes AE, Brett SJ, Patterson M, Ghatei MA, Bloom SR, Frost GS (2006) Changes in appetite related gut hormones in intensive care unit patients: a pilot cohort study. Crit Care 10(1):R10. doi:10.1186/cc3957

    Article  PubMed  Google Scholar 

  176. Batterham RL, Cohen MA, Ellis SM, Le Roux CW, Withers DJ, Frost GS, Ghatei MA, Bloom SR (2003) Inhibition of food intake in obese subjects by peptide YY3-36. N Engl J Med 349(10):941–948. doi:10.1056/NEJMoa030204

    Article  PubMed  CAS  Google Scholar 

  177. Babu M, Purhonen AK, Bansiewicz T, Makela K, Walkowiak J, Miettinen P, Herzig KH (2005) Effect of total colectomy and PYY infusion on food intake and body weight in rats. Regul Pept 131(1–3):29–33. doi:10.1016/j.regpep.2005.06.004

    Article  PubMed  CAS  Google Scholar 

  178. Korner J, Bessler M, Cirilo LJ, Conwell IM, Daud A, Restuccia NL, Wardlaw SL (2005) Effects of Roux-en-Y gastric bypass surgery on fasting and postprandial concentrations of plasma ghrelin, peptide YY, and insulin. J Clin Endocrinol Metab 90(1):359–365. doi:10.1210/jc.2004-1076

    Article  PubMed  CAS  Google Scholar 

  179. Naslund E, Gryback P, Hellstrom PM, Jacobsson H, Holst JJ, Theodorsson E, Backman L (1997) Gastrointestinal hormones and gastric emptying 20 years after jejunoileal bypass for massive obesity. Int J Obes Relat Metab Disord 21(5):387–392

    Article  PubMed  CAS  Google Scholar 

  180. Batterham RL, Bloom SR (2003) The gut hormone peptide YY regulates appetite. Ann N Y Acad Sci 994:162–168

    Article  PubMed  CAS  Google Scholar 

  181. Batterham RL, Heffron H, Kapoor S, Chivers JE, Chandarana K, Herzog H, Le Roux CW, Thomas EL, Bell JD, Withers DJ (2006) Critical role for peptide YY in protein-mediated satiation and body-weight regulation. Cell Metab 4(3):223–233. doi:10.1016/j.cmet.2006.08.001

    Article  PubMed  CAS  Google Scholar 

  182. Chelikani PK, Haver AC, Reeve JR Jr, Keire DA, Reidelberger RD (2006) Daily, intermittent intravenous infusion of peptide YY(3–36) reduces daily food intake and adiposity in rats. Am J Physiol Regul Integr Comp Physiol 290(2):R298–305. doi:10.1152/ajpregu.00674.2005

    Article  PubMed  CAS  Google Scholar 

  183. le Roux CW, Batterham RL, Aylwin SJ, Patterson M, Borg CM, Wynne KJ, Kent A, Vincent RP, Gardiner J, Ghatei MA, Bloom SR (2006) Attenuated peptide YY release in obese subjects is associated with reduced satiety. Endocrinology 147(1):3–8. doi:10.1210/en.2005-0972

    Article  PubMed  CAS  Google Scholar 

  184. Renshaw D, Batterham RL (2005) Peptide YY: a potential therapy for obesity. Curr Drug Targets 6(2):171–179

    PubMed  CAS  Google Scholar 

  185. Degen L, Oesch S, Casanova M, Graf S, Ketterer S, Drewe J, Beglinger C (2005) Effect of peptide YY3-36 on food intake in humans. Gastroenterology 129(5):1430–1436. doi:10.1053/j.gastro.2005.09.001

    Article  PubMed  CAS  Google Scholar 

  186. Valderas JP, Irribarra V, Boza C, de la Cruz R, Liberona Y, Acosta AM, Yolito M, Maiz A (2010) Medical and surgical treatments for obesity have opposite effects on peptide YY and appetite: a prospective study controlled for weight loss. J Clin Endocrinol Metab 95(3):1069–1075. doi:10.1210/jc.2009-0983

    Article  PubMed  CAS  Google Scholar 

  187. Ingalls AM, Dickie MM, Snell GD (1950) Obese, a new mutation in the house mouse. J Hered 41(12):317–318

    PubMed  CAS  Google Scholar 

  188. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372(6505):425–432. doi:10.1038/372425a0

    Article  PubMed  CAS  Google Scholar 

  189. Williams KW, Scott MM, Elmquist JK (2009) From observation to experimentation: leptin action in the mediobasal hypothalamus. Am J Clin Nutr 89(3):985S–990S. doi:10.3945/ajcn.2008.26788D

    Article  PubMed  CAS  Google Scholar 

  190. Chin-Chance C, Polonsky KS, Schoeller DA (2000) Twenty-four-hour leptin levels respond to cumulative short-term energy imbalance and predict subsequent intake. J Clin Endocrinol Metab 85(8):2685–2691

    Article  PubMed  CAS  Google Scholar 

  191. Friedman JM, Halaas JL (1998) Leptin and the regulation of body weight in mammals. Nature 395(6704):763–770. doi:10.1038/27376

    Article  PubMed  CAS  Google Scholar 

  192. Bado A, Levasseur S, Attoub S, Kermorgant S, Laigneau JP, Bortoluzzi MN, Moizo L, Lehy T, Guerre-Millo M, Le Marchand-Brustel Y, Lewin MJ (1998) The stomach is a source of leptin. Nature 394(6695):790–793. doi:10.1038/29547

    Article  PubMed  CAS  Google Scholar 

  193. Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Beil FT, Shen J, Vinson C, Rueger JM, Karsenty G (2000) Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100(2):197–207

    Article  PubMed  CAS  Google Scholar 

  194. Chan JL, Heist K, DePaoli AM, Veldhuis JD, Mantzoros CS (2003) The role of falling leptin levels in the neuroendocrine and metabolic adaptation to short-term starvation in healthy men. J Clin Invest 111(9):1409–1421. doi:10.1172/JCI17490

    PubMed  CAS  Google Scholar 

  195. Knutson KL, Spiegel K, Penev P, Van Cauter E (2007) The metabolic consequences of sleep deprivation. Sleep Med Rev 11(3):163–178. doi:10.1016/j.smrv.2007.01.002

    Article  PubMed  Google Scholar 

  196. Otsuka R, Yatsuya H, Tamakoshi K, Matsushita K, Wada K, Toyoshima H (2006) Perceived psychological stress and serum leptin concentrations in Japanese men. Obesity (Silver Spring) 14(10):1832–1838. doi:10.1038/oby.2006.211

    Article  CAS  Google Scholar 

  197. Ahima RS, Flier JS (2000) Leptin. Annu Rev Physiol 62:413–437. doi:10.1146/annurev.physiol.62.1.413

    Article  PubMed  CAS  Google Scholar 

  198. Bloomgarden ZT (2006) Gut and adipocyte peptides. Diabetes Care 29(2):450–456

    Article  PubMed  CAS  Google Scholar 

  199. Dhillo WS (2007) Appetite regulation: an overview. Thyroid 17(5):433–445. doi:10.1089/thy.2007.0018

    Article  PubMed  CAS  Google Scholar 

  200. Oswal A, Yeo G (2010) Leptin and the control of body weight: a review of its diverse central targets, signaling mechanisms, and role in the pathogenesis of obesity. Obesity (Silver Spring) 18(2):221–229. doi:10.1038/oby.2009.228

    Article  Google Scholar 

  201. Banks WA, Farr SA, Morley JE (2006) The effects of high fat diets on the blood–brain barrier transport of leptin: failure or adaptation? Physiol Behav 88(3):244–248. doi:10.1016/j.physbeh.2006.05.037

    Article  PubMed  CAS  Google Scholar 

  202. Morioka T, Asilmaz E, Hu J, Dishinger JF, Kurpad AJ, Elias CF, Li H, Elmquist JK, Kennedy RT, Kulkarni RN (2007) Disruption of leptin receptor expression in the pancreas directly affects beta cell growth and function in mice. J Clin Invest 117(10):2860–2868. doi:10.1172/JCI30910

    Article  PubMed  CAS  Google Scholar 

  203. Boghossian S, Dube MG, Torto R, Kalra PS, Kalra SP (2006) Hypothalamic clamp on insulin release by leptin-transgene expression. Peptides 27(12):3245–3254. doi:10.1016/j.peptides.2006.07.022

    Article  PubMed  CAS  Google Scholar 

  204. Beckman LM, Beckman TR, Earthman CP (2010) Changes in gastrointestinal hormones and leptin after Roux-en-Y gastric bypass procedure: a review. J Am Diet Assoc 110(4):571–584. doi:10.1016/j.jada.2009.12.023

    Article  PubMed  CAS  Google Scholar 

  205. Riedl M, Vila G, Maier C, Handisurya A, Shakeri-Manesch S, Prager G, Wagner O, Kautzky-Willer A, Ludvik B, Clodi M, Luger A (2008) Plasma osteopontin increases after bariatric surgery and correlates with markers of bone turnover but not with insulin resistance. J Clin Endocrinol Metab 93(6):2307–2312. doi:10.1210/jc.2007-2383

    Article  PubMed  CAS  Google Scholar 

  206. Meier CA, Bobbioni E, Gabay C, Assimacopoulos-Jeannet F, Golay A, Dayer JM (2002) IL-1 receptor antagonist serum levels are increased in human obesity: a possible link to the resistance to leptin? J Clin Endocrinol Metab 87(3):1184–1188

    Article  PubMed  CAS  Google Scholar 

  207. Korner J, Inabnet W, Conwell IM, Taveras C, Daud A, Olivero-Rivera L, Restuccia NL, Bessler M (2006) Differential effects of gastric bypass and banding on circulating gut hormone and leptin levels. Obesity (Silver Spring) 14(9):1553–1561. doi:10.1038/oby.2006.179

    Article  CAS  Google Scholar 

  208. Goldfine AB, Mun EC, Devine E, Bernier R, Baz-Hecht M, Jones DB, Schneider BE, Holst JJ, Patti ME (2007) Patients with neuroglycopenia after gastric bypass surgery have exaggerated incretin and insulin secretory responses to a mixed meal. J Clin Endocrinol Metab 92(12):4678–4685. doi:10.1210/jc.2007-0918

    Article  PubMed  CAS  Google Scholar 

  209. Stockli R, Keller U (2003) Effectiveness of therapeutic interventions in obesity. Praxis (Bern 1994) 92(47):1999–2006

    Article  CAS  Google Scholar 

  210. Hickey MS, Pories WJ, MacDonald KG Jr, Cory KA, Dohm GL, Swanson MS, Israel RG, Barakat HA, Considine RV, Caro JF, Houmard JA (1998) A new paradigm for type 2 diabetes mellitus: could it be a disease of the foregut? Ann Surg 227(5):637–643, discussion 643–634

    Article  PubMed  CAS  Google Scholar 

  211. Fruhbeck G, Diez-Caballero A, Gil MJ, Montero I, Gomez-Ambrosi J, Salvador J, Cienfuegos JA (2004) The decrease in plasma ghrelin concentrations following bariatric surgery depends on the functional integrity of the fundus. Obes Surg 14(5):606–612. doi:10.1381/096089204323093363

    Article  PubMed  Google Scholar 

  212. Woelnerhanssen B, Peterli R, Steinert RE, Peters T, Borbely Y, Beglinger C (2011) Effects of postbariatric surgery weight loss on adipokines and metabolic parameters: comparison of laparoscopic Roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy—a prospective randomized trial. Surg Obes Relat Dis. doi:10.1016/j.soard.2011.01.044

  213. Nijhuis J, Van Dielen FM, Buurman WA, Greve JW (2004) Leptin in morbidly obese patients: no role for treatment of morbid obesity but important in the postoperative immune response. Obes Surg 14(4):476–483. doi:10.1381/096089204323013451

    Article  PubMed  Google Scholar 

  214. Hillebrand JJ, Geary N (2010) Do leptin and insulin signal adiposity? Forum Nutr 63:111–122. doi:10.1159/000264399

    Article  PubMed  CAS  Google Scholar 

  215. MacLean PS, Higgins JA, Jackman MR, Johnson GC, Fleming-Elder BK, Wyatt HR, Melanson EL, Hill JO (2006) Peripheral metabolic responses to prolonged weight reduction that promote rapid, efficient regain in obesity-prone rats. Am J Physiol Regul Integr Comp Physiol 290(6):R1577–1588. doi:10.1152/ajpregu.00810.2005

    Article  PubMed  CAS  Google Scholar 

  216. Scherer PE, Williams S, Fogliano M, Baldini G, Lodish HF (1995) A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem 270(45):26746–26749

    Article  PubMed  CAS  Google Scholar 

  217. Hotta K, Funahashi T, Bodkin NL, Ortmeyer HK, Arita Y, Hansen BC, Matsuzawa Y (2001) Circulating concentrations of the adipocyte protein adiponectin are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in rhesus monkeys. Diabetes 50(5):1126–1133

    Article  PubMed  CAS  Google Scholar 

  218. Ukkola O, Santaniemi M (2002) Adiponectin: a link between excess adiposity and associated comorbidities? J Mol Med 80(11):696–702. doi:10.1007/s00109-002-0378-7

    Article  PubMed  CAS  Google Scholar 

  219. Vilarrasa N, Vendrell J, Sanchez-Santos R, Broch M, Megia A, Masdevall C, Gomez N, Soler J, Pujol J, Bettonica C, Aranda H, Gomez JM (2007) Effect of weight loss induced by gastric bypass on proinflammatory interleukin-18, soluble tumour necrosis factor-alpha receptors, C-reactive protein and adiponectin in morbidly obese patients. Clin Endocrinol (Oxf) 67(5):679–686. doi:10.1111/j.1365-2265.2007.02945.x

    Article  CAS  Google Scholar 

  220. Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley RE, Tataranni PA (2001) Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab 86(5):1930–1935

    Article  PubMed  CAS  Google Scholar 

  221. Hanley AJ, Bowden D, Wagenknecht LE, Balasubramanyam A, Langfeld C, Saad MF, Rotter JI, Guo X, Chen YD, Bryer-Ash M, Norris JM, Haffner SM (2007) Associations of adiponectin with body fat distribution and insulin sensitivity in nondiabetic Hispanics and African-Americans. J Clin Endocrinol Metab 92(7):2665–2671. doi:10.1210/jc.2006-2614

    Article  PubMed  CAS  Google Scholar 

  222. Coppola A, Marfella R, Coppola L, Tagliamonte E, Fontana D, Liguori E, Cirillo T, Cafiero M, Natale S, Astarita C (2009) Effect of weight loss on coronary circulation and adiponectin levels in obese women. Int J Cardiol 134(3):414–416. doi:10.1016/j.ijcard.2007.12.087

    Article  PubMed  Google Scholar 

  223. Kubota N, Terauchi Y, Kubota T, Kumagai H, Itoh S, Satoh H, Yano W, Ogata H, Tokuyama K, Takamoto I, Mineyama T, Ishikawa M, Moroi M, Sugi K, Yamauchi T, Ueki K, Tobe K, Noda T, Nagai R, Kadowaki T (2006) Pioglitazone ameliorates insulin resistance and diabetes by both adiponectin-dependent and -independent pathways. J Biol Chem 281(13):8748–8755. doi:10.1074/jbc.M505649200

    Article  PubMed  CAS  Google Scholar 

  224. Butner KL, Nickols-Richardson SM, Clark SF, Ramp WK, Herbert WG (2010) A review of weight loss following Roux-en-Y gastric bypass vs restrictive bariatric surgery: impact on adiponectin and insulin. Obes Surg 20(5):559–568. doi:10.1007/s11695-010-0089-z

    Article  PubMed  Google Scholar 

  225. Lin E, Phillips LS, Ziegler TR, Schmotzer B, Wu K, Gu LH, Khaitan L, Lynch SA, Torres WE, Smith CD, Gletsu-Miller N (2007) Increases in adiponectin predict improved liver, but not peripheral, insulin sensitivity in severely obese women during weight loss. Diabetes 56(3):735–742. doi:10.2337/db06-1161

    Article  PubMed  CAS  Google Scholar 

  226. Vendrell J, Broch M, Vilarrasa N, Molina A, Gomez JM, Gutierrez C, Simon I, Soler J, Richart C (2004) Resistin, adiponectin, ghrelin, leptin, and proinflammatory cytokines: relationships in obesity. Obes Res 12(6):962–971. doi:10.1038/oby.2004.118

    Article  PubMed  CAS  Google Scholar 

  227. Serra A, Granada ML, Romero R, Bayes B, Canton A, Bonet J, Rull M, Alastrue A, Formiguera X (2006) The effect of bariatric surgery on adipocytokines, renal parameters and other cardiovascular risk factors in severe and very severe obesity: 1-year follow-up. Clin Nutr 25(3):400–408. doi:10.1016/j.clnu.2005.11.014

    Article  PubMed  CAS  Google Scholar 

  228. Coughlin CC, Finck BN, Eagon JC, Halpin VJ, Magkos F, Mohammed BS, Klein S (2007) Effect of marked weight loss on adiponectin gene expression and plasma concentrations. Obesity (Silver Spring) 15(3):640–645. doi:10.1038/oby.2007.556

    Article  CAS  Google Scholar 

  229. de Carvalho CP, Marin DM, de Souza AL, Pareja JC, Chaim EA, de Barros MS, da Silva CA, Geloneze B, Muscelli E, Alegre SM (2009) GLP-1 and adiponectin: effect of weight loss after dietary restriction and gastric bypass in morbidly obese patients with normal and abnormal glucose metabolism. Obes Surg 19(3):313–320. doi:10.1007/s11695-008-9678-5

    Article  PubMed  Google Scholar 

  230. Garcia de la Torre N, Rubio MA, Bordiu E, Cabrerizo L, Aparicio E, Hernandez C, Sanchez-Pernaute A, Diez-Valladares L, Torres AJ, Puente M, Charro AL (2008) Effects of weight loss after bariatric surgery for morbid obesity on vascular endothelial growth factor-A, adipocytokines, and insulin. J Clin Endocrinol Metab 93(11):4276–4281. doi:10.1210/jc.2007-1370

    Article  PubMed  CAS  Google Scholar 

  231. Trakhtenbroit MA, Leichman JG, Algahim MF, Miller CC 3rd, Moody FG, Lux TR, Taegtmeyer H (2009) Body weight, insulin resistance, and serum adipokine levels 2 years after 2 types of bariatric surgery. Am J Med 122(5):435–442. doi:10.1016/j.amjmed.2008.10.035

    Article  PubMed  CAS  Google Scholar 

  232. Swarbrick MM, Austrheim-Smith IT, Stanhope KL, Van Loan MD, Ali MR, Wolfe BM, Havel PJ (2006) Circulating concentrations of high-molecular-weight adiponectin are increased following Roux-en-Y gastric bypass surgery. Diabetologia 49(11):2552–2558. doi:10.1007/s00125-006-0452-8

    Article  PubMed  CAS  Google Scholar 

  233. Whitson BA, Leslie DB, Kellogg TA, Maddaus MA, Buchwald H, Billington CJ, Ikramuddin S (2007) Adipokine response in diabetics and nondiabetics following the Roux-en-Y gastric bypass: a preliminary study. J Surg Res 142(2):295–300. doi:10.1016/j.jss.2007.03.036

    Article  PubMed  CAS  Google Scholar 

  234. Diker D, Vishne T, Maayan R, Weizman A, Vardi P, Dreznik Z, Seror D, Ram E (2006) Impact of gastric banding on plasma adiponectin levels. Obes Surg 16(8):1057–1061. doi:10.1381/096089206778026244

    Article  PubMed  Google Scholar 

  235. Haider DG, Schindler K, Schaller G, Prager G, Wolzt M, Ludvik B (2006) Increased plasma visfatin concentrations in morbidly obese subjects are reduced after gastric banding. J Clin Endocrinol Metab 91(4):1578–1581. doi:10.1210/jc.2005-2248

    Article  PubMed  CAS  Google Scholar 

  236. Engl J, Bobbert T, Ciardi C, Laimer M, Tatarczyk T, Kaser S, Weiss H, Molnar C, Tilg H, Patsch JR, Spranger J, Ebenbichler CF (2007) Effects of pronounced weight loss on adiponectin oligomer composition and metabolic parameters. Obesity (Silver Spring) 15(5):1172–1178. doi:10.1038/oby.2007.627

    Article  CAS  Google Scholar 

  237. Poitou C, Lacorte JM, Coupaye M, Bertrais S, Bedel JF, Lafon N, Bouillot JL, Galan P, Borson-Chazot F, Basdevant A, Coussieu C, Clement K (2005) Relationship between single nucleotide polymorphisms in leptin, IL6 and adiponectin genes and their circulating product in morbidly obese subjects before and after gastric banding surgery. Obes Surg 15(1):11–23. doi:10.1381/0960892052993431

    Article  PubMed  Google Scholar 

  238. Kopp HP, Krzyzanowska K, Mohlig M, Spranger J, Pfeiffer AF, Schernthaner G (2005) Effects of marked weight loss on plasma levels of adiponectin, markers of chronic subclinical inflammation and insulin resistance in morbidly obese women. Int J Obes (Lond) 29(7):766–771. doi:10.1038/sj.ijo.0802983

    Article  CAS  Google Scholar 

  239. Zhang X, Yeung DC, Karpisek M, Stejskal D, Zhou ZG, Liu F, Wong RL, Chow WS, Tso AW, Lam KS, Xu A (2008) Serum FGF21 levels are increased in obesity and are independently associated with the metabolic syndrome in humans. Diabetes 57(5):1246–1253. doi:10.2337/db07-1476

    Article  PubMed  CAS  Google Scholar 

  240. Handisurya A, Riedl M, Vila G, Maier C, Clodi M, Prikoszovich T, Ludvik B, Prager G, Luger A, Kautzky-Willer A (2010) Serum vaspin concentrations in relation to insulin sensitivity following RYGB-induced weight loss. Obes Surg 20(2):198–203. doi:10.1007/s11695-009-9882-y

    Article  PubMed  Google Scholar 

  241. Lefebvre P, Cariou B, Lien F, Kuipers F, Staels B (2009) Role of bile acids and bile acid receptors in metabolic regulation. Physiol Rev 89(1):147–191. doi:10.1152/physrev.00010.2008

    Article  PubMed  CAS  Google Scholar 

  242. Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW, Sato H, Messaddeq N, Harney JW, Ezaki O, Kodama T, Schoonjans K, Bianco AC, Auwerx J (2006) Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 439(7075):484–489. doi:10.1038/nature04330

    Article  PubMed  CAS  Google Scholar 

  243. Shaham O, Wei R, Wang TJ, Ricciardi C, Lewis GD, Vasan RS, Carr SA, Thadhani R, Gerszten RE, Mootha VK (2008) Metabolic profiling of the human response to a glucose challenge reveals distinct axes of insulin sensitivity. Mol Syst Biol 4:214. doi:10.1038/msb.2008.50

    Article  PubMed  CAS  Google Scholar 

  244. Nakatani H, Kasama K, Oshiro T, Watanabe M, Hirose H, Itoh H (2009) Serum bile acid along with plasma incretins and serum high-molecular weight adiponectin levels are increased after bariatric surgery. Metabolism 58(10):1400–1407. doi:10.1016/j.metabol.2009.05.006

    Article  PubMed  CAS  Google Scholar 

  245. Fonseca VA, Rosenstock J, Wang AC, Truitt KE, Jones MR (2008) Colesevelam HCl improves glycemic control and reduces LDL cholesterol in patients with inadequately controlled type 2 diabetes on sulfonylurea-based therapy. Diabetes Care 31(8):1479–1484. doi:10.2337/dc08-0283

    Article  PubMed  CAS  Google Scholar 

  246. Goldberg RB, Fonseca VA, Truitt KE, Jones MR (2008) Efficacy and safety of colesevelam in patients with type 2 diabetes mellitus and inadequate glycemic control receiving insulin-based therapy. Arch Intern Med 168(14):1531–1540. doi:10.1001/archinte.168.14.1531

    Article  PubMed  CAS  Google Scholar 

  247. Yamakawa T, Takano T, Utsunomiya H, Kadonosono K, Okamura A (2007) Effect of colestimide therapy for glycemic control in type 2 diabetes mellitus with hypercholesterolemia. Endocr J 54(1):53–58

    Article  PubMed  CAS  Google Scholar 

  248. Kobayashi M, Ikegami H, Fujisawa T, Nojima K, Kawabata Y, Noso S, Babaya N, Itoi-Babaya M, Yamaji K, Hiromine Y, Shibata M, Ogihara T (2007) Prevention and treatment of obesity, insulin resistance, and diabetes by bile acid-binding resin. Diabetes 56(1):239–247. doi:10.2337/db06-0353

    Article  PubMed  CAS  Google Scholar 

  249. Wei J, de Qiu K, Ma X (2009) Bile acids and insulin resistance: implications for treating nonalcoholic fatty liver disease. J Dig Dis 10(2):85–90. doi:10.1111/j.1751-2980.2009.00369.x

    Article  PubMed  CAS  Google Scholar 

  250. Pols TW, Noriega LG, Nomura M, Auwerx J, Schoonjans K (2010) The bile acid membrane receptor TGR5 as an emerging target in metabolism and inflammation. J Hepatol. doi:10.1016/j.jhep.2010.12.004

  251. Yang JI, Yoon JH, Myung SJ, Gwak GY, Kim W, Chung GE, Lee SH, Lee SM, Kim CY, Lee HS (2007) Bile acid-induced TGR5-dependent c-Jun-N terminal kinase activation leads to enhanced caspase 8 activation in hepatocytes. Biochem Biophys Res Commun 361(1):156–161. doi:10.1016/j.bbrc.2007.07.001

    Article  PubMed  CAS  Google Scholar 

  252. Yasuda H, Hirata S, Inoue K, Mashima H, Ohnishi H, Yoshiba M (2007) Involvement of membrane-type bile acid receptor M-BAR/TGR5 in bile acid-induced activation of epidermal growth factor receptor and mitogen-activated protein kinases in gastric carcinoma cells. Biochem Biophys Res Commun 354(1):154–159. doi:10.1016/j.bbrc.2006.12.168

    Article  PubMed  CAS  Google Scholar 

  253. Katsuma S, Hirasawa A, Tsujimoto G (2005) Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1. Biochem Biophys Res Commun 329(1):386–390. doi:10.1016/j.bbrc.2005.01.139

    Article  PubMed  CAS  Google Scholar 

  254. Thomas C, Auwerx J, Schoonjans K (2008) Bile acids and the membrane bile acid receptor TGR5—connecting nutrition and metabolism. Thyroid 18(2):167–174. doi:10.1089/thy.2007.0255

    Article  PubMed  CAS  Google Scholar 

  255. Gastaldelli A, Natali A, Vettor R, Corradini SG (2010) Insulin resistance, adipose depots and gut: interactions and pathological implications. Dig Liver Dis 42(5):310–319. doi:10.1016/j.dld.2010.01.013

    Article  PubMed  CAS  Google Scholar 

  256. Angelin B, Einarsson K, Hellstrom K (1976) Evidence for the absorption of bile acids in the proximal small intestine of normo- and hyperlipidaemic subjects. Gut 17(6):420–425

    Article  PubMed  CAS  Google Scholar 

  257. Stearns AT, Balakrishnan A, Rhoads DB, Tavakkolizadeh A (2010) Rapid upregulation of sodium-glucose transporter SGLT1 in response to intestinal sweet taste stimulation. Ann Surg 251(5):865–871. doi:10.1097/SLA.0b013e3181d96e1f

    Article  PubMed  Google Scholar 

  258. Gerspach AC, Steinert RE, Schonenberger L, Graber-Maier A, Beglinger C (2011) The role of the gut sweet taste receptor in regulating GLP-1. PYY and CCK release in humans. Am J Physiol Endocrinol Metab. doi:10.1152/ajpendo.00077.2011

  259. Steinert RE, Gerspach AC, Gutmann H, Asarian L, Drewe J, Beglinger C (2011) The functional involvement of gut-expressed sweet taste receptors in glucose-stimulated secretion of glucagon-like peptide-1 (GLP-1) and peptide YY (PYY). Clin Nutr. doi:10.1016/j.clnu.2011.01.007

  260. DePaula AL, Macedo AL, Rassi N, Machado CA, Schraibman V, Silva LQ, Halpern A (2008) Laparoscopic treatment of type 2 diabetes mellitus for patients with a body mass index less than 35. Surg Endosc 22(3):706–716. doi:10.1007/s00464-007-9472-9

    Article  PubMed  CAS  Google Scholar 

  261. Inabnet WB (2010) Comment on: prospective randomized controlled trial comparing 2 versions of laparoscopic ileal interposition associated with sleeve gastrectomy for patients with type 2 diabetes with BMI 21–34 kg/m(2). Surg Obes Relat Dis 6(3):304–305. doi:10.1016/j.soard.2009.11.005

    Article  PubMed  Google Scholar 

  262. Ferzli GS, Dominique E, Ciaglia M, Bluth MH, Gonzalez A, Fingerhut A (2009) Clinical improvement after duodenojejunal bypass for nonobese type 2 diabetes despite minimal improvement in glycemic homeostasis. World J Surg 33(5):972–979. doi:10.1007/s00268-009-9968-7

    Article  PubMed  CAS  Google Scholar 

  263. Scopinaro N, Papadia F, Camerini G, Marinari G, Civalleri D, Gian Franco A (2008) A comparison of a personal series of biliopancreatic diversion and literature data on gastric bypass help to explain the mechanisms of resolution of type 2 diabetes by the two operations. Obes Surg 18(8):1035–1038. doi:10.1007/s11695-008-9531-x

    Article  PubMed  Google Scholar 

  264. Scopinaro N, Adami GF, Papadia FS, Camerini G, Carlini F, Fried M, Briatore L, D'Alessandro G, Andraghetti G, Cordera R (2011) Effects of biliopanceratic diversion on type 2 diabetes in patients with BMI 25 to 35. Ann Surg 253(4):699–703. doi:10.1097/SLA.0b013e318203ae44

    Article  PubMed  Google Scholar 

  265. Scopinaro N, Adami GF, Papadia FS, Camerini G, Carlini F, Briatore L, D'Alessandro G, Parodi C, Weiss A, Andraghetti G, Catalano M, Cordera R (2011) The effects of biliopancreatic diversion on type 2 diabetes mellitus in patients with mild obesity (BMI 30–35 kg/m(2)) and simple overweight (BMI 25–30 kg/m (2)): a prospective controlled study. Obes Surg. doi:10.1007/s11695-011-0407-0

  266. Schauer PR, Burguera B, Ikramuddin S, Cottam D, Gourash W, Hamad G, Eid GM, Mattar S, Ramanathan R, Barinas-Mitchel E, Rao RH, Kuller L, Kelley D (2003) Effect of laparoscopic Roux-en Y gastric bypass on type 2 diabetes mellitus. Ann Surg 238(4):467–484. doi:10.1097/01.sla.0000089851.41115.1b, discussion 484–465

    PubMed  Google Scholar 

  267. Ponce J, Haynes B, Paynter S, Fromm R, Lindsey B, Shafer A, Manahan E, Sutterfield C (2004) Effect of lap-band-induced weight loss on type 2 diabetes mellitus and hypertension. Obes Surg 14(10):1335–1342. doi:10.1381/0960892042583932

    Article  PubMed  Google Scholar 

  268. Zimmet P, Turner R, McCarty D, Rowley M, Mackay I (1999) Crucial points at diagnosis. Type 2 diabetes or slow type 1 diabetes. Diabetes Care 22(2):B59–64

    PubMed  Google Scholar 

  269. Deitel M (2009) Slow-progression, autoimmune, type 1 diabetes in adults: a cause of failure of resolution of diabetes after bariatric surgery. Surg Obes Relat Dis 5(6):705–706. doi:10.1016/j.soard.2009.09.007

    Article  PubMed  Google Scholar 

  270. Deitel M (2009) From bariatric to metabolic surgery in non-obese subjects: time for some caution. Arq Bras Endocrinol Metabol 53(2):246–251

    Article  PubMed  Google Scholar 

  271. Deitel M (2008) Surgery for diabetes at lower BMI: some caution. Obes Surg 18(10):1211–1214. doi:10.1007/s11695-008-9674-9

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

The authors thank Phillip Hendrickson and Thomas Peters for carefully reading the manuscript and making many valuable suggestions.

Disclosures

R. Peterli receives grant support from, and consults for, Ethicon Endosurgery GmbH, Europe. He is supported by the Swiss National Science Foundation, grant no. 32003B-120020.

Conflicts of interest

The authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Peterli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gass, M., Beglinger, C. & Peterli, R. Metabolic surgery—principles and current concepts. Langenbecks Arch Surg 396, 949–972 (2011). https://doi.org/10.1007/s00423-011-0834-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00423-011-0834-3

Keywords

Navigation