Skip to main content
Log in

A constitutive approach to 3-d nonlinear fluid flow through finite deformable porous continua

With application to a high-porosity polyurethane foam

  • Original Paper
  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The present paper proposes a thermodynamically consistent Forchheimer-type filter law for application in macroscopic porous media theories. The constitutive flow equation is thereby capable of describing the essential nonlinearities during 3-d fluid percolation through deformable porous solids. In particular, tortuosity effects, anisotropic properties, and the indispensable influence of finite distortions of the interconnected pore space are accounted for. However, the common shape of a Darcy-type relation is retained by assigning all nonlinearities to a general permeability tensor. Finally, to show the validity and applicability of the proposed formulation, the filter law is correlated with the data of permeability experiments on a high-porosity polyurethane foam and is used in a 3-d finite element analysis to simulate the pneumatic damping properties of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrade J.S., Costa U.M.S., Almeida M.P., Makse H.A. and Stanley H.E. (1999). Inertial effects on fluid flow through disordered porous media. Phys. Rev. Lett. 82: 5249–5252

    Article  Google Scholar 

  • Auriault J.-L., Geindreau C. and Boutin C. (2005). Filtration law in porous media with poor separation of scales. Trans. Porous Media 60: 89–108

    Article  Google Scholar 

  • Bear, J.: Dynamics of Fluids in Porous Media, Dover Publications, Mineola. Reprint of American Elsevier Publishing Company, New York, 1972 (1988)

  • Bear J. and Bachmat Y. (1990). Introduction to Modeling of Transport Phenomena in Porous Media. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Bennethum L.S. and Giorgi T. (1997). Generalized Forchheimer equation for two-phase flow based on hybrid mixture theory. Trans. Porous Media 26: 261–275

    Article  Google Scholar 

  • Biot M.A. (1941). General theory of three-dimensional consolidation. J. Appl. Phys. 12: 155–164

    Article  Google Scholar 

  • Bishop A.W. (1959). The effective stress principle. Teknisk Ukeblad 39: 859–863

    Google Scholar 

  • Bowen R.M. (1976). Theory of mixtures. In: Eringen, A.C. (eds) Continuum Physics. Vol. III., pp 1–127. Academic Press, New York

    Google Scholar 

  • Bowen R.M. (1980). Incompressible porous media models by use of the theory of mixtures. Int. J. Eng. Sci. 18: 1129–1148

    Article  Google Scholar 

  • Bowen R.M. (1982). Compressible porous media models by use of the theory of mixtures. Int. J. Eng. Sci. 20: 697–735

    Article  Google Scholar 

  • Brinkmann H.C. (1947). Calculation of the viscous force exerted by a flow in fluid in a dense swarm of particles. Appl. Scient. Res. A 1: 27–34

    Article  Google Scholar 

  • Brinkmann H.C. (1947). On the permeability of media consisting of closely packed porous particles. Appl. Scient. Res. A 1: 81–86

    Article  Google Scholar 

  • Chen Z., Lyons S.L. and Qin G. (2001). Derivation of the Forchheimer law via homogenization. Transport in Porous Media 44: 325–335

    Article  Google Scholar 

  • Coleman B.D. and Gurtin M.E. (1967). Equipresence and constitutive equations for rigid heat conductors. Zeitschrift für Angewandte Mathematik und Physik 18: 199–208

    Article  Google Scholar 

  • Coussy O. (1995). Mechanics of Porous Continua, 2nd edn. John Wiley & Sons, Chichester

    Google Scholar 

  • Crochet M.J. and Naghdi P.M. (1966). On constitutive equations for flow of fluid through an elastic solid. Int. J. Eng. Sci. 4: 383–401

    Article  Google Scholar 

  • Darcy H. (1856). Les fontaines publiques de la ville de Dijon. Dalmont, Paris

    Google Scholar 

  • de Boer R. (1996). Highlights in the historical development of porous media theory: Toward a consistent macroscopic theory. Appl. Mech. Rev. 49: 201–262

    Article  Google Scholar 

  • de Boer R. (2000). Theory of Porous Media. Springer-Verlag

    Google Scholar 

  • de Boer R. and Ehlers W. (1990). The development of the concept of effective stresses. Acta Mechanica 83: 77–92

    Article  Google Scholar 

  • Diebels, S.: Mikropolare Zweiphasenmodelle: Formulierung auf der Basis der Theorie Poröser Medien, Habilitation, Bericht Nr. II-4 aus dem Institut für Mechanik (Bauwesen), Universität Stuttgart (2000)

  • Dullien F.A.L. (1992). Porous Media – Fluid Transport and Pore Structure, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Ehlers W. (1993). Constitutive equations for granular materials in geomechanical context. In: Hutter, K. (eds) Continuum Mechanics in Environmental Sciences and Geophysics., pp 313–402. Springer-Verlag, CISM Courses and Lectures No.337

    Google Scholar 

  • Ehlers W. (2002). Foundations of multiphasic and porous materials. In: Ehlers, W. and Bluhm, J. (eds) Porous Media: Theory, Experiments and Numerical Applications, pp. Springer-Verlag, pp.3–86

  • Ehlers W. and Eipper G. (1999). Finite elastic deformations in liquid-saturated and empty porous solids. Trans. Porous Media 34: 179–191

    Article  Google Scholar 

  • Eipper, G.: Theorie und Numerik finiter elastischer Deformationen in fluidgesättigten porösen Medien, Dissertation, Bericht Nr. II-1 aus dem Institut für Mechanik (Bauwesen), Universität Stuttgart (1998)

  • Forchheimer P. (1901). Wasserbewegung durch Boden. Zeitschrift des Vereins Deutscher 50: 1781–1788

    Google Scholar 

  • Gibson, L.J., Ashby, F.: Cellular Solids: Structure and Properties, 2nd edn. Cambridge University Press (1997)

  • Gibson R.E., England G.L. and Hussey M.J.L. (1967). The theory of one-dimensional consolidation of saturated clays. Géotechnique 17: 261–273

    Article  Google Scholar 

  • Hassanizadeh S.M. and Gray W.G. (1987). High velocity flow in porous. Trans. Porous Media 2: 521–531

    Article  Google Scholar 

  • Holmes M.H. and Mow V.C. (1990). The nonlinear characteristics of soft gels and hydrated connective tissues in ultrafiltration. J. Biomech. 23: 1145–1156

    Article  Google Scholar 

  • Hutter K. and Jöhnk K. (2004). Continuum Methods of Physical Modeling. Springer-Verlag, Berlin

    Google Scholar 

  • Klinkenberg, L.J.: The permeability of porous media to liquids and gases. API Drilling and Production Practices, pp. 200–213 (1941)

  • Knupp P.M. and Lage J.L. (1995). Generalization of the Forchheimer-extended Darcy flow model to the tensor permeability case via a variational principle. J. Fluid Mech. 299: 97–104

    Article  Google Scholar 

  • Lai W.M. and Mow V.C. (1980). Drag-induced compression of articular cartilage during a permeation experiment. Biorheology 17: 111–123

    Google Scholar 

  • Levy A., Levi-Hevroni D., Sorek S. and Ben-Dor G. (1999). Derivation of Forchheimer terms and their verification by application to waves propagation in porous media. Int. J. Multiphase Flow 25: 683–704

    Article  Google Scholar 

  • Lewis R.W. and Schrefler B.A. (1998). The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media, 2nd edn. John Wiley & Sons, Chichester

    Google Scholar 

  • Markert, B.: Porous Media Viscoelasticity with Application to Polymeric Foams, Dissertation, Report No. II-12 of the Institute of Applied Mechanics (CE), Universität Stuttgart, Germany (2005)

  • Mow V.C., Lai W.M. and Holmes M.H. (1982). Advanced theoretical and experimental techniques in cartilage research. In: Huiskes, R., Campen, D.V., and Wijn, J.D. (eds) Biomechanics: Principles and Applications, pp 47–74. Martinus Nijhoff Publishers, The Hague

    Google Scholar 

  • Muskat M. (1937). The Flow of Homogeneous Fluids Through Porous Media. McGraw-Hill, New York

    Google Scholar 

  • Nikolaevskiy V.N. (1970). Mechanics of Porous Saturated Media. Nedra, Moscow

    Google Scholar 

  • Nikolaevskiy V.N. (1990). Mechanics of Porous and Fractured Media. World Scientific

    Google Scholar 

  • Onsager L. (1931). Reciprocal relations in irreversible processes II. Phys. Rev. 38: 2265–2279

    Article  Google Scholar 

  • Pan, C., Hilpert, M., Miller, C.T.: Pore-scale modeling of saturated permeabilities in random sphere packings. Phys. Rev. E 64, article no. 066702 (2001)

    Google Scholar 

  • Prandtl L. (1965). Strömungslehre. Sohn, Braunschweig, Friedrich Vieweg & Sohn

    Google Scholar 

  • Rusch, K.C.: Dynamic Behaviour of Flexible Open-cell Foams, Ph.D. Thesis, Engineering, general, University of Akron (1965)

  • Ruth D.W. and Ma H. (1992). On the derivation of the Forchheimer equation by means of the averaging theorem. Trans. Porous Media 5: 97–102

    Google Scholar 

  • Schlichting, H.: Grenzschicht-Theorie, 5th edn. G. Braun GmbH, Karlsruhe (1965)

  • Skempton A.W. (1960). Significance of Terzaghi’s concept of effective stress (Terzaghi’s discovery of effective stress). In: Bjerrum, L., Casagrande, A., Peck, R.B. and Skempton, A.W. (eds) From Theory to Practice in Soil Mechanics, pp 42–53. John Wiley & Sons, New York

    Google Scholar 

  • Spencer A.J.M. (1982). The formulation of constitutive equations for anisotropic solids. In: Boehler, J.P. (eds) Mechanical Behavior of Anisotropic Solids, pp 2–26. Martinus Nijhoff Publishers, The Haque

    Google Scholar 

  • Terzaghi K. (1923). Die Berechnung der Durchlässigkeitsziffer des Tones aus dem Verlauf der hydrodynamischen Spannungserscheinungen. Sitzungsberichte der Akademie der Wissenschaften Wien, Mathematisch-Naturwissenschaftliche Klasse, Abteilung II a 132: 125–138

    Google Scholar 

  • Truesdell, C.: A new definition of a fluid, II. The Maxwellian fluid. US Naval Research Laboratory, Report No. P-3553, §  19 (1949)

  • Truesdell C. (1984). Thermodynamics of diffusion. In: Truesdell, C. (eds) Rational Thermodynamics, 2nd edn., pp 219–236. Springer-Verlag, New York

    Google Scholar 

  • van Genabeek O. and Rothman D.H. (1996). Macroscopic manifestations of microscopic flows through porous media: Phenomenology from simulation. Ann. Rev. Earth Planetary Sci. 24: 63–87

    Article  Google Scholar 

  • Zhu H.X., Mills N.J. and Knott J.F. (1997). Analysis of high strain compression of open-cell foams having tetrakaidecahedral cells. J. Mech. Phys. Solids 45: 1875–1904

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Markert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markert, B. A constitutive approach to 3-d nonlinear fluid flow through finite deformable porous continua. Transp Porous Med 70, 427–450 (2007). https://doi.org/10.1007/s11242-007-9107-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-007-9107-6

Keywords

Navigation