Skip to main content
Log in

Experiments and Material Parameter Identification Using Finite Elements. Uniaxial Tests and Validation Using Instrumented Indentation Tests

  • Original Article
  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

In this article, we focus our attention on the relation between instrumented indentation tests and the prediction by means of finite element calculations. To this end, a finite strain viscoplasticity model of Perzyna-type with non-linear isotropic and kinematic hardening is calibrated at experimental data of steel S690QL. A particular concept for conducting uniaxial tensile and compression tests is taken up in order to represent the basic rate-dependent material behavior. In this respect, an algorithmic framework of material parameter identification using finite elements is proposed leading to a two-stage procedure in the case of the underlying rate-dependent constitutive model. On the basis of the termination points of relaxation the rate-independent equilibrium stress state can be identified and all viscous parts of the model are obtained using rate-dependent loading paths. Finally, use is made of finite elements for predicting indentation experiments, which results in a critical view on modeling and parameter identification on the basis of experimental results occurring in instrumented indentation tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ISO14577 (2002) ISO 14577: instrumented indentation testing. Beuth Verlag, Berlin.

    Google Scholar 

  2. Heermant C, Dengel D (1996) Klassische Werkstoffkennwerte abschätzen. Materialprüfung 38:374–378.

    Google Scholar 

  3. Venkatesh T, Van Vliet K, Giannakopoulos A, Suresh S (2000) Determination of elasto-plastic properties by instrumented sharp indendation: guidelines for property extraction. Scr Mater 42:833–839.

    Article  Google Scholar 

  4. Taljat B, Zacharia T, Kosel F (1998) New analytical procedure to determine stress-strain curve from spherical indentation data. Int J Solids Struct 35:4411–4426.

    Google Scholar 

  5. Kokubo S (1932) On the change in hardness of a plate caused by bending. Sci Rep Tohuko Imp Univ, Ser 1 21:256–267.

    Google Scholar 

  6. Sines G, Carlson R (1952) Hardness measurements for determination of residual stresses. ASTM Bull 34–37.

  7. Swadener J, Taljat B, Pharr G (2001) Measurement of residual stress by load and depth sensing indentation with spherical indenters. J Mater Res 71:16.

    Google Scholar 

  8. Suresh S, Giannakopolous A (1996) A new method for estimating residual stresses by instrumentated sharp indentation. Acta Metall Mater 46:5755–5767.

    Google Scholar 

  9. Field J, Swain M (1995) Determining the mechanical properties of small volumes of material from submicrometer spherical indentation. J Mater Res 10:101–112.

    Google Scholar 

  10. Gibmeier J (2003) Zum Einfluss von Last- und Eigenspannungen auf die Ergebnisse instrumentierter Eindringhärteprüfungen. PhD thesis, University of Kassel, Institute of Materials Research, Kassel (Germany).

  11. Huber N, Tsakmakis C (1999) Determination of constitutive properties from spherical indentation data using neural networks, Part I: plasticity with nonlinear and kinematic hardening. J Mech Phys Solids 47:1589–1607.

    Google Scholar 

  12. Huber N, Tsakmakis C (1999) Determination of constitutive properties from spherical indentation data using neural networks, Part II: the case of pure kinematic hardening in plasticity laws. J Mech Phys Solids 47:1569–1588.

    Google Scholar 

  13. Haupt P, Lion A (1995) Experimental identification and mathematical modelling of viscoplastic material behavior. J Contin Mech Thermodyn 7:73–96.

    MathSciNet  Google Scholar 

  14. Haupt P (2000) Continuum mechanics and theory of materials. Springer Verlag, Berlin.

    Google Scholar 

  15. Tsakmakis C (1996) Kinematic hardening rules in finite plasticity. Part I: A constitutive approach. Contin Mech Thermodyn 8:215–231.

    MATH  Google Scholar 

  16. Lämmer H (1998) Thermoplastizität und Thermoviskoplastizität mit Schädigung bei kleinen und großen Deformationen. Technical Report FZKA 6053. Forschungszentrum Karlsruhe, Karlsruhe (Germany).

  17. Diegele E, Jansohn W, Tsakmakis C (2000) Finite deformation plasticity and viscoplasticity laws exhibiting nonlinear hardening rules. Part I: Constitutive theory and numerical integration. Comput Mech 25:1–12.

    Google Scholar 

  18. Andresen K, Dannemeyer S, Friebe H, Mahnken R, Ritter R, Stein E (1996) Parameteridentifikation für ein plastisches Stoffgesetz mit FE-Methoden und Rasterverfahren. Bauingenieur 71:21–31.

    Google Scholar 

  19. Gelin J-C, Ghouati O (1996) An inverse solution procedure for material parameters identification in large plastic deformations. Commun Numer Methods Eng 12:161–173.

    Article  Google Scholar 

  20. Mahnken R, Stein E (1996) A unified approach for parameter identification of inelastic material models in the frame of the finite element method. Comput Methods Appl Mech Eng 136:225–258.

    Article  Google Scholar 

  21. Mahnken R, Stein E (1997) Parameter identification for finite deformation elasto-plasticity in principal directions. Comput Methods Appl Mech Eng 147:17–39.

    Article  Google Scholar 

  22. Kreißig R (1998) Auswertung inhomogener Verschiebungsfelder zur Identifikation der Parameter elastisch-plastischer Deformationsgesetze. Forsch Ingwes 64:99–109.

    Google Scholar 

  23. Scheday G, Miehe C (2001) Parameteridentifikation finiter Elastizität bei inhomogenen Deformationen. ZAMM Z Angew Math Mech 81(Suppl 2):S425–S426.

    Google Scholar 

  24. Hartmann S, Haupt P, Tschöpe T (2001) Parameter identification with a direct search method using finite elements. In: Besdo D, Schuster R, Ihlemann J (eds) Constitutive models of rubber II. Balkema, Lisse, pp 249–256.

    Google Scholar 

  25. Hartmann S, Tschöpe T, Schreiber L, Haupt P (2003) Large deformations of a carbon black-filled rubber. Experiment optical measurement and parameter identification using finite elements. Eur J Mech A, Solids 22:309–324.

    Google Scholar 

  26. Powell M (1994) A direct search optimization method that models the objective and constraint functions by linear interpolations. In: Gomez S, Hennart J (eds) Advances in optimization and numerical analysis. Kluwer Academic, Dordrecht, pp 51–67.

    Google Scholar 

  27. Powell M (1998) Direct search algorithms for optimization calculations. Acta Numer 7:287–336 (see internet address: http://plato.la.asu.edu/topics/problems/nlores.html).

    MATH  MathSciNet  Google Scholar 

  28. Gibmeier J, Hartmann S, Scholtes B (2004) Effect of applied and residual stresses on the analysis of mechanical properties using instrumented indentation techniques. In: 7th International Conference on Residual Stresses, Xian, China.

  29. Haupt P (1993) On the mathematical modelling of material behavior in continuum mechanics. Acta Mech 100:129–154.

    Article  MATH  MathSciNet  Google Scholar 

  30. Hartmann S (1993) Lösung von Randwertaufgaben der Elastoplastizität. Ein Finite-Elemente-Konzept für nichtlineare kinematische Verfestigung bei kleinen und finiten Verzerrungen. Doctoral thesis, Institute of Mechanics, University of Kassel. Report No. 1/1993.

  31. Hartmann S, Lührs G (1994) Ein Finite-Elemente-Konzept für nichtlineare kinematische Verfestigung bei kleinen und finiten plastischen Deformationen. In: Bruhns O (ed) Große plastische Formänderungen, volume 93 of Reports of the Institute ofMechanics. Ruhr-Universität Bochum, pp101–104.

  32. Dettmer W, Reese S (2004). On the theoretical and numerical modelling of Armstrong-Frederick kinematic hardening in the finite strain regime. Comput Methods Appl Mech Eng 193:87–116.

    Article  Google Scholar 

  33. Lührs G, Hartmann S, Haupt P (1997) On the numerical treatment of finite deformations in elastoviscoplasticity. Comput Methods Appl Mech Eng 144:1–21.

    Article  Google Scholar 

  34. Diegele E, Hartmann S, Tsakmakis C (2000) Finite deformation plasticity and viscoplasticity laws exhibiting nonlinear hardening rules. Part II: Representative examples. Comput Mech 25:13–27.

    Google Scholar 

  35. Chaboche J, Rousselier G (1983) On the plastic and viscoplastic constitutive equations — Part I Rules developed with internal variable concept. J Press Vessel Technol 105:153–158.

    Google Scholar 

  36. Armstrong P, Frederick C (1966) A mathematical representation of the multiaxial Bauschinger effect. Technical Report General Electricity Generating Board, Report No.: RD/B/N731, Berceley Nuclear Laboratories.

  37. Ellsiepen P, Hartmann S (2001) Remarks on the interpretation of current non-linear finite-element-analyses as differential-algebraic equations. Int J Numer Methods Eng 51:679–707.

    Article  Google Scholar 

  38. Haupt P, Kamlah M, Tsakmakis C (1992) On the thermodynamics of rate-independent plasticity as an asymptotic limit of viscoplasticity for slow processes. In: Besdo D, Stein E (eds) Finite inelastic deformations — theory and applications. IUTAM Symposium Hannover/Germany, Springer, pp 107–116, Berlin.

  39. Huber N, Tsakmakis C (1998) A finite element analysis of the effect of hardening rules on the indentation test. J Eng Mater Technol 120:143–148.

    Google Scholar 

  40. Lee H, Lee J, Pharr G (2005) A numerical approach to spherical indentation techniques for material property evaluation. J Mech Phys Solids 53:2037–2069.

    Google Scholar 

  41. Lemaitre J, Chaboche J-L (1990) Mechanics of solid materials. Cambridge University Press, Cambridge.

    Google Scholar 

  42. Hartmann S, Lührs G, Haupt P (1997) An efficient stress algorithm with applications in viscoplasticity and plasticity. Int J Numer Methods Eng 40:991–1013.

    Article  Google Scholar 

  43. ABAQUS (1998). ABAQUS theory manual, v.5.8 edition.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Hartmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartmann, S., Gibmeier, J. & Scholtes, B. Experiments and Material Parameter Identification Using Finite Elements. Uniaxial Tests and Validation Using Instrumented Indentation Tests. Exp Mech 46, 5–18 (2006). https://doi.org/10.1007/s11340-006-5857-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-006-5857-2

Keywords

Navigation