Skip to main content
Log in

Models for nanoindentation of compliant films on stiff substrates

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nanoindentation is an effective approach for measuring mechanical properties of nanoscale films coated on substrates, yet results obtained through the classic Oliver–Pharr model require additional consideration due to the existence of a “substrate effect” when the film is much more compliant than the substrate. In this study, different models for removing this substrate effect are compared, with focus on the Gao model, the Saha–Nix model, and the Hay model and the use of a direct finite element (FE) approach is discussed. Validity of these models is examined using load–displacement data obtained from simulated indentation of an elastic–plastic film in FEs. It is found that the performance of the analytical models varies significantly with different testing parameters, including ratio between film modulus and substrate modulus (Ef/Es), indenting ratio (hmax/film thickness), and yield strain. Choices of using a nanoindentation model to process experimental data should be made according to estimated indentation depth and modulus difference between film and substrate. An example of applying substrate removal models to experimental data is also shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. H. Hertz: On the contact of elastic solids. J Reine Angew Math. 92, 16 (1881).

    Google Scholar 

  2. H. Hertz: On hardness. Verh. Ver. Bedorderung Gewerbe Fleisses. 61, (1882).

  3. I.N. Sneddon: The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3(1), 11 (1965).

    Article  Google Scholar 

  4. R.B. King: Elastic analysis of some punch problems for a layered medium. Int. J. Solids Struct. 23(12), 8 (1987).

    Article  Google Scholar 

  5. G.M. Pharr, W.C. Oliver, and F.R. Brotzen: On the generality of the relationship among contact stiffness, contact area, and elastic-modulus during indentation. J. Mater. Res. 7(3), 613 (1992).

    Article  CAS  Google Scholar 

  6. M.F. Doerner and W.D. Nix: A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1(4), 9 (1986).

    Article  Google Scholar 

  7. J. Hay and B. Crawford: Measuring substrate-independent modulus of thin films. J. Mater. Res. 26(6), 727 (2011).

    Article  CAS  Google Scholar 

  8. R. Saha and W.D. Nix: Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Mater. 50, 16 (2002).

    Article  Google Scholar 

  9. S. Watcharotone, C.D. Wood, R. Friedrich, X.Q. Chen, R. Qiao, K. Putz, and L.C. Brinson: Interfacial and substrate effects on local elastic properties of polymers using coupled experiments and modeling of nanoindentation. Adv. Eng. Mater. 13(5), 400 (2011).

    Article  CAS  Google Scholar 

  10. Z. Wei, G. Zhang, H. Chen, J. Luo, R. Liu, and S. Guo: A simple method for evaluating elastic modulus of thin films by nanoindentation. J. Mater. Res. 24(3), 801 (2009).

    Article  CAS  Google Scholar 

  11. H. Gao, C. Chiu, and J. Lee: Elastic contact versus indentation modeling of multi-layered materials. Int. J. Solids Struct. 29(20), 22 (1992).

    Google Scholar 

  12. J. Mencik, D. Munz, E. Quandt, E.R. Weppelmann, and M.V. Swain: Determination of elastic modulus of thin layers using nanoindentation. J. Mater. Res. 12(9), 10 (1997).

    Article  Google Scholar 

  13. H. Li and J.J. Vlassak: Determining the elastic modulus and hardness of an ultra-thin film on a substrate using nanoindentation. J. Mater. Res. 24(3), 1114 (2009).

    Article  CAS  Google Scholar 

  14. B. Zhou and B.C. Prorok: A new paradigm in thin film indentation. J. Mater. Res. 25(9), 1671 (2010).

    Article  CAS  Google Scholar 

  15. K. Miyake, N. Satomi, and S. Sasaki: Elastic modulus of polystyrene film from near surface to bulk measured by nanoindentation using atomic force microscopy. Appl. Phys. Lett. 89(3), (2006).

  16. W.T. Chen: Computation of stresses and displacements in a layered elastic medium. Int. J. Eng. Sci. 9, 25 (1971).

    Article  Google Scholar 

  17. W.T. Chen and P.A. Engel: Impact and contact stress analysis in Multilayer Media. Int. J. Solids Struct. 8, 25 (1972).

    Google Scholar 

  18. H.Y. Yu, S.C. Sanday, and B.B. Rath: The effect of substrate on the elastic properties of films determined by the indentation test—axisymmetrical boussinesq problem. J. Mech. Phys. Solids 38(6), 745 (1990).

    Article  Google Scholar 

  19. M. Zhao, X. Chen, Y. Xiang, J.J. Vlassak, D. Lee, N. Ogasawara, N. Chiba, and Y.X. Gan: Measuring elastoplastic properties of thin films on an elastic substrate using sharp indentation. Acta Mater. 55(18), 6260 (2007).

    Article  CAS  Google Scholar 

  20. T. Da Silva Botelho, R. Progri, G. Inglebert, and F. Robbe-Valloire: Analytical and experimental elastoplastic spherical indentations of a layered half-space. Mech. Mater. 40(10), 771 (2008).

    Article  Google Scholar 

  21. W.W. Chen, K. Zhou, L.M. Keer, and Q.J. Wang: Modeling elasto-plastic indentation on layered materials using the equivalent inclusion method. Int. J. Solids Struct. 47(20), 2841 (2010).

    Article  Google Scholar 

  22. I.A. Polonsky and L.M. Keer: A fast and accurate method for numerical analysis of elastic layered contacts. J. Tribol. 122, 6 (2000).

    Google Scholar 

  23. S. Liu, Q. Wang, and G. Liu: A versatile method of discrete convolution and FFT (DC-FFT) for contact analyses. Wear 243(1–2), 11 (2000).

    Google Scholar 

  24. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 20 (1992).

    Article  Google Scholar 

  25. W.C. Oliver and G.M. Pharr: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19(1), 18 (2004).

    Article  Google Scholar 

  26. G.M. Pharr, J.H. Strader, and W.C. Oliver: Critical issues in making small-depth mechanical property measurements by nanoindentation with continuous stiffness measurement. J. Mater. Res. 24(3), 653 (2009).

    Article  CAS  Google Scholar 

  27. J.C. Hay, A. Bolshakov, and G.M. Pharr: A critical examination of the fundamental relations used in the analysis of nanoindentation data. J. Mater. Res. 14(6), 2296 (1999).

    Article  CAS  Google Scholar 

  28. G.M. Pharr and W.C. Oliver: Measurement of thin-film mechanical-properties using nanoindentation. MRS Bull. 17(7), 28 (1992).

    Article  Google Scholar 

  29. K.S. Chen, T.C. Chen, and K.S. Ou: Development of semi-empirical formulation for extracting materials properties from nanoindentation measurements: Residual stresses, substrate effect, and creep. Thin Solid Films 516(8), 1931 (2008).

    Article  CAS  Google Scholar 

  30. A. Bolshakov and G.M. Pharr: Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques. J. Mater. Res. 13(4), 10 (1998).

    Article  Google Scholar 

  31. D.S. Stone, K.B. Yoder, and W.D. Sproul: Hardness and elastic modulus of TiN based on continuous indentation technique and new correlation. J. Vac. Sci. Technol., A 9(4), 5 (1991).

    Article  Google Scholar 

  32. H. Neuber: Kerbspannungslehve (Springer Berlin, Berlin, 1946).

    Google Scholar 

  33. H. Xu and G. Pharr: An improved relation for the effective elastic compliance of a film/substrate system during indentation by a flat cylindrical punch. Scr. Mater. 55(4), 315 (2006).

    Article  CAS  Google Scholar 

  34. H. Song: Selected Mechanical Problems in Load- and Depth-sensing Indentation Testing (Rice University, 1999).

  35. Y.T. Cheng and C.M. Cheng: Scaling relationships in conical indentation of elastic perfectly plastic solids. Int. J. Solids Struct. 36(8), 1231 (1999).

    Article  Google Scholar 

  36. J.A. Knapp, D.M. Follstaedt, S.M. Myers, J.C. Barbour, and T.A. Friedmann: Finite-element modeling of nanoindentation. J. Appl. Phys. 85(3), 1460 (1999).

    Article  CAS  Google Scholar 

  37. X. Chen and J.J. Vlassak: Numerical study on the measurement of thin film mechanical properties by means of nanoindentation. J. Mater. Res. 16(10), 2974 (2001).

    Article  CAS  Google Scholar 

  38. K.Y. Zeng and L. Shen: A new analysis of nanoindentation load–displacement curves. Philos. Mag. A 82(10), 2223 (2002).

    Article  CAS  Google Scholar 

  39. Z.H. Xu and D. Rowcliffe: Finite element analysis of substrate effects on indentation behaviour of thin films. Thin Solid Films 447, 399 (2004).

    Article  CAS  Google Scholar 

  40. N. Chollacoop, L. Li, and A. Gouldstone: Errors in resolved modulus during nano-indentation of hard films on soft substrates: A computational study. Mater. Sci. Eng., A 423(1–2), 36 (2006).

    Article  CAS  Google Scholar 

  41. T.Y. Tsui, J. Vlassak, and W.D. Nix: Indentation plastic displacement field: Part I. The case of soft films on hard substrates. J. Mater. Res. 14(6), 2196 (1999).

    Article  CAS  Google Scholar 

  42. L.M. Hamming, R. Qiao, P.B. Messersmith, and L.C. Brinson: Effects of dispersion and interfacial modification on the macroscale properties of TiO(2) polymer-matrix nanocomposites. Compos Sci Technol. 69(11–12), 1880 (2009).

    Article  CAS  Google Scholar 

  43. R. Qiao, H. Deng, K.W. Putz, and L.C. Brinson: Effect of particle agglomeration and interphase on the glass transition temperature of polymer nanocomposites. J. Polym. Sci., Part B: Polym. Phys. 49(10), 740 (2011).

    Article  CAS  Google Scholar 

  44. H. Deng, Y. Liu, D.H. Gai, D.A. Dikin, K.W. Putz, W. Chen, L.C. Brinson, C. Burkhart, M. Poldneff, B. Jiang, and G.J. Papakonstantopoulos: Utilizing real and statistically reconstructed microstructures for the viscoelastic modeling of polymer nanocomposites. Compos. Sci. Technol. 72(14), 1725 (2012).

    Article  CAS  Google Scholar 

  45. J.M. Torkelson and C.J. Ellison: The distribution of glass-transition temperatures in nanoscopically confined glass formers. Nat. Mater. 2(10), 695 (2003).

    Article  CAS  Google Scholar 

  46. P. Rittigstein, R.D. Priestley, L.J. Broadbelt, and J.M. Torkelson: Model polymer nanocomposites provide an understanding of confinement effects in real nanocomposites. Nat. Mater. 6(4), 278 (2007).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors gratefully acknowledge the financial support from the National Science Foundation (NSF grant CMMI-0928050) and the Office of Naval Research (ONR grant N00014-10-1-0043/P00007 and A12161//N000014-10-1-0244). Additionally, we acknowledge the helpful discussion with Ms. Jennifer Hay at Agilent Technology and Dr. Karl Putz, Dr. Charles Wood, and Xu Cheng in the department of Mechanical Engineering at Northwestern University. We also thank the critical attention of the reviewers who provided important comments and encouraged us to greatly improve the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Catherine Brinson.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Valavala, P., Watcharotone, S. et al. Models for nanoindentation of compliant films on stiff substrates. Journal of Materials Research 30, 1747–1760 (2015). https://doi.org/10.1557/jmr.2015.126

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.126

Navigation