Skip to main content

Advertisement

Log in

Osmoviscoelastic finite element model of the intervertebral disc

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Intervertebral discs have a primarily mechanical role in transmitting loads through the spine. The disc is subjected to a combination of elastic, viscous and osmotic forces; previous 3D models of the disc have typically neglected osmotic forces. The fibril-reinforced poroviscoelastic swelling model, which our group has recently developed, is used to compute the interplay of osmotic, viscous and elastic forces in an intervertebral disc under axial compressive load. The unloaded 3D finite element mesh equilibrates in a physiological solution, and exhibits an intradiscal pressure of about 0.2 MPa. Before and after axial loading the numerically simulated hydrostatic pressure compares well with the experimental ranges measured. Loading the disc decreased the height of the disc and results in an outward bulging of the outer annulus. Fiber stresses were highest on the most outward bulging on the posterior-lateral side. The osmotic forces resulted in tensile hoop stresses, which were higher than typical values in a non-osmotic disc. The computed axial stress profiles reproduced the main features of the stress profiles, in particular the characteristic posterior and anterior stress which were observed experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Op De Beeck R, Hermans D (2000) Research on work-related low back disorders. Report of European Agency for Safety and Health at work

  2. Houben GB, Drost MR, Huyghe JM, Janssen JD, Huson A (1997) Nonhomogeneous permeability of canine anulus fibrosus. Spine 22:7–16

    Article  PubMed  CAS  Google Scholar 

  3. Urban JP, Maroudas A, Bayliss MT, Dillon J (1979) Swelling pressures of proteoglycans at the concentrations found in cartilaginous tissues. Biorheology 16:447–464

    PubMed  CAS  Google Scholar 

  4. Urban JP, Roberts S (2003) Degeneration of the intervertebral disc. Arthritis Res Ther 5:120–130

    Article  PubMed  Google Scholar 

  5. Wilke HJ, Neef P, Caimi M, Hoogland T, Claes LE (1999) New in vivo measurements of pressures in the intervertebral disc in daily life. Spine 24:755–762

    Article  PubMed  CAS  Google Scholar 

  6. Cheung JT, Zhang M, Chow DH (2003) Biomechanical responses of the intervertebral joints to static and vibrational loading: a finite element study. Clin Biomech (Bristol, Avon) 18:790–799

    Article  Google Scholar 

  7. Wu JS, Chen JH (1996) Clarification of the mechanical behaviour of spinal motion segments through a three-dimensional poroelastic mixed finite element model. Med Eng Phys 18:215–224

    Article  PubMed  CAS  Google Scholar 

  8. Elliott DM, Setton LA (2000) A linear material model for fiber-induced anisotropy of the anulus fibrosus. J Biomech Eng 122:173–179

    Article  PubMed  CAS  Google Scholar 

  9. Wagner DR, Lotz JC (2004) Theoretical model and experimental results for the nonlinear elastic behavior of human annulus fibrosus. J Orthop Res 22:901–909

    Article  PubMed  Google Scholar 

  10. Wang JL, Parnianpour M, Shirazi-Adl A, Engin AE (2000) Viscoelastic finite-element analysis of a lumbar motion segment in combined compression and sagittal flexion. Effect of loading rate. Spine 25:310–318

    Article  PubMed  CAS  Google Scholar 

  11. Nachemson A., Morris J (1963) Lumbar discometry. Lumbar intradiscal pressure measurements in vivo. Lancet 1:1140–1142

    Article  PubMed  CAS  Google Scholar 

  12. Ishihara H, McNally DS, Urban JP, Hall AC (1996) Effects of hydrostatic pressure on matrix synthesis in different regions of the intervertebral disk. J Appl Physiol 80:839–846

    PubMed  CAS  Google Scholar 

  13. Neidlinger-Wilke C, Wuertz K, Claes L and Urban JP (2005) Osmolarity influences disc cell gene expressions in response to mechanical stimulation and at unloaded culture conditions. Eur Spine J 14(Supple 1):S29–S82 (Conference Proceeding)

    Google Scholar 

  14. Wognum S, Huyghe JM, Baaijens FPT (2006) Influence of osmotic pressure changes on the opening of existing cracks in two intervertebral disc models. Spine (accepted)

  15. Lanir Y (1987) Biorheology and fluid flux in swelling tissues, II. Analysis of unconfined compressive response of transversely isotropic cartilage disc. Biorheology 24:189–205

    PubMed  CAS  Google Scholar 

  16. Lanir Y (1987) Biorheology and fluid flux in swelling tissues. I. Bicomponent theory for small deformations, including concentration effects. Biorheology 24:173–187

    PubMed  CAS  Google Scholar 

  17. Lai WM, Hou JS, Mow VC (1991) A triphasic theory for the swelling and deformation behaviors of articular-cartilage. J Biomech Eng Trans Asme 113:245–258

    Article  CAS  Google Scholar 

  18. Huyghe JM, Janssen JD (1997) Quadriphasic mechanics of swelling incompressible porous media. Int J Eng Sci 35:793–802

    Article  Google Scholar 

  19. Frijns AJH, Huyghe JM, Janssen JD (1997) A validation of the quadriphasic mixture theory for intervertebral disc tissue. Int J Eng Sci 35:1419–1429

    Article  CAS  Google Scholar 

  20. van Loon R, Huyghe JM, Wijlaars MW, Baaijens FPT (2003) 3D FE implementation of an incompressible quadriphasic mixture model. Int J Numer Methods Eng 57:1243–1258

    Article  Google Scholar 

  21. Wilson W, van Donkelaar CC, Huyghe JM (2005) A comparison between mechano-electrochemical and biphasic swelling theories for soft hydrated tissues. J Biomech Eng 127:158–165

    Article  PubMed  CAS  Google Scholar 

  22. Iatridis JC, Laible JP, Krag MH (2003) Influence of fixed charge density magnitude and distribution on the intervertebral disc: applications of a poroelastic and chemical electric (PEACE) model. J Biomech Eng 125:12–24

    Article  PubMed  Google Scholar 

  23. Sun DD, Leong KW (2004) A nonlinear hyperelastic mixture theory model for anisotropy, transport, and swelling of annulus fibrosus. Ann Biomed Eng 32:92–102

    Article  PubMed  Google Scholar 

  24. Wilson W, van Donkelaar CC, van Rietbergen B, Huiskes R (2005) A fibril-reinforced poroviscoelastic swelling model for articular cartilage. J Biomech 38:1195–1204

    Article  PubMed  CAS  Google Scholar 

  25. Wilson W, van Donkelaar CC, van Rietbergen B, Ito K, Huiskes R (2004) Stresses in the local collagen network of articular cartilage: a poroviscoelastic fibril-reinforced finite element study. J Biomech 37:357–366

    Article  PubMed  CAS  Google Scholar 

  26. Natarajan RN, Williams JR, Andersson GB (2004) Recent advances in analytical modeling of lumbar disc degeneration. Spine 29:2733–2741

    Article  PubMed  Google Scholar 

  27. Urban JP, Maroudas A (1981) Swelling of the intervertebral disc in vitro. Connect Tissue Res 9:1–10

    Article  PubMed  CAS  Google Scholar 

  28. Simon BR, Wu JS, Carlton MW, Kazarian LE, France EP, Evans JH, Zienkiewicz OC (1985) Poroelastic dynamic structural models of rhesus spinal motion segments. Spine 10:494–507

    Article  PubMed  CAS  Google Scholar 

  29. Biot MA (1972) Theory of finite Deformations of porous solids. Indiana Univ Math J 21:597–620

    Article  Google Scholar 

  30. Mow VC, Kuei SC, Lai WM, Armstrong CG (1980) Biphasic creep and stress relaxation of articular cartilage in compression? Theory and experiments. J Biomech Eng 102:73–84

    Article  PubMed  CAS  Google Scholar 

  31. Wachtel E, Maroudas A (1998) The effects of pH and ionic strength on intrafibrillar hydration in articular cartilage. Biochim Biophys Acta 1381:37–48

    PubMed  CAS  Google Scholar 

  32. Maroudas A, Wachtel E, Grushko G, Katz EP, Weinberg P (1991) The effect of osmotic and mechanical pressures on water partitioning in articular cartilage. Biochim Biophys Acta 1073:285–294

    PubMed  CAS  Google Scholar 

  33. Urban JP, McMullin JF (1988) Swelling pressure of the lumbar intervertebral discs: influence of age, spinal level, composition, and degeneration. Spine 13:179–187

    Article  PubMed  CAS  Google Scholar 

  34. van der Voet (1997) A comparison of finite element codes for the solution of biphasic poroelastic problems. Proc Inst Mech Eng [H] 211:209–211

    Google Scholar 

  35. Cassidy JJ, Hiltner A, Baer E (1989) Hierarchical structure of the intervertebral disc. Connect Tissue Res 23:75–88

    Article  PubMed  CAS  Google Scholar 

  36. Iatridis JC, Kumar S, Foster RJ, Weidenbaum M, Mow VC (1999) Shear mechanical properties of human lumbar annulus fibrosus. J Orthop Res 17:732–737

    Article  PubMed  CAS  Google Scholar 

  37. Iatridis JC, Weidenbaum M, Setton LA, Mow VC (1996) Is the nucleus pulposus a solid or a fluid? Mechanical behaviors of the nucleus pulposus of the human intervertebral disc. Spine 21:1174–1184

    Article  PubMed  CAS  Google Scholar 

  38. Silver FH, Ebrahimi A, Snowhill PB (2002) Viscoelastic properties of self-assembled type I collagen fibers: molecular basis of elastic and viscous behaviors. Connect Tissue Res 43:569–580

    Article  PubMed  CAS  Google Scholar 

  39. Wang JL, Parnianpour M, ShiraziAdl A, Engin AE (1997) Failure criterion of collagen fiber: viscoelastic behavior simulated by using load control data. Theor Appl Fract Mech 27:1–12

    Article  CAS  Google Scholar 

  40. Wilson W, van Donkelaar CC, van Rietbergen B, Ito K, Huiskes R (2005) Erratum to “Stress in the local collagen network of articular cartilage: a poroviscoelastic fibril-reinforced finite element study” and “A fibril-reinforced poroviscoelastic swelling model for articular cartilage”. J Biomech 38:2138–2140

    Article  Google Scholar 

  41. Antoniou J, Steffen T, Nelson F, Winterbottom N, Hollander AP, Poole RA, Aebi M, Alini M (1996) The human lumbar intervertebral disc: evidence for changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and degeneration. J Clin Invest 98:996–1003

    Article  PubMed  CAS  Google Scholar 

  42. Ferguson SJ, Steffen T (2003) Biomechanics of the aging spine. Eur Spine J 12(Suppl 2):S97–S103

    Article  PubMed  Google Scholar 

  43. Johannessen W, Elliott DM (2005) Swelling dominates function of human nucleus pulposus even with degeneration. Transactions Orthop Res Soc, vol 30, p 185, Washington, DC. Conference Proceeding

  44. Drost MR, Willems P, Snijders H, Huyghe JM, Janssen JD, Huson A (1995) Confined compression of canine annulus fibrosus under chemical and mechanical loading. J Biomech Eng 117:390–396

    Article  PubMed  CAS  Google Scholar 

  45. Adams MA, McNally DS, Dolan P (1996) ‘Stress’ distributions inside intervertebral discs. The effects of age and degeneration. J Bone Joint Surg Br 78:965–972

    Article  PubMed  CAS  Google Scholar 

  46. Edwards WT, Ordway NR, Zheng Y, McCullen G, Han Z, Yuan HA (2001) Peak stresses observed in the posterior lateral anulus. Spine 26:1753–1759

    Article  PubMed  CAS  Google Scholar 

  47. McNally DS, Adams MA, Goodship AE (1993) Can intervertebral disc prolapse be predicted by disc mechanics? Spine 18:1525–1530

    Article  PubMed  CAS  Google Scholar 

  48. Argoubi M, Shirazi-Adl A (1996) Poroelastic creep response analysis of a lumbar motion segment in compression. J Biomech 29:1331–1339

    Article  PubMed  CAS  Google Scholar 

  49. Lee KK, Teo EC (2004) Poroelastic analysis of lumbar spinal stability in combined compression and anterior shear. J Spinal Disord Tech 17:429–438

    Article  PubMed  CAS  Google Scholar 

  50. Brinckmann P, Frobin W, Hierholzer E, Horst M (1983) Deformation of the vertebral end-plate under axial loading of the spine. Spine 8:851–856

    Article  PubMed  CAS  Google Scholar 

  51. Iatridis JC, MacLean JJ, Owen JP (2005) Role of endplates in contributing to compression behaviors of motion segments and intervertebral discs. ECM VI/SRN I: Spinal motion segment: from basic science to clinical application. Davos conference proceeding

  52. Iatridis JC, Setton LA, Foster RJ, Rawlins BA, Weidenbaum M, Mow VC (1998) Degeneration affects the anisotropic and nonlinear behaviors of human anulus fibrosus in compression. J.Biomech. 31:535–544

    Article  PubMed  CAS  Google Scholar 

  53. Bass EC, Ashford FA, Segal MR, Lotz JC (2004) Biaxial testing of human annulus fibrosus and its implications for a constitutive formulation. Ann Biomed Eng 32:1231–1242

    Article  PubMed  CAS  Google Scholar 

  54. Perie D, Iatridis JC, Demers CN, Goswami T, Beaudoin G, Mwale F, Antoniou J (2005) Assessment of compressive modulus, hydraulic permeability and matrix content of trypsin-treated nucleus pulposus using quantitative MRI. J Biomech 38:2164–2174

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research is made possible through the support of the European Union (EURODISC, Project Number QLK6-CT-2002–02582). The authors thank Donal McNally and Karen McKinlay (University of Nottingham, UK) for providing their experimental data for comparison. We would also like to thank Dr. Heiner Martin (University of Rostock, Germany) for providing the experimental anatomical measurements of a human lumbar vertebra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yvonne Schroeder.

Appendix

Appendix

Abaqus has a biphasic model of the form:

$${\text{Momentum}}\;{\text{balance}}:\quad \vec{\nabla }{\mathop { * \varvec{\upsigma}_{e} - \vec{\nabla }}\limits }p = 0$$
$${\text{Mass}}\;{\text{balance}}:\quad \vec{\nabla } * \dot{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {u} } + \vec{\nabla }\vec{q}=0$$
$${\text{Darcy's}}\;{\text{law}}:\quad \vec{q} = - k\vec{\nabla }p$$

With Dirichlet boundary conditions: [u] =0 and [p] =0.

Here \({\varvec{\upsigma}}_{\mathbf{e}} \) is the effective stress, p the fluid pressure, \(\vec{q}\) the fluid flux, k the permeability and u the displacements.

The swelling behavior through the Donnan osmotic theory was included into the biphasic theory as follows:

$${\text{Mass}}\;{\text{balance}}:\quad \vec{\nabla } * \dot{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}}{u} }_{s} - \vec{\nabla } * k\vec{\nabla }{\left({p - \Delta \pi } \right)} = 0$$
$$\hbox{substitution}:\quad\vec{\nabla} * {\left({{\varvec{\upsigma}}_{{\rm non-fibrillar}} + \rho _{c} {\sum\limits_{{\rm all\;fibrils}\,{\mathbf i}} {\sigma^{i}_{\rm f} {\kern 1pt} \vec{e}^{i}_{\rm f} {\kern 1pt} \vec{e}^{i}_{\rm f} } }} \right)} - \vec{\nabla}{\left({\mu ^{\rm f} + \Delta \pi } \right)} = 0$$
$$\vec{\nabla } * \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {u}_{\rm s} - \vec{\nabla } * k\vec{\nabla }\mu ^{f} = 0$$
$$\mu ^{f} = {\left({p - \Delta \pi } \right)}$$

Here μf is the chemical potential and Δπ is the osmotic pressure given by Eq. 4 with Dirichlet boundary conditions: [u] = 0 and [μf] = 0.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schroeder, Y., Wilson, W., Huyghe, J.M. et al. Osmoviscoelastic finite element model of the intervertebral disc. Eur Spine J 15 (Suppl 3), 361–371 (2006). https://doi.org/10.1007/s00586-006-0110-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-006-0110-3

Keywords

Navigation