Skip to main content

Advertisement

Log in

A Review of Weight Loss Following Roux-en-Y Gastric Bypass vs Restrictive Bariatric Surgery: Impact on Adiponectin and Insulin

  • Review
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Background

Bariatric surgery is a common procedure often used to ameliorate comorbidities associated with obesity, including type 2 diabetes. Substantial weight loss leads to alterations in inflammation and insulin sensitivity as well as numerous metabolic and physiologic pathways. Several inflammatory markers have been evaluated, yet adiponectin, an anti-inflammatory adipokine, has not been fully investigated. Adiponectin may play a key role as a mediator between obesity and inflammation, as lower blood levels are more commonly associated with obesity and type 2 diabetes and because adiponectin lessens insulin resistance. This review evaluates outcome variables from patients who underwent Roux-en-Y gastric bypass (RYGB) or restrictive bariatric surgery to compare and contrast any differential surgical impacts on weight loss, adiponectin, and insulin.

Methods

A systematic literature review was conducted using a PubMed search. Published studies from 1999 to 2009 that measured blood levels of adiponectin and insulin in bariatric surgery patients prior to and at least 6 months after surgery were included.

Results

Eighteen studies met inclusion criteria for evaluation. RYGB surgery compared to restrictive surgery led to significantly greater weight loss and improvements in adiponectin and insulin sensitivity. Despite significant weight loss, many patients did not achieve “healthy” body mass index or normalization of inflammatory markers.

Conclusions

While RYGB surgery appears to more favorably influence body weight and inflammatory markers, data are insufficient to fully understand the impact of bariatric surgery on changes in adiponectin and insulin and related health implications. Long-term research is needed to more thoroughly evaluate inflammatory outcomes following these two bariatric surgery procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Taylor K. Metabolic and bariatric surgery: fact sheet. Gainesville: American Society for Metabolic and Bariatric Surgery; 2008.

    Google Scholar 

  2. Tice JA, Karliner L, Walsh J, et al. Gastric banding or bypass? A systematic review comparing the two most popular bariatric procedures. Am J Med. 2008;121:885–93.

    Article  PubMed  Google Scholar 

  3. Shinogle JA, Owings MF, Kozak LJ. Gastric bypass as treatment for obesity: trends, characteristics, and complications. Obes Res. 2005;13:2202–9.

    Article  PubMed  Google Scholar 

  4. Guerre-Millo M. Adiponectin: an update. Diabetes Metab. 2008;34:12–8.

    PubMed  CAS  Google Scholar 

  5. Ballantyne GH, Gumbs A, Modlin IM. Changes in insulin resistance following bariatric surgery and the adipoinsular axis: role of the adipocytokines, leptin, adiponectin and resistin. Obes Surg. 2005;15:692–9.

    Article  PubMed  Google Scholar 

  6. Forsythe LK, Wallace JM, Livingstone MB. Obesity and inflammation: the effects of weight loss. Nutr Res Rev. 2008;21:117–33.

    Article  PubMed  CAS  Google Scholar 

  7. Vetter ML, Cardillo S, Rickels MR, et al. Narrative review: effect of bariatric surgery on type 2 diabetes mellitus. Ann Intern Med. 2009;150:94–103.

    PubMed  Google Scholar 

  8. Compher C, Badellino KO. Obesity and inflammation: lessons from bariatric surgery. JPEN J Parenter Enteral Nutr. 2008;32:645–7.

    Article  PubMed  Google Scholar 

  9. Holdstock C, Engstrom BE, Ohrvall M, et al. Ghrelin and adipose tissue regulatory peptides: effect of gastric bypass surgery in obese humans. J Clin Endocrinol Metab. 2003;88:3177–83.

    Article  PubMed  CAS  Google Scholar 

  10. Couce ME, Cottam D, Esplen J, et al. Is ghrelin the culprit for weight loss after gastric bypass surgery? A negative answer. Obes Surg. 2006;16:870–8.

    Article  PubMed  Google Scholar 

  11. Lin E, Phillips LS, Ziegler TR, et al. Increases in adiponectin predict improved liver, but not peripheral, insulin sensitivity in severely obese women during weight loss. Diabetes. 2007;56:735–42.

    Article  PubMed  CAS  Google Scholar 

  12. Vendrell J, Broch M, Vilarrasa N, et al. Resistin, adiponectin, ghrelin, leptin, and proinflammatory cytokines: relationships in obesity. Obes Res. 2004;12:962–71.

    Article  PubMed  CAS  Google Scholar 

  13. Serra A, Granada ML, Romero R, et al. The effect of bariatric surgery on adipocytokines, renal parameters and other cardiovascular risk factors in severe and very severe obesity: 1-year follow-up. Clin Nutr. 2006;25:400–8.

    Article  PubMed  CAS  Google Scholar 

  14. Coughlin CC, Finck BN, Eagon JC, et al. Effect of marked weight loss on adiponectin gene expression and plasma concentrations. Obesity (Silver Spring). 2007;15:640–5.

    Article  CAS  Google Scholar 

  15. de Carvalho CP, Marin DM, de Souza AL, et al. GLP-1 and adiponectin: effect of weight loss after dietary restriction and gastric bypass in morbidly obese patients with normal and abnormal glucose metabolism. Obes Surg. 2009;19:313–20.

    Article  PubMed  Google Scholar 

  16. Vilarrasa N, Vendrell J, Sanchez-Santos R, et al. Effect of weight loss induced by gastric bypass on proinflammatory interleukin-18, soluble tumour necrosis factor-alpha receptors. C-reactive protein and adiponectin in morbidly obese patients. Clin Endocrinol (Oxf). 2007;67:679–86.

    Article  CAS  Google Scholar 

  17. Faraj M, Havel PJ, Phelis S, et al. Plasma acylation-stimulating protein, adiponectin, leptin, and ghrelin before and after weight loss induced by gastric bypass surgery in morbidly obese subjects. J Clin Endocrinol Metab. 2003;88:1594–602.

    Article  PubMed  CAS  Google Scholar 

  18. Garcia de laTorre N, Rubio MA, Bordiu E, et al. Effects of weight loss after bariatric surgery for morbid obesity on vascular endothelial growth factor-A, adipocytokines, and insulin. J Clin Endocrinol Metab. 2008;93:4276–81.

    Article  CAS  Google Scholar 

  19. Trakhtenbroit MA, Leichman JG, Algahim MF, et al. Body weight, insulin resistance, and serum adipokine levels 2 years after 2 types of bariatric surgery. Am J Med. 2009;122:435–42.

    Article  PubMed  CAS  Google Scholar 

  20. Swarbrick MM, Austrheim-Smith IT, Stanhope KL, et al. Circulating concentrations of high-molecular-weight adiponectin are increased following Roux-en-Y gastric bypass surgery. Diabetologia. 2006;49:2552–8.

    Article  PubMed  CAS  Google Scholar 

  21. Whitson BA, Leslie DB, Kellogg TA, et al. Adipokine response in diabetics and nondiabetics following the Roux-en-Y gastric bypass: a preliminary study. J Surg Res. 2007;142:295–300.

    Article  PubMed  CAS  Google Scholar 

  22. Whitson BA, Leslie DB, Kellogg TA, et al. Entero-endocrine changes after gastric bypass in diabetic and nondiabetic patients: a preliminary study. J Surg Res. 2007;141:31–9.

    Article  PubMed  CAS  Google Scholar 

  23. Diker D, Vishne T, Maayan R, et al. Impact of gastric banding on plasma adiponectin levels. Obes Surg. 2006;16:1057–61.

    Article  PubMed  Google Scholar 

  24. Ram E, Vishne T, Maayan R, et al. The relationship between BMI, plasma leptin, insulin and proinsulin before and after laparoscopic adjustable gastric banding. Obes Surg. 2005;15:1456–62.

    Article  PubMed  Google Scholar 

  25. Haider DG, Schindler K, Schaller G, et al. Increased plasma visfatin concentrations in morbidly obese subjects are reduced after gastric banding. J Clin Endocrinol Metab. 2006;91:1578–81.

    Article  PubMed  CAS  Google Scholar 

  26. Engl J, Bobbert T, Ciardi C, et al. Effects of pronounced weight loss on adiponectin oligomer composition and metabolic parameters. Obesity (Silver Spring). 2007;15:1172–8.

    Article  CAS  Google Scholar 

  27. Poitou C, Lacorte JM, Coupaye M, et al. Relationship between single nucleotide polymorphisms in leptin, IL6 and adiponectin genes and their circulating product in morbidly obese subjects before and after gastric banding surgery. Obes Surg. 2005;15:11–23.

    Article  PubMed  Google Scholar 

  28. Kopp HP, Krzyzanowska K, Mohlig M, et al. Effects of marked weight loss on plasma levels of adiponectin, markers of chronic subclinical inflammation and insulin resistance in morbidly obese women. Int J Obes (Lond). 2005;29:766–71.

    Article  CAS  Google Scholar 

  29. American Dietetic Association. Evidence analysis manual: steps in the ADA evidence analysis process. Chicago: American Dietetic Association; 2008.

    Google Scholar 

  30. Buchwald H. Consensus conference statement bariatric surgery for morbid obesity: health implications for patients, health professionals, and third-party payers. Surg Obes Relat Dis. 2005;1:371–81.

    Article  PubMed  Google Scholar 

  31. Bloomberg RD, Fleishman A, Nalle JE, et al. Nutritional deficiencies following bariatric surgery: what have we learned? Obes Surg. 2005;15:145–54.

    Article  PubMed  Google Scholar 

  32. Kotidis EV, Koliakos GG, Baltzopoulos VG, et al. Serum ghrelin, leptin and adiponectin levels before and after weight loss: comparison of three methods of treatment—a prospective study. Obes Surg. 2006;16:1425–32.

    Article  PubMed  Google Scholar 

  33. Mari A, Manco M, Guidone C, et al. Restoration of normal glucose tolerance in severely obese patients after bilio-pancreatic diversion: role of insulin sensitivity and beta cell function. Diabetologia. 2006;49:2136–43.

    Article  PubMed  CAS  Google Scholar 

  34. Despres JP, Golay A, Sjostrom L. Effects of rimonabant on metabolic risk factors in overweight patients with dyslipidemia. N Engl J Med. 2005;353:2121–34.

    Article  PubMed  CAS  Google Scholar 

  35. Esposito K, Pontillo A, Di Palo C, et al. Effect of weight loss and lifestyle changes on vascular inflammatory markers in obese women: a randomized trial. JAMA. 2003;289:1799–804.

    Article  PubMed  CAS  Google Scholar 

  36. Antuna-Puente B, Feve B, Fellahi S, et al. Adipokines: the missing link between insulin resistance and obesity. Diabetes Metab. 2008;34:2–11.

    Article  PubMed  CAS  Google Scholar 

  37. Cottam DR, Mattar SG, Barinas-Mitchell E, et al. The chronic inflammatory hypothesis for the morbidity associated with morbid obesity: implications and effects of weight loss. Obes Surg. 2004;14:589–600.

    Article  PubMed  Google Scholar 

  38. Hotta K, Funahashi T, Arita Y, et al. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol. 2000;20:1595–9.

    PubMed  CAS  Google Scholar 

  39. Li S, Shin JJ, Ding EL, et al. Adiponectin levels and risk of type 2 diabetes: a systematic review and meta-analysis. JAMA. 2009;302:179–88.

    Article  PubMed  CAS  Google Scholar 

  40. Abeles D, Shikora SA. Bariatric surgery: current concepts and future directions. Aesthet Surg J. 2008;28:79–84.

    Article  PubMed  CAS  Google Scholar 

  41. Buchwald H, Estok R, Fahrbach K, et al. Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am J Med. 2009;122:248–56.

    Article  PubMed  Google Scholar 

  42. Fetner R, McGinty J, Russell C, et al. Incretins, diabetes, and bariatric surgery: a review. Surg Obes Relat Dis. 2005;1:589–97. discussion 97–8.

    Article  PubMed  Google Scholar 

  43. Cummings DE, Overduin J, Foster-Schubert KE, et al. Role of the bypassed proximal intestine in the anti-diabetic effects of bariatric surgery. Surg Obes Relat Dis. 2007;3:109–15.

    Article  PubMed  Google Scholar 

  44. Garaulet M, Hernandez-Morante JJ, de Heredia FP, et al. Adiponectin, the controversial hormone. Public Health Nutr. 2007;10:1145–50.

    Article  PubMed  Google Scholar 

  45. Weyer C, Funahashi T, Tanaka S, et al. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab. 2001;86:1930–5.

    Article  PubMed  CAS  Google Scholar 

  46. Esposito K, Giugliano G, Scuderi N, et al. Role of adipokines in the obesity-inflammation relationship: the effect of fat removal. Plast Reconstr Surg. 2006;118:1048–57. discussion 58–9.

    Article  PubMed  CAS  Google Scholar 

  47. Tschritter O, Fritsche A, Thamer C, et al. Plasma adiponectin concentrations predict insulin sensitivity of both glucose and lipid metabolism. Diabetes. 2003;52:239–43.

    Article  PubMed  CAS  Google Scholar 

  48. Samuel I, Mason EE, Renquist KE, et al. Bariatric surgery trends: an 18-year report from the international bariatric surgery registry. Am J Surg. 2006;192:657–62.

    Article  PubMed  Google Scholar 

  49. Pajvani UB, Hawkins M, Combs TP, et al. Complex distribution, not absolute amount of adiponectin, correlates with thiazolidinedione-mediated improvement in insulin sensitivity. J Biol Chem. 2004;279:12152–62.

    Article  PubMed  CAS  Google Scholar 

  50. Xu A, Chan KW, Hoo RL, et al. Testosterone selectively reduces the high molecular weight form of adiponectin by inhibiting its secretion from adipocytes. J Biol Chem. 2005;280:18073–80.

    Article  PubMed  CAS  Google Scholar 

  51. Pender C, Goldfine ID, Tanner CJ, et al. Muscle insulin receptor concentrations in obese patients post bariatric surgery: relationship to hyperinsulinemia. Int J Obes Relat Metab Disord. 2004;28:363–9.

    Article  PubMed  CAS  Google Scholar 

  52. Gannage-Yared MH, Yaghi C, Habre B, et al. Osteoprotegerin in relation to body weight, lipid parameters insulin sensitivity, adipocytokines, and C-reactive protein in obese and non-obese young individuals: results from both cross-sectional and interventional study. Eur J Endocrinol. 2008;158:353–9.

    Article  PubMed  CAS  Google Scholar 

  53. Guldstrand M, Ahren B, Adamson U. Improved beta-cell function after standardized weight reduction in severely obese subjects. Am J Physiol Endocrinol Metab. 2003;284:E557–65.

    PubMed  CAS  Google Scholar 

  54. Engl J, Sturm W, Sandhofer A, et al. Effect of pronounced weight loss on visceral fat, liver steatosis and adiponectin isoforms. Eur J Clin Invest. 2008;38:238–44.

    Article  PubMed  CAS  Google Scholar 

  55. Alverdy JC, Prachand V, Flanagan B, et al. Bariatric surgery: a history of empiricism, a future in science. J Gastrointest Surg. 2009;13:465–77.

    Article  PubMed  Google Scholar 

  56. Lin E, Gletsu N, Fugate K, et al. The effects of gastric surgery on systemic ghrelin levels in the morbidly obese. Arch Surg. 2004;139:780–4.

    Article  PubMed  Google Scholar 

  57. Schauer PR, Ikramuddin S, Gourash W, et al. Outcomes after laparoscopic Roux-en-Y gastric bypass for morbid obesity. Ann Surg. 2000;232:515–29.

    Article  PubMed  CAS  Google Scholar 

  58. Schauer PR, Burguera B, Ikramuddin S, et al. Effect of laparoscopic Roux-en Y gastric bypass on type 2 diabetes mellitus. Ann Surg. 2003;238:467–84. discussion 84–5.

    PubMed  Google Scholar 

  59. Capella RF, Capella JF. Reducing early technical complications in gastric bypass surgery. Obes Surg. 1997;7:149–56. discussion 57.

    Article  PubMed  CAS  Google Scholar 

  60. Mason EE, Ito C. Gastric bypass in obesity. Surg Clin North Am. 1967;47:1345–51.

    PubMed  CAS  Google Scholar 

  61. Williams MD, Champion JK. Linear technique of laparoscopic Roux-en-Y gastric bypass. Surg Technol Int. 2004;13:101–5.

    PubMed  Google Scholar 

  62. Fobi MA, Lee H, Igwe Jr D, et al. Revision of failed gastric bypass to distal Roux-en-Y gastric bypass: a review of 65 cases. Obes Surg. 2001;11:190–5.

    Article  PubMed  CAS  Google Scholar 

  63. Fobi MA, Lee H, Holness R, et al. Gastric bypass operation for obesity. World J Surg. 1998;22:925–35.

    Article  PubMed  CAS  Google Scholar 

  64. Salmon PA. Gastroplasty with distal gastric bypass: a new and more successful weight loss operation for the morbidly obese. Can J Surg. 1988;31:111–3.

    PubMed  CAS  Google Scholar 

  65. MacLean LD, Rhode BM, Nohr CW. Late outcome of isolated gastric bypass. Ann Surg. 2000;231:524–8.

    Article  PubMed  CAS  Google Scholar 

  66. Ren CJ, Fielding GA. Laparoscopic adjustable gastric banding: surgical technique. J Laparoendosc Adv Surg Tech A. 2003;13:257–63.

    Article  PubMed  Google Scholar 

  67. Mittermair RP, Weiss H, Nehoda H, et al. Laparoscopic Swedish adjustable gastric banding: 6-year follow-up and comparison to other laparoscopic bariatric procedures. Obes Surg. 2003;13:412–7.

    Article  PubMed  Google Scholar 

  68. Mason EE, Doherty C, Cullen JJ, et al. Vertical gastroplasty: evolution of vertical banded gastroplasty. World J Surg. 1998;22:919–24.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrina L. Butner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butner, K.L., Nickols-Richardson, S.M., Clark, S.F. et al. A Review of Weight Loss Following Roux-en-Y Gastric Bypass vs Restrictive Bariatric Surgery: Impact on Adiponectin and Insulin. OBES SURG 20, 559–568 (2010). https://doi.org/10.1007/s11695-010-0089-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-010-0089-z

Keywords

Navigation