Skip to main content
Log in

Nanoindentation of hyperelastic polymer layers at finite deformation and parameter re-identification

  • Special Issue
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Thin polymer layers on substrates have a wide range of application in important areas. However, it is impossible to measure the mechanical properties with the traditional testing methods. Recently, nanoindentation became a new but primary testing technique of thin layers. In the present work, based on a finite element model of contact mechanics and hyperelastic materials, nanoindentation of polymer layers is simulated with the finite element code ABAQUS®. Three often used hyperelastic models, that is, the neo-Hookean, Mooney–Rivlin and Yeoh models are investigated. The behaviour of these three models is compared to each other in different boundary value problems of nanoindentation in order to get some feeling of the different behaviour of various hyperelastic models under nanoindentation. In contrast to the traditional analytical method, the penetration depth is not restrained to avoid the influence of the substrate. A parameter re-identification strategy is employed to extract the parameters of the material models at small and finite deformation based on the principle of biological evolution. Furthermore, it is investigated how large the penetration depth has to be chosen in order to distinguish different models in reference to the load–displacement curves. Finally, the possibility is discussed of describing the data obtained by a non-linear complex model using the relatively simple approach based on the neo-Hookean model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abaqus Analysis User’s Manual. https://www.sharcnet.ca/Software/Abaqus610/Documentation/docs/v6.10/books/usb/default.htm 2011

  2. Bertram A., Han J., Olschewski J., Sockel H.G.: Identification of elastic constants and orientation of single crystals by resonance measurements and fe analysis. Int. J. Comput. Appl. Technol. 7, 284–291 (1994)

    Google Scholar 

  3. Busfield J.J.C., Thomas A.G.: Indentation test on elastomer blocks. Rubber Chem. Technol. 75, 876–894 (1999)

    Article  Google Scholar 

  4. Chang W.V., Sun S.C.: Non-linear elastic analysis of the hardness test on the rubber-like materials. Rubber chem. Technol 64, 202–210 (1991)

    Article  Google Scholar 

  5. Choi I., Shield R.T.: Second order effects in problems for a class of elastic materials. J. Appl. Math. Phys. (ZAMP) 32, 361–381 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fischer-Cripps A.C.: Nanoindentation. Springer-Verlag, New York (2004)

    Google Scholar 

  7. Giannakopoulos A.E., Panagiotopoulos D.I.: Conical indentation of incompressible rubber-like material. Int. J. Solids Struct. 46, 1436–1447 (2009)

    Article  MATH  Google Scholar 

  8. Giannakopoulos A.E., Triantafyllou A.: Spherical indentation of incompressible rubber-like material. J. Mech. Phys. Solids 55, 1196–1211 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hartmann S.: Numerical studies on the identification of the material parameters of rivlin’s hyperelasticity using tension-torsion tests. Acta Mech. 148, 129–155 (2001)

    Article  MATH  Google Scholar 

  10. Hartmann S.: Parameter estimation of hyperelasticity relations of generalized polynomial-type with constraint conditions. Int. J. Solids Struct. 38, 7999–8018 (2001)

    Article  MATH  Google Scholar 

  11. Hartmann S., Haupt P., Tschöpe T.: Parameter identification with a direct search method using finite elements. In: Besdo, D., Schuster, R.H., Ihlemann, J. (eds.) Constitutive Models for Rubber II, pp. 249–256. Balkema Publ, Lisse (2001)

    Google Scholar 

  12. Hartmann S., Tschöpe T., Schreiber L., Haupt P.: Finite deformations of a carbon black-filled rubber. Experiment, optical measurement and material parameter identification using finite elements. Eur. J. Mech. A/Solids 22, 309–324 (2003)

    Article  MATH  Google Scholar 

  13. Hartmann S., Gibmeier J., Scholtes B.: Experiments and material parameter identification using finite elements. uniaxial tests and validation using instrumented indentation tests. Exp. Mech. 46, 5–18 (2006)

    Article  Google Scholar 

  14. Hay J.L., Hern M.E.O., Oliver W.C.: The importance of contact radius for substrate-independent properties measurement of thin films. MatER. Res. Soc. Symp. Proc. 522, 27–32 (1998)

    Article  Google Scholar 

  15. Hertz H.: Über die Berührung fester elstischer körper. J F Reine U Angew Math 92, 156–171 (1881)

    Google Scholar 

  16. Holzapfel G.A.: Nonlinear solid mechanics: a continuum approach for engineering. Wiley, England (1985)

    Google Scholar 

  17. Johlitz M., Diebels S., Batal J., Steeb H., Possart W.: Size effects in polyurethane bonds: experiments, modelling and parameter identification. J. Mater. Sci. 43, 4768–4779 (2008)

    Article  Google Scholar 

  18. Kreissig R.: Auswertung inhomogener Verschiebungsfelder zur Identifikation der Parameter elastisch-plastischer Deformationsgesetze. Forschung im Ingenieurwesen 64, 99–109 (1998)

    Article  Google Scholar 

  19. Lichinchi M., Lenardi C., Haupt J., Vitali R.: Simulation of berkovich nanoindentation experiments on thin films using finite element method. Mech. Mater. 42, 278–286 (1998)

    Google Scholar 

  20. Mahnken R.: An inverse finite-element algorithm for parameter identification of thermoelastic damage models. Model. Simul. Mater. Sci. Eng. 48, 1015–1036 (2000)

    MATH  Google Scholar 

  21. Mahnken R., Stein E.: The identification of parameters for visco-plastic models via finite-element methods and gradient methods. Model. Simul. Mater. Sci. Eng. 2, 597–616 (1994)

    Article  Google Scholar 

  22. Marckmann G., Verron E.: Comparison of hyperelastic models for rubber-like materials. Rubber chem. Technol. 79, 835–858 (2005)

    Article  Google Scholar 

  23. Mooney M.: A theory of large elastic deformation. J. Appl. Phys. 11, 582–592 (1940)

    Article  MATH  Google Scholar 

  24. Nocedal J., Wright S.J.: Numerical Optimization. Springer-verlag, New York (1999)

    Book  MATH  Google Scholar 

  25. Ogden R.W.: Large deformation isotropic elasticity: on the correlation of theory and experiment for incompressible rubberlike solids. Proc. R. Soc. Lond. A 328, 565–584 (1972)

    Google Scholar 

  26. Oliver W.C., Pharr G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992)

    Article  Google Scholar 

  27. Oliver W.C., Pharr G.M.: Measurement of hardness and elastic modulus by instrumented indentation: Advance in understanding and refinements to methodology. J. Mater. Res. 19, 3–20 (2004)

    Article  Google Scholar 

  28. Rauchs G.: Optimization-based material parameter identification in indentation testing for finite strain elasto-plasticity. ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik 86, 539–562 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rauchs G., Bardon j., Georges D.: Identification of the material parameters of a viscous hyperelastic constitutive law from spherical indentation tests of rubber and validation by tensile tests. Mech. Mater. 42, 961–973 (2010)

    Article  Google Scholar 

  30. Rivlin R.S.: Large elastic deformations of isotropic materials. iv. further developments of the general theory. Phil. Trans. R. Soc. Lond. A 241, 379–397 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sabin G.C.W., Kaloni P.N.: Contact problem of a rigid indentor in second order elasticity. J. Appl. Math. Phys. 34, 370–386 (1983)

    Article  MATH  Google Scholar 

  32. Sabin G.C.W., Kaloni P.N.: Contact problem of a rigid indentor with notational friction in second order elasticity. Int. J. Eng. Sci. 27, 203–217 (1989)

    Article  MATH  Google Scholar 

  33. Scheday G., Miehe C.: Parameteridentifikation finiter Elastizität bei inhomogenen Deformation. Z. Angew. Math. Mech. Suppl. 81, S425–S426 (2001)

    Google Scholar 

  34. Schwefel H.P.: Evolution and Optimum Seeking. Wiley, New York (1995)

    Google Scholar 

  35. Sneddon I.N.: The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47–57 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang H.F., Bangert H.: Three-dimensional finite element simulation of vickers indentation on coated systems. Mater. Sci. Eng. A 163(1), 43–50 (1993)

    Article  Google Scholar 

  37. Wriggers P.: Computational Contact Mechanics. Springer-verlag, Berlin (2006)

    Book  MATH  Google Scholar 

  38. Yeoh O.H.: Characterization of elastic properties of carbon-black-filled rubber vulcanizates. Rubber Chem. Technol. 55, 792–805 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoyu Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Z., Diebels, S. Nanoindentation of hyperelastic polymer layers at finite deformation and parameter re-identification. Arch Appl Mech 82, 1041–1056 (2012). https://doi.org/10.1007/s00419-012-0613-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-012-0613-9

Keywords

Navigation