Skip to main content
Log in

Indentation of PU at different scales and computational modeling: identification of viscoelasticity and quantification of adhesion effects

  • Special
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In the present study, nanoindentation and macroindentation tests are performed on a soft polymer: polyurethane (PU). Strong viscoelasticity is represented by the force-displacement data on both scales. A finite element method based on an inverse procedure is employed to identify the nonlinear viscoelasticity of PU. An appropriate viscoelastic model is chosen, and the corresponding parameters are identified by matching the experimental responses with the predictions of the computational model. At the very beginning, the uniaxial tensile test, which has a homogeneous deformation, is used to prove the isotropic properties and incompressibility of PU and to identify the viscoelasticity as a reference and verification source. The comparison between the identified results from nanoindentation and macroindentation allows to quantifying the adhesion effects in nanoindentation. The quantification is treated with a traction–separation relationship incorporated into the numerical adhesive contact model. Comparable strain rates in the macro-, nanoindentation and uniaxial tensile tests are considered to identify the viscoelasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. The samples’ preparation by the Chair for Adhesion and Interphases in Polymers at Saarland University is gratefully acknowledged.

  2. The nanoindentation experiments were performed using the device of the chair of material science and methodology at Saarland University under the direction of Prof. H. Vehoff.

References

  1. Abaqus 6.11 analysis user’s manual. http://abaqus.ethz.ch:2080/v6.11/books/usb/default.htm

  2. Baaser, H., Noll, R.: Simulation von elastomerbauteilen-materialmodelle und versuche zur parameterbestimmung, pp. 1–10. DVM-Tag Elastomere, Berlin (2009)

    Google Scholar 

  3. Bolzon, G., Maier, G., Panico, M.: Material model calibration by indentation, imprint mapping and inverse analysis. Int. J. Solids Struct. 41, 2957–2975 (2004)

    Article  MATH  Google Scholar 

  4. Chen, Z.: Nanoindentation testing of soft polymers: Computation, experiments and parameters identification. Dissertation, Shaker Verlag, Aachen (2014)

  5. Chen, Z., Diebels, S.: Modelling and parameter re-identification of nanoindentation of soft polymers taking into account effects of surface roughness. Comput. Math. Appl. 64, 2775–2786 (2012a)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chen, Z., Diebels, S.: Nanoindentation of hyperelastic polymer layers at finite deformation and parameter re-identification. Arch. Appl. Mech. 82, 1041–1056 (2012b)

    Article  MATH  Google Scholar 

  7. Chen, Z., Diebels, S.: Parameter re-identification in nanoindentation problems of viscoelastic polymer layers: small deformation. J. Appl. Math. Mech./Z. Angew. Math. Mech. (ZAMM) 93, 88–101 (2013)

    Article  Google Scholar 

  8. Chen, Z., Diebels, S., Peter, N.J., Schneider, A.S.: Identification of finite viscoelasticity and adhesion effects in nanoindentation of a soft polymer by inverse method. Compu. Mater. Sci. 72, 127–139 (2013a)

    Article  Google Scholar 

  9. Chen, Z., Scheffer, T., Seibert, H., Diebels, S.: Macroindentation of a soft polymer: identification of hyperelasticity and validation by uni/biaxial tensile tests. Mech. Mater. 64, 111–127 (2013b)

    Article  Google Scholar 

  10. Drozdov, A.: Finite Elasticity and Viscoelasticity. World Scientific Publishing, Singapore (1996). Please check and confirm the inserted publisher location for the reference [10]

    Book  MATH  Google Scholar 

  11. Fischer-Cripps, A.C.: Nanoindentation. Springer, New York (2004)

    Book  Google Scholar 

  12. Giannakopoulos, A.E., Triantafyllou, A.: Spherical indentation of incompressible rubber-like material. J. Mech. Phys. Solids. 55, 1196–1211 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Govindjee, S., Simo, J.C.: Mullinseffect and the strainamplitude dependence of the storagemodulus. Int. J. Solids Struct. 29, 1737–1751 (1992)

    Article  MATH  Google Scholar 

  14. Guessasma, S., Sehaki, M., Lourdin, D., Bourmaud, A.: Viscoelasticity properties of biopolymer composite material determined using finite element calculation and nanoindentation. Comput. Mater. Sci. 44, 371–377 (2008)

    Article  Google Scholar 

  15. Gupta, S., Carrillo, F., Li, C., Pruitt, L., Puttlitz, C.: Adhesive forces significantly affect elastic modulus determination of soft polymeric materials in nanoindentation. Mater. Lett. 61, 448–451 (2007)

    Article  Google Scholar 

  16. Hartmann, S., Gibmeier, J., Scholtes, B.: Experiments and material parameter identification using finite elements. Uniaxial tests and validation using instrumented indentation tests. Exp. Mech. 46, 5–18 (2006)

    Article  Google Scholar 

  17. Hertz, H.: Über die Berührung fester elastischer Körper. J. f Reine u. Angew. Math. 92, 156–171 (1881)

    MathSciNet  Google Scholar 

  18. Holzapfel, G.A.: Nonlinear Solid Mechanics: A Continuum Approach for Engineering. Lohn Wiley & Sons Ltd, England (2001)

    Google Scholar 

  19. Holzapfel, G.A., Simo, J.C.: A new viscoelastic constitutive model for continuous media at finite thermomechanical changes. Int. J. Numer. Methods Eng. 33, 3019–3034 (1996)

    MATH  Google Scholar 

  20. Huber, N., Tyulyukovskiy, E.: A new loading history for identification of viscoplastic properties by spherical indentation. J. Mater. Res. 19, 101–113 (2004)

    Article  Google Scholar 

  21. Huber, N., Nix, W.D., Gao, H.: Identification of elastic-plastic material parameters from pyramidal indentation of thin films. Proc. R. Soc. Lond. Ser. Math. Phys. Eng. Sci. 458, 1593–1620 (2002)

    Article  MATH  Google Scholar 

  22. Johlitz, M., Diebels, S.: Characterisation of a polymer using biaxial tension tests. Part I: hyperelasticity. Arch. Appl. Mech. 81, 1333–1349 (2011)

    Article  MATH  Google Scholar 

  23. Klötzer, D., Ullner, C., Tyulyukovskiy, E., Huber, N.: Identification of viscoplastic material parameters from spherical indentation data. Part II: experimental validation of the method. J. Mater. Res. 21, 677–684 (2006)

    Article  Google Scholar 

  24. Koprowski-Theiß, N., Johlitz, M., Diebels, S.: Modelling of a cellular rubber with nonlinear viscosity functions. Exp. Mech. 51, 749–765 (2011)

    Article  Google Scholar 

  25. Le Saux, V., Macro, Y., Bles, G., calloch, S., Moynea, S., Plessisa, S., Charrierb, P.: Identification of constitutive model for rubber elasticity from micro-indentation tests on natural rubber and validation by macroscopic tests. Mech. Mater. 43, 775–786 (2011)

    Article  Google Scholar 

  26. Liao, Q., Huang, J., Zhu, T., Xiong, C., Fang, J.: A hybrid model to determine mechanical properties of soft polymers by nanoindentation. Thin Solid Films 16, 1043–1047 (2010)

    Google Scholar 

  27. Liu, K., VanLandingham, M.R., Ovaert, T.C.: Mechanical characterization of soft viscoelastic gels via indentation and optimization-based inverse finite element analysis. J. Mech. Behav. Biomed. Mater. 2, 355–363 (2009)

    Article  Google Scholar 

  28. Lubliner, J.: A model of rubber viscoelasticity. Mech. Res. Commun. 12, 93–99 (1985)

    Article  Google Scholar 

  29. Marckmann, G., Verron, E.: Comparison of hyperelastic models for rubber-like materials. Rubber Chem. Technol. 79, 835–858 (2005)

    Article  Google Scholar 

  30. Mata, M., Alcalá, J.: The role of friction on sharp indentation. J. Mech. Phys. Solids 455, 145–165 (2004)

    Article  Google Scholar 

  31. Oliver, W.C., Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992)

    Article  Google Scholar 

  32. Oliver, W.C., Pharr, G.M.: Measurement of hardness and elastic modulus by instrumented indentation: advance in understanding and refinements to methodology. J. Mater. Res. 19, 3–20 (2004)

    Article  Google Scholar 

  33. Pharr, G.M., Oliver, W.C., Brotzen, F.R.: On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation. J. Mater. Res. 7, 613–617 (1992)

    Article  Google Scholar 

  34. Rauchs, G., Bardon, J.: Identification of elasto-viscoplastic material parameters by indentation testing and combined finite element modelling and numerical optimization. Finite Elem. Anal. Des. 47, 653–667 (2011)

    Article  MathSciNet  Google Scholar 

  35. Rauchs, G., Bardon, J., Georges, D.: Identification of the material parameters of a viscous hyperelastic constitutive law from spherical indentation tests of rubber and validation by tensile tests. Mech. Mater. 42, 961–973 (2010)

    Article  Google Scholar 

  36. Rivlin, R.S.: Large elastic deformations of isotropic materials. iv. Further developments of the general theory. Philos. Trans. R. Soc. Lond. A241, 379–397 (1948)

    Article  MathSciNet  Google Scholar 

  37. Sedlan, K.: Viskoelastisches Materialverhalten von Elstomerwerkstoffen: Experimentelle Untersuchung und Modellbildung. Dissertation, Universität Gesamthochschule Kassel (2000)

  38. Simo, J.C.: On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects. Comput. Methods Appl. Mech. Eng. 60, 153–173 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  39. Sneddon, I.N.: The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47–57 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  40. Tyulyukovskiy, E., Huber, N.: Identification of viscoplastic material parameters from spherical indentation data. Part I: neural networks. J. Mater. Res. 21, 664–676 (2006)

    Article  Google Scholar 

  41. Tyulyukovskiy, E., Huber, N.: Neural networks for tip correction of spherical indentation curves from bulk metals and thin metal films. J. Mech. Phys. Solids 55, 391–418 (2007)

    Article  MATH  Google Scholar 

  42. Wang, J., Ovaert, T.C.: Computational mechanical property determination of viscoelastic/plastic materials from nanoindentation creep test data. J. Mater. Res. 24, 1245–1257 (2009)

    Article  Google Scholar 

  43. Zhao, Y.P., Shi, X.H., Li, W.J.: Effect of work of adhesion on nanoindentation. Rev. Adv. Mater. Sci. 5, 348–353 (2003)

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the DFG (German Science Foundation—Deutsche Forschungsgemeinschaft) for financial support through the Grant number Di 430/14. The work of the student research assistant Martin Müller at the Chair of Applied Mechanics, Univ. Saarland is appreciated. The authors thank Dipl.-Ing. M. Zamanzade at the Chair of Material Science and Methodology at Saarland University and B.Sc N. Peter and Dr. A. Schneider in the Leibniz Institute for New Materials (INM), Saarland University for useful discussion during the indentation experiments as well as Dipl.-Ing. L. Krogh at the Chair for Adhesion and Interphases in Polymers at Saarland University for supplying the specimens.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoyu Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Diebels, S. Indentation of PU at different scales and computational modeling: identification of viscoelasticity and quantification of adhesion effects. Arch Appl Mech 85, 1225–1243 (2015). https://doi.org/10.1007/s00419-015-1008-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-015-1008-5

Keywords

Navigation