Skip to main content
Log in

Multi-phase, large-strain constitutive models of cartilage for finite element analyses in 3-D

  • Review
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Finite element (FE) modeling plays a well-established and increasingly significant role in analyses of articular cartilage at the organ, tissue, and cell scales: for example understanding the functional relationships among constituents, microstructure, and tissue function in diarthrodial joints. A constitutive model, the crux of an accurate FE model, formalizes the functional dependencies among physical variables (e.g., strain, stress, and energy), thereby providing the missing equations to close the system generated by the classical balance principals, while accounting for the specific behavior of cartilage. In the future, fully 3-D FE modeling of cartilage could provide clinical diagnostic tools for patient-specific analyses. Computational analyses of full, patient-specific knee joints under load, especially before and after surgical intervention, would facilitate: (1) investigating fundamental research questions, e.g., structure-function relationships, load support, and mechanobiological cellular stimuli; (2) assessing individual patients, e.g., assessing joint integrity, preventing damage, and prescribing therapies; and (3) advancing tissue engineering, i.e., building replacement materials for cartilage. Approaches to computational modeling generally aim to adopt the simplest possible formulation that can describe experimental data, yet the complexity of articular cartilage mechanics demands similarly complex models. This review discusses extant multi-phase, large-strain (i.e., finite-deformation) constitutive models for cartilage which have been implemented in 3-D nonlinear finite elements. These have paved the way toward 3-D patient-specific clinical tools and along with advances in the underlying continuum theories and computational methods provide the foundations of improved constitutive models for 3-D FE modeling of cartilage in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almeida, E.S., Spilker, R.L.: Mixed and penalty finite element models for the nonlinear behavior of biphasic soft tissues in finite deformations: part I-alternate formulations. Comput. Methods Biomech. Biomed. Eng. 1, 25–46 (1997)

    Article  Google Scholar 

  2. Almeida, E.S., Spilker, R.L.: Mixed and penalty finite element models for the nonlinear behavior of biphasic soft tissues in finite deformations: part II-nonlinear examples. Comput. Methods Biomech. Biomed. Eng. 1, 151–170 (1997)

    Article  Google Scholar 

  3. Almeida, E.S., Spilker, R.L.: Finite element formulations for hyperelastic transversely isotropic biphasic soft tissues. Comput. Meth. Appl. Mech. Eng. 151, 513–538 (1998)

    Article  MATH  Google Scholar 

  4. Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Geometric means in a novel vector space structure on symmetric positive-definite matrices. SIAM J. Matrix Anal. Appl. 29, 328–347 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ateshian, G.A., Albro, M.B., Maas, S., Weiss, J.A.: Finite element implementation of mechanochemical phenomena in neutral deformable porous media under finite deformation. J. Biomech. Eng. 133, 081005 (2011)

    Article  Google Scholar 

  6. Ateshian, G.A., Likhitpanichkul, M., Hung, C.T.: A mixture theory analysis for passive transport in osmotic loading of cells. J. Biomech. 39, 464–475 (2006)

    Article  Google Scholar 

  7. Ateshian, G.A., Rajan, V., Chahine, N.O., Canal, C.E., Hung, C.T.: Modeling the matrix of articular cartilage using a continuous fiber angular distribution predicts many observed phenomena. J. Biomech. Eng. 131, 61003 (2009)

    Article  Google Scholar 

  8. Ateshian, G.A., Warden, W.H., Kim, J.J., Grelsamer, R.P., Mow, V.C.: Finite deformation biphasic material properties of bovine articular cartilage from confined compression experiments. J. Biomech. 30, 1157–1164 (1997)

    Article  Google Scholar 

  9. Ateshian, G.A., Weiss, J.A.: Anisotropic hydraulic permeability under finite deformation. J. Biomech. Eng. 132, 111004 (2010)

    Article  Google Scholar 

  10. Bae, W.C., Lewis, C.W., Levenston, M.E., Sah, R.L.: Indentation testing of human articular cartilage: effects of probe tip geometry and indentation depth on intra-tissue strain. J. Biomech. 39, 1039–1047 (2006)

    Article  Google Scholar 

  11. Bishop, A.W.: The principle of effective stress. Tek. Ukeblad 39, 859–863 (1959)

    Google Scholar 

  12. Bluhm, J.: Modelling of saturated thermo-elastic porous solids with different phase temperatures. In: Ehlers, W., Bluhm, J. (eds.) Porous Media: Theory, Experiments and Numerical Applications, pp. 87–120. Springer, Berlin (2002)

    Chapter  MATH  Google Scholar 

  13. de Boer, R.: Theory of Porous Media. Highlights in the Historical Development and Current State. Springer, Heidelberg (2000)

    Book  MATH  Google Scholar 

  14. Bols, J., Degroote, J., Trachet, B., Verhegghe, B., Segers, P., Vierendeels, J.: A computational method to assess the in vivo stresses and unloaded configuration of patient-specific blood vessels. J. Comput. Appl. Math. 246, 10–17 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bowen, R.M.: Incompressible pourous media models by use of theory of mixtures. Int. J. Eng. Sci. 18, 1129–1148 (1980)

    Article  MATH  Google Scholar 

  16. Bowen, R.M.: Compressible porous media models by use of the theory of mixtures. Int. J. Eng. Sci. 20, 697–735 (1982)

    Article  MATH  Google Scholar 

  17. Chahine, N.O., Chen, F.H., Hung, C.T., Ateshian, G.A.: Direct measurement of osmotic pressure of glycosaminoglycan solutions by membrane osmometry at room temperature. Biophys. J. 89, 1543–1550 (2005)

    Article  Google Scholar 

  18. Chahine, N.O., Wang, C.C.B., Hung, C.T., Ateshian, G.A.: Anisotropic strain-dependent material properties of bovine articular cartilage in the transitional range from tension to compression. J. Biomech. 37, 1251–1261 (2004)

    Article  Google Scholar 

  19. Chen, Y., Chen, X., Hisada, T.: Non-linear finite element analysis of mechanical electrochemical phenomena in hydrated soft tissues based on triphasic theory. Int. J. Numer. Meth. Eng. 65, 147–173 (2006)

    Article  MATH  Google Scholar 

  20. Delfino, A., Stergiopulos, N., Moore, J.E., Jr., Meister, J.J.: Residual strain effects on the stress field in a thick wall finite element model of the human carotid bifurcation. J. Biomech. 30, 777–786 (1997)

    Article  Google Scholar 

  21. Demiray, H.: A note on the elasticity of soft biological tissues. J. Biomech. 5, 309–311 (1972)

    Article  Google Scholar 

  22. DiSilvestro, M.R., Suh, J.K.F.: A cross-validation of the biphasic poroviscoelastic model of articular cartilage in unconfined compression, indentation, and confined compression. J. Biomech. 34, 519–525 (2001)

    Article  Google Scholar 

  23. Ehlers, W.: Poröse medien - ein kontinuumsmechanisches Modell auf der Basis der Mischungstheorie. Ph.D. thesis, Universität GH Essen (1989). Forschungsbericht aus dem Fachbereich Bauwesen 47

  24. Ehlers, W.: Constitutive equations for granular materials in geomechanical context. In: Hutter, K. (ed.) Continuum Mechanics in Environmental Sciences and Geophysics, pp. 313–402. Springer-Verlag, Wien (1993). CISM Courses and Lectures no. 337

  25. Ehlers, W.: Foundations of multiphasic and porous materials. In: Ehlers, W., Bluhm, J. (eds.) Porous Media: Theory, Experiments and Numerical Applications, pp. 3–86. Springer, Berlin (2002)

    Chapter  MATH  Google Scholar 

  26. Ehlers, W., Karajan, N., Markert, B.: A porous media model describing the inhomogeneous behaviour of the human intervertebral disc. Mat.-Wiss. u. Werkstofftechn. 37, 546–551 (2006)

    Article  Google Scholar 

  27. Ehlers, W., Karajan, N., Markert, B.: An extended biphasic model for charged hydrated tissues with application to the intervertebral disc. Biomech. Model. Mechanobiol. 8, 233–251 (2009)

    Article  Google Scholar 

  28. Elliott, D.M., Narmoneva, D.A., Setton, L.A.: Direct measurement of the Poisson’s ratio of human patella cartilage in tension. J. Biomech. Eng. 124, 223–228 (2002)

    Article  Google Scholar 

  29. Erdemir, A.: Open knee: open source modeling and simulation in knee biomechanics. J. Knee Surg. 29, 107–116 (2016)

    Google Scholar 

  30. Erne, O.K., Reid, J.B., Ehmke, L.W., Sommers, M.B., Madey, S.M., Bottlang, M.: Depth-dependent strain of patellofemoral articular cartilage in unconfined compression. J. Biomech. 38, 667–672 (2005)

    Article  Google Scholar 

  31. Federico, S., Gasser, T.C.: Nonlinear elasticity of biological tissues with statistical fibre orientation. J. R. Soc. Interface 7, 955–966 (2010)

    Article  Google Scholar 

  32. Federico, S., Herzog, W.: On the anisotropy and inhomogeneity of permeability in articular cartilage. Biomech. Model. Mechanobiol. 7, 367–378 (2008)

    Article  Google Scholar 

  33. Filidoro, L., Dietrich, O., Weber, J., Rauch, E., Oether, T., Wick, M., Reiser, M.F., Glaser, C.: High-resolution diffusion tensor imaging of human patellar cartilage: feasibility and preliminary findings. Magn. Reson. Med. 53, 993–998 (2005)

    Article  Google Scholar 

  34. Frijns, A.J.H., Huyghe, J.M., Kaasschieter, E.F., Wijlaars, M.W.: Numerical simulation of deformations and electrical potentials in a cartilage substitute. Biorheology 40, 123–131 (2003)

    Google Scholar 

  35. García, J.J., Cortés, D.H.: A biphasic viscohyperelastic fibril-reinforced model for articular cartilage: Formulation and comparison with experimental data. J. Biomech. 40, 1737–1744 (2007)

    Article  Google Scholar 

  36. Gasser, T.C., Ogden, R.W., Holzapfel, G.A.: Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3, 15–35 (2006)

    Article  Google Scholar 

  37. Goldsmith, A.A.J., Hayes, A., Clift, S.E.: Application of finite elements to the stress analysis of articular cartilage. Med. Eng. Phys. 18, 89–98 (1996)

    Article  Google Scholar 

  38. Halloran, J.P., Sibole, S., Donkelaar, C.C., Turnhout, M.C., Oomens, C.W.J., Weiss, J.A., Guilak, F., Erdemir, A.: Multiscale mechanics of articular cartilage: potentials and challenges of coupling musculoskeletal, joint, and microscale computational models. Ann. Biomed. Eng. 40, 2456–2474 (2012)

    Article  Google Scholar 

  39. Halonen, K.S., Mononen, M.E., Jurvelin, J.S., Töyräs, J., Korhonen, R.K.: Importance of depth-wise distribution of collagen and proteoglycans in articular cartilage - a 3d finite element study of stresses and strains in human knee joint. J. Biomech. 46, 1184–1192 (2013)

    Article  Google Scholar 

  40. Halonen, K.S., Mononen, M.E., Jurvelin, J.S., Töyräs, J., Salo, J., Korhonen, R.K.: Deformation of articular cartilage during static loading of a knee joint—experimental and finite element analysis. J. Biomech. 47, 2467–2474 (2014)

    Article  Google Scholar 

  41. Halonen, K.S., Mononen, M.E., Töyräs, J., Körger, H., Joukainen, A., Korhonen, R.K.: Optimal graft stiffness and pre-strain restore normal joint motion and cartilage responses in acl reconstructed knee. J. Biomech. 49, 2566–2576 (2016)

    Article  Google Scholar 

  42. Han, S.K., Federico, S., Epstein, M., Herzog, W.: An articular cartilage contact model based on real surface geometry. J. Biomech. 38, 179–184 (2005)

    Article  Google Scholar 

  43. Henak, C., Ateshian, G., Weiss, J.: Finite element prediction of transchondral stress and strain in the human hip. J. Biomed. Eng. 136, 021021 (2014)

    Google Scholar 

  44. Henak, C., Carruth, E., Anderson, A., Harris, M., Ellis, B., Peters, C., Weiss, J.: Finite element predictions of cartilage contact mechanics in hips with retroverted acetabula. Osteoarthr Cartil 21, 1522–1529 (2013)

    Article  Google Scholar 

  45. Henak, C., Kapron, A., Anderson, A., Ellis, B., Maas, S., Weiss, J.: Specimen-specific predictions of contact stress under physiological loading in the human hip: validation and sensitivity studies. Biomech. Model. Mechanobiol. 13, 387–400 (2014)

    Article  Google Scholar 

  46. Holmes, M.H., Mow, V.C.: The nonlinear characteristics of soft gels and hydrated connective tissues in ultrafiltration. J. Biomech. 23, 1145–1156 (1990)

    Article  Google Scholar 

  47. Holzapfel, G.A.: On large strain viscoelasticity: continuum formulation and finite element applications to elastomeric structures. Int. J. Numer. Meth. Eng. 39, 3903–3926 (1996)

    Article  MATH  Google Scholar 

  48. Holzapfel, G.A., Gasser, T.C.: A viscoelastic model for fiber-reinforced composites at finite strains: continuum basis, computational aspects and applications. Comput. Meth. Appl. Mech. Eng. 190, 4379–4403 (2001)

    Article  Google Scholar 

  49. Holzapfel, G.A., Gasser, T.C., Ogden, R.W.: A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61, 1–48 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  50. Holzapfel, G.A., Schulze-Bauer, C.A.J., Feigl, G., Regitnig, P.: Single lamellar mechanics of the human lumbar anulus fibrosus. Biomech. Model. Mechanobiol. 3, 125–140 (2005)

    Article  Google Scholar 

  51. Holzapfel, G.A., Sommer, G., Gasser, C.T., Regitnig, P.: Determination of the layer-specific mechanical properties of human coronary arteries with non-atherosclerotic intimal thickening, and related constitutive modelling. Am. J. Physiol. Heart Circ. Physiol. 289, H2048-2058 (2005)

    Article  Google Scholar 

  52. Holzapfel, G.A., Stadler, M., Gasser, T.C.: Changes in the mechanical environment of stenotic arteries during interaction with stents: computational assessment of parametric stent design. J. Biomech. Eng. 127, 166–180 (2005)

    Article  Google Scholar 

  53. Huang, C.Y., Mow, V.C., Ateshian, G.A.: The role of flow-independent viscoelasticity in the biphasic tensile and compressive responses of articular cartilage. J. Biomech. Eng. 123, 410–417 (2001)

    Article  Google Scholar 

  54. Huang, C.Y., Soltz, M.A., Kopacz, M., Mow, V.C., Ateshian, G.A.: Experimental verification of the roles of intrinsic matrix viscoelasticity and tension-compression nonlinearity in the biphasic response of cartilage. J. Biomech. Eng. 125, 84–93 (2003)

    Article  Google Scholar 

  55. Huang, C.Y., Stankiewicz, A., Ateshian, G.A., Mow, V.C.: Anisotropy, inhomogeneity, and tension-compression nonlinearity of human glenohumeral cartilage in finite deformation. J. Biomech. 38, 799–809 (2005)

    Article  Google Scholar 

  56. Humphrey, J.D., Yin, F.C.P.: A new constitutive formulation for characterizing the mechanical behaviour of soft tissues. Biophys. J. 52, 563–570 (1987)

    Article  Google Scholar 

  57. Iatridis, J.C., Setton, L.A., Weidenbaum, M., Mow, V.C.: The viscoelastic behavior of the non-degenerate human lumbar nucleus pulposus in shear. J. Biomech. 30, 1005–1013 (1997)

    Article  Google Scholar 

  58. Julkunen, P., Kiviranta, P., Wilson, W., Jurvelin, J.S., Korhonen, R.K.: Characterization of articular cartilage by combining microscopic analysis with a fibril-reinforced finite-element model. J. Biomech. 40, 1862–1870 (2007)

    Article  Google Scholar 

  59. Julkunen, P., Korhonen, R.K., Herzog, W., Jurvelin, J.S.: Uncertainties in indentation testing of articular cartilage: a fibril-reinforced poroviscoelastic study. Med. Eng. Phys. 30, 506–515 (2008)

    Article  Google Scholar 

  60. Jurvelin, J.S., Buschmann, M.D., Hunziker, E.B.: Optical and mechanical determination of Poisson’s ratio of adult bovine humeral articular cartilage. J. Biomech. 30, 235–241 (1997)

    Article  Google Scholar 

  61. Kaasschieter, E.F., Frijns, A.J.H., Huyghe, J.M.: Mixed finite element modelling of cartilaginous tissues. Math. Comput. Simul. 61, 549–560 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  62. Karajan, N.: An extended biphasic description of the inhomogeneous and anisotropic intervertebral disc. Ph.D. thesis, Universität Stuttgart (2009)

  63. Klika, V.: A guide through available mixture theories for applications. Crit. Rev. Solid State Mater. 39, 154–174 (2014)

    Article  Google Scholar 

  64. Klika, V., Gaffney, E.A., Chen, Y.C., Brown, C.P.: An overview of multiphase cartilage mechanical modelling and its role in understanding function and pathology. J. Mech. Beh. Biomed. Mat. 62, 139–157 (2016)

    Article  Google Scholar 

  65. Klika, V., Whiteley, J.P., Brown, C.P., Gaffney, E.A.: The combined impact of tissue heterogeneity and fixed charge for models of cartilage: the one-dimensional biphasic swelling model revisited. Biomech. Model. Mechanobiol. 62, 953–968 (2019)

    Article  Google Scholar 

  66. Knudson, W., Knudson, C.B.: Assembly of a chondrocyte-like pericellular matrix on non-chondrogenic cells. Role of the cell surface hyaluronan receptors in the assembly of a pericellular matrix. J. Cell Sci. 99(pt. 2), 227–235 (1991)

    Article  Google Scholar 

  67. Krishnan, R., Park, S., Echstein, F., Ateshian, G.A.: Inhomogeneous cartilage properties enhance superficial interstitial fluid support and frictional properties, but do not provide a homogeneous state of stress. J. Biomech. Eng. 125, 569–577 (2003)

    Article  Google Scholar 

  68. Lai, W.M., Hou, J.S., Mow, V.C.: A triphasic theory for the swelling and deformation behaviors of articular cartilage. J. Biomech. Eng. 113, 245–258 (1991)

    Article  Google Scholar 

  69. Lanir, Y.: Rheological behavior of skin-experimental results and a structural model. Biorheology 16, 191–202 (1979)

    Article  Google Scholar 

  70. Lanir, Y.: Constitutive equations for fibrous connective tissues. J. Biomech. 16, 1–12 (1983)

    Article  Google Scholar 

  71. Lei, F., Szeri, A.Z.: The influence of fibril organization on the mechanical behaviour of articular cartilage. Proc. R. Soc. Lond. A 462, 3301–3322 (2006)

    MathSciNet  MATH  Google Scholar 

  72. Li, L.P., Herzog, W.: The role of viscoelasticity of collagen fibers in articular cartilage: theory and numerical formulation. Biorheology 41, 181–194 (2004)

    Google Scholar 

  73. Li, L.P., Soulhat, J., Buschmann, M.D., Shirazi-Adl, A.: Nonlinear analysis of cartilage in unconfined ramp compression using a fibril reinforced poroelastic model. Clin. Biomech. 14, 673–682 (1999)

    Article  Google Scholar 

  74. Lilledahl, M.B., Pierce, D.M., Ricken, T., Holzapfel, G.A., de Lange Davies, C.: Structural analysis of articular cartilage using multiphoton microscopy: input for biomechanical modeling. IEEE Trans. Med. Imaging 30, 1625–1648 (2011)

    Article  Google Scholar 

  75. Maas, S.A., Ellis, B.J., Ateshian, G.A., Weiss, J.A.: FEBio: finite elements for biomechanics. J. Biomech. Eng. 134, 011005 (2012)

    Article  Google Scholar 

  76. Markert, B.: A constitutive approach to 3-D nonlinear fluid flow through finite deformable porous continua. Transp. Porpus Media 70, 427–450 (2007)

    Article  Google Scholar 

  77. van Loon, R., Huyghe, J., Wijlaars, M., Baaijens, F.: 3d fe implementation of an incompressible quadriphasic mixture model. Int. J. Numer. Meth. Eng. 57, 1243–1258 (2003)

    Article  MATH  Google Scholar 

  78. Meder, R., de Visser, S.K., Bowden, J.C., Bostrom, T., Pope, J.M.: Diffusion tensor imaging of articular cartilage as a measure of tissue microstructure. Osteoarthr. Cartil. 14, 875–881 (2006)

    Article  Google Scholar 

  79. Miehe, C., Göktepe, S., Lulei, F.: A micro-macro approach to rubber-like materials-part I: the non-affine micro-sphere model of rubber elasticity. J. Mech. Phys. Solids 52, 2617–2660 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  80. Mononen, M.E., Julkunen, P., Töyräs, J., Jurvelin, J.S., Kiviranta, I., Korhonen, R.K.: Alterations in structure and properties of collagen network of osteoarthritic and repaired cartilage modify knee joint stresses. Biomech. Model. Mechanobiol. 10, 357–369 (2011)

    Article  Google Scholar 

  81. Mononen, M.E., Mikkola, M.T., Julkunen, P., Ojala, R., Nieminen, M.T., Jurvelin, J.S., Korhonen, R.K.: Effect of superficial collagen patterns and fibrillation of femoral articular cartilage on knee joint mechanics—a 3D finite element analysis. J. Biomech. 45, 579–587 (2012)

    Article  Google Scholar 

  82. Mow, V.C., Ateshian, G.A., Lai, W.M., Gu, W.Y.: Effects of fixed charges on the stress relaxation behavior of hydrated soft tissues in a confined compression problem. Int. J. Solids Struct. 35, 4945–4962 (1998)

    Article  MATH  Google Scholar 

  83. Mow, V.C., Gu, W.Y., Chen, F.H.: Structure and function of articular cartilage and meniscus. In: Mow, V.C., Huiskes, R. (eds.) Basic Orthopaedic Biomechanics & Mechano-Biology, 3rd edn., pp. 181–258. Lippincott Williams & Wilkins, Philadelphia (2005)

    Google Scholar 

  84. Pence, T.J.: On the formulation of boundary value problems with the incompressible constituents constraint in finite deformation poroelasticity. Math. Method Appl. Sci. 35, 1756–1783 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  85. Pierce, D.M., Ricken, T., Holzapfel, G.A.: A hyperelastic biphasic fiber-reinforced model of articular cartilage considering distributed collagen fiber orientations: continuum basis, computational aspects and applications. Comput. Methods Biomech. Biomed. Eng. 16, 1344–1361 (2013)

    Article  Google Scholar 

  86. Pierce, D.M., Ricken, T., Holzapfel, G.A.: Modeling sample/patient-specific structural and diffusional response of cartilage using DT-MRI. Int. J. Numer. Meth. Biomed. Eng. 29, 807–821 (2013)

    Article  Google Scholar 

  87. Pierce, D.M., Trobin, W., Raya, J.G., Trattnig, S., Bischof, H., Glaser, C., Holzapfel, G.A.: DT-MRI based computation of collagen fiber deformation in human articular cartilage: a feasibility study. Ann. Biomed. Eng. 38, 2447–2463 (2010)

    Article  Google Scholar 

  88. Pierce, D.M., Trobin, W., Trattnig, S., Bischof, H., Holzapfel, G.A.: A phenomenological approach toward patient-specific computational modeling of articular cartilage including collagen fiber tracking. J. Biomech. Eng. 131, 091006 (2009)

    Article  Google Scholar 

  89. Pierce, D.M., Unterberger, M.J., Trobin, W., Ricken, T., Holzapfel, G.A.: A microstructurally based continuum model of cartilage viscoelasticity and permeability incorporating statistical fiber orientation. Biomech. Model. Mechanobiol. 15, 229–244 (2016)

    Article  Google Scholar 

  90. Rajagopal, K.R., Wineman, A.S., Gandhi, M.: On boundary conditions for a certain class of problems in mixture theory. Int. J. Eng. Sci. 24, 1453–1463 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  91. Ricken, T., Bluhm, J.: Remodeling and growth of living tissue: a multiphase theory. Arch. Appl. Mech. 80, 453–465 (2010)

    Article  MATH  Google Scholar 

  92. Rodriguez-Vila, B., Sánchez-González, P., Oropesa, I., Gómez, E.J., Pierce, D.M.: Automated hexahedral meshing of knee cartilage structures—application to data from the osteoarthritis initiative. Comput. Methods Biomech. Biomed. Eng. 20, 1543–1553 (2017)

    Article  Google Scholar 

  93. Sacco, R., Guidoboni, G., Mauri, A.: Introduction. In: Sacco, R., Guidoboni, G., Mauri, A. (eds.) A Comprehensive Physically Based Approach to Modeling in Bioengineering and Life Sciences, pp. 255–256. Academic Press, Cambridge (2019)

    Chapter  Google Scholar 

  94. Schroeder, Y., Wilson, W., Huyghe, J.M., Baaijens, F.P.T.: Osmoviscoelastic finite element model of the intervertebral disc. Eur. Spine J. 15, 361–371 (2006)

    Article  Google Scholar 

  95. Sibole, S.C., Erdemir, A.: Chondrocyte deformations as a function of tibiofemoral joint loading predicted by a generalized high-throughput pipeline of multi-scale simulations. PLoS ONE 7, e37538 (2012)

    Article  Google Scholar 

  96. Sibole, S.C., Maas, S., Halloran, J.P., Weiss, J.A., Erdemir, A.: Evaluation of a post-processing approach for multiscale analysis of biphasic mechanics of chondrocytes. Comput. Methods Biomech. Biomed. Eng. 16, 1112–1126 (2013)

    Article  Google Scholar 

  97. Simo, J.C., Pister, K.S.: Remarks on rate constitutive equations for finite deformation problems: computational implications. Comput. Meth. Appl. Mech. Eng. 46, 201–215 (1984)

    Article  MATH  Google Scholar 

  98. Simo, J.C., Taylor, R.L.: Quasi-incompressible finite elasticity in principal stretches. Continuum basis and numerical algorithms. Comput. Meth. Appl. Mech. Eng. 85, 273–310 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  99. Skempton, A.W.: Terzaghi’s discovery of effective stress. In: Bjerrum, L., Casagrande, A., Peck, R.B., Skempton, A.W. (eds.) From Theory to Practice in Soil Mechanics, pp. 42–53. John Wiley, New York (1960)

    Google Scholar 

  100. Tong, J., Cohnert, T., Regitnig, P., Holzapfel, G.A.: Effects of age on the elastic properties of the intraluminal thrombus and the thrombus-covered wall in abdominal aortic aneurysms: biaxial extension behavior and material modeling. Eur. J. Vasc. Endovasc. Surg. 42, 207–219 (2011)

    Article  Google Scholar 

  101. Urban, J.P.G., Maroudas, A.: Swelling of the intervertebral disc in vivo. Connect. Tissue Res. 9, 1–10 (1981)

    Article  Google Scholar 

  102. Urban, J.P.G., Maroudas, A., Bayliss, M.T., Dillon, J.: Swelling pressures of proteoglycans at the concentrations found in cartilaginous tissues. Biorheology 16, 447–464 (1979)

    Article  Google Scholar 

  103. Wan, C., Ge, L., Souza, R.B., Tang, S.Y., Alliston, T., Hao, Z., Li, X.: T1\(\rho \)-based fibril-reinforced poroviscoelastic constitutive relation of human articular cartilage using inverse finite element technology. Quant. Imaging. Med. Surg. 9, 359 (2019)

    Article  Google Scholar 

  104. Wang, C.C., Deng, J.M., Ateshian, G.A., Hung, C.T.: An automated approach for direct measurement of two-dimensional strain distributions within articular cartilage under unconfined compression. J. Biomech. Eng. 124, 557–567 (2002)

    Article  Google Scholar 

  105. Wang, X., Eriksson, T.S.E., Ricken, T., Pierce, D.M.: On incorporating osmotic prestretch/prestress in image-driven finite element simulations of cartilage. J. Mech. Behav. Biomed. Mat. 86, 409–422 (2018)

    Article  Google Scholar 

  106. Wilson, W., Huyghe, J.M., van Donkelaar, C.C.: A composition-based cartilage model for the assessment of compositional changes during cartilage damage and adaptation. Osteoarthr Cartil 14, 554–560 (2006)

    Article  Google Scholar 

  107. Wilson, W., Huyghe, J.M., van Donkelaar, C.C.: Depth-dependent compressive equilibrium properties of articular cartilage explained by its composition. Biomech. Model. Mechanobiol. 6(1–2), 43–53 (2007)

    Article  Google Scholar 

  108. Wilson, W., van Donkelaar, C.C., van Rietbergen, B., Huiskes, R.: A fibril-reinforced poroviscoelastic swelling model for articular cartilage. J. Biomech. 38, 1195–1204 (2005)

    Article  Google Scholar 

  109. Wilson, W., van Donkelaar, C.C., van Rietbergen, B., Ito, K., Huiskes, R.: Stresses in the local collagen network of articular cartilage: a poroviscoelastic fibril-reinforced finite element study. J. Biomech. 37, 357–366 (2004)

    Article  Google Scholar 

  110. Wilson, W., van Donkelaar, C.C., van Rietbergen, B., Ito, K., Huiskes, R.: Erratum to “Stresses in the local collagen network of articular cartilage: a poroviscoelastic fibril-reinforced finite element study”. [journal of biomechanics 37 (2004) 357–366] and “A fibril-reinforced poroviscoelastic swelling model for articular cartilage” [journal of biomechanics 38 (2005) 1195–1204]”. J. Biomech. 38, 2138–2140 (2005)

  111. Wilson, W., van Rietbergen, B., van Donkelaar, C.C., Huiskes, R.: Pathways of load-induced cartilage damage causing cartilage degeneration in the knee after meniscectomy. J. Biomech. 36, 845–851 (2003)

    Article  Google Scholar 

  112. Wong, M., Ponticiello, M., Kovanen, V., Jurvelin, J.S.: Volumetric changes of articular cartilage during stress relaxation in unconfined compression. J. Biomech. 33, 1049–1054 (2000)

    Article  Google Scholar 

  113. Wu, J., Herzog, W.: Finite element simulation of location- and time-dependent mechanical behavior of chondrocytes in unconfined compression tests. Ann. Biomed. Eng. 28, 318–330 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges NSF CAREER 1653358 and NSF 1662429, the thoughtful revisions of Amber Pierce, and the careful reviews of Ashkan Almasi, Muhammed Masudur Rahman, Phoebe Szarek, Xiaogang Wang, and Yunmei Zhao.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Pierce.

Ethics declarations

Conflict of interest

The author declares that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

NSF CAREER 1653358, NSF 1662429.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pierce, D.M. Multi-phase, large-strain constitutive models of cartilage for finite element analyses in 3-D. Arch Appl Mech 92, 513–528 (2022). https://doi.org/10.1007/s00419-021-01959-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-021-01959-5

Keywords

Navigation