Skip to main content
Log in

In vivo modification of a maize engineered minichromosome

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Engineered minichromosomes provide efficient platforms for stacking transgenes in crop plants. Methods for modifying these chromosomes in vivo are essential for the development of customizable systems for the removal of selection genes or other sequences and for the addition of new genes. Previous studies have demonstrated that Cre, a site-specific recombinase, could be used to modify lox sites on transgenes on maize minichromosomes; however, these studies demonstrated somatic recombination only, and modified minichromosomes could not be recovered. We describe the recovery of an engineered chromosome composed of little more than a centromere plus transgene that was derived by telomere-mediated truncation. We used the fiber fluorescence in situ hybridization technique and detected a transgene on the minichromosome inserted among stretches of CentC centromere repeats, and this insertion was large enough to suggest a tandem insertion. By crossing the minichromosome to a plant expressing Cre-recombinase, the Bar selection gene was removed, leaving behind a single loxP site. This study demonstrates that engineered chromosomes can be modified in vivo using site-specific recombinases, a demonstration essential to the development of amendable chromosome platforms in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Albert H, Dale EC, Lee E, Ow DW (1995) Site-specific integration of DNA into wild-type and mutant lox sites placed in the plant genome. Plant J 7:649–659

    Article  PubMed  CAS  Google Scholar 

  • Alfenito MR, Birchler JA (1993) Molecular characterization of a maize b chromosome centric sequence. Genetics 135:589–597

    PubMed  CAS  Google Scholar 

  • Ananiev EV, Wu C, Chamberlin MA, Svitashev S, Schwartz C et al (2009) Artificial chromosome formation in maize (Zea mays L.). Chromosoma 118:157–177

    Article  PubMed  CAS  Google Scholar 

  • Birchler JA, Han F (2009) Maize centromeres: structure, function, epigenetics. Annu Rev Genet 43:287–303

    Article  PubMed  CAS  Google Scholar 

  • Birchler JA, Yu W, Han F (2008) Plant engineered minichromosomes and artificial chromosome platforms. Cytogenet Genome Res 120:228–232

    Google Scholar 

  • Birchler JA, Krishnaswamy L, Gaeta RT, Masonbrink RE, Zhao C (2010) Engineered minichromosomes in plants. Crit Rev Plant Sci 29:135–147

    Article  CAS  Google Scholar 

  • Christensen AH, Quail PH (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res 5:213–218

    Article  PubMed  CAS  Google Scholar 

  • Corneille S, Lutz K, Svab Z, Maliga P (2001) Efficient elimination of selectable marker genes from the plastid genome by the cre-lox site-specific recombination system. Plant J 27:171–178

    Article  PubMed  CAS  Google Scholar 

  • Dale EC, Ow DW (1990) Intra- and intramolecular site-specific recombination in plant cells mediated by bacteriophage p1 recombinase. Gene 91:79–85

    Article  PubMed  CAS  Google Scholar 

  • Frame B, Zhang H, Cocciolone S, Sidorenko L, Dietrich C, Pegg S, Zhen S, Schnable P, Wang K (2000) Production of transgenic maize from bombarded type II callus: effect of gold particle size and callus morphology on transformation efficiency. In Vitro Cell Dev B 36:21–29

    Article  Google Scholar 

  • Gaeta RT, Danilova TV, Zhao C, Masonbrink RE, McCaw ME, Birchler JA (2011) Recovery of a telomere-truncated chromosome via a compensating translocation in maize. Genome 54:184–195

    Article  PubMed  CAS  Google Scholar 

  • Gaeta RT, Masonbrink RE, Krishnaswamy L, Zhao C, Birchler JA (2012) Synthetic chromosome platforms in plants. Annu Rev Plant Biol 63:307–330

    Article  PubMed  CAS  Google Scholar 

  • Gao Z, Han FP, He MY, Ma YZ, Xin ZY (1999) Characterization of genome and chromosomes in octoploid wheat–wheatgrass amphiploid zhong 2 using fluorescence in situ hybridization and chromosome pairing analysis. Acta Bot Sin 41:25–28

    Google Scholar 

  • Han F, Gao Z, Birchler JA (2009) Reactivation of an inactive centromere reveals epigenetic and structural components for centromere specification in maize. Plant Cell 21:1929–1939

    Article  PubMed  CAS  Google Scholar 

  • Henikoff S, Ahmad K, Malik HS (2001) The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293(5532):1098–1102

    Article  PubMed  CAS  Google Scholar 

  • Jackson SA, Wang ML, Goodman HM, Jiang J (1998) Application of fiber-FISH in physical mapping of Arabidopsis thaliana. Genome 41:566–572

    PubMed  CAS  Google Scholar 

  • Kapusi E, Ma L, Teo CH, Hensel G, Himmelbach A, Schubert I, Mette MF, Kumlehn J, Houben A (2012) Telomere-mediated truncation of barley chromosomes. Chromosoma 121:181–190

    Google Scholar 

  • Kato A, Albert P, Vega J, Birchler J (2006) Sensitive fluorescence in situ hybridization signal detection in maize using directly labeled probes produced by high concentration DNA polymerase nick translation. Biotech Histochem 81:71–78

    Article  PubMed  Google Scholar 

  • Kato A, Lamb JC, Birchler JA (2004) Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proc Natl Acad Sci U S A 101:13554–13559

    Article  PubMed  CAS  Google Scholar 

  • Lamb JC, Birchler JA (2006) Retroelement genome painting: cytological visualization of retroelement expansions in the genera zea and Tripsacum. Genetics 173:1007–1021

    Google Scholar 

  • Lamb J, Riddle N, Cheng Y-M, Theuri J, Birchler J (2007) Localization and transcription of a retrotransposon-derived element on the maize b chromosome. Chromosome Res 15:383–398

    Article  PubMed  CAS  Google Scholar 

  • Lloyd AM, Davis RW (1994) Functional expression of the yeast FLP/FRT site-specific recombination system in Nicotiana tabacum. Mol Gen Genet 242:653–657

    Article  PubMed  CAS  Google Scholar 

  • Masonbrink RE, Birchler JA (2010) Sporophytic nondisjunction of the maize b chromosome at high copy numbers. J Genet Genomics 37:79–84

    Article  PubMed  Google Scholar 

  • Nelson A, Lamb J, Kobrossly P, Shippen D (2011) Parameters affecting telomere-mediated chromosomal truncation in Arabidopsis. Plant Cell 23:2263

    Article  PubMed  CAS  Google Scholar 

  • Qin M, Bayley C, Stockton T, Ow DW (1994) Cre recombinase-mediated site-specific recombination between plant chromosomes. Proc Natl Acad Sci U S A 91:1706–1710

    Article  PubMed  CAS  Google Scholar 

  • Randolph LF (1941) Genetic characteristics of the b chromosomes in maize. Genetics 26:608–631

    PubMed  CAS  Google Scholar 

  • Sauer B (1994) Site-specific recombination: developments and applications. Curr Opin Biotech 5:521–527

    Article  PubMed  CAS  Google Scholar 

  • Songstad D, Armstrong C, Petersen W, Hairston B, Hinchee M (1996) Production of transgenic maize plants and progeny by bombardment of hi-II immature embryos. In Vitro Cell Dev B 32:179–183

    Article  Google Scholar 

  • Srivastava V, Anderson OD, Ow DW (1999) Single-copy transgenic wheat generated through the resolution of complex integration patterns. Proc Natl Acad Sci U S A 96:11117–11121

    Article  PubMed  CAS  Google Scholar 

  • Teo CH, Ma L, Kapusi E, Hensel G, Kumlehn J, Schubert I, Houben A, Mette MF (2011) Induction of telomere-mediated chromosomal truncation and stability of truncated chromosomes in Arabidopsis thaliana. Plant J 68:28–39

    Article  PubMed  CAS  Google Scholar 

  • Vega J, Yu W, Kennon A, Chen X, Zhang Z (2008) Improvement of agrobacterium-mediated transformation in hi-II maize (Zea mays) using standard binary vectors. Plant Cell Rep 27:297–305

    Article  PubMed  CAS  Google Scholar 

  • Xu C, Cheng Z, Yu W (2012) Construction of rice mini-chromosomes by telomere-mediated chromosomal truncation. Plant J 70:1070–1079

    Article  PubMed  CAS  Google Scholar 

  • Yu W, Han F, Gao Z, Vega JM, Birchler JA (2007) Construction and behavior of engineered minichromosomes in maize. Proc Natl Acad Sci U S A 104:8924–8929

    Article  PubMed  CAS  Google Scholar 

  • Yu W, Lamb JC, Han F, Birchler JA (2006) Telomere-mediated chromosomal truncation in maize. Proc Natl Acad Sci U S A 103:17331–17336

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Research was supported by NSF grant DBI 0701297.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Birchler.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Karyotype analysis of Cre 1.1. The karyotype of Cre 1.1 plants was determined using CentC (green), TAG (green), NOR (green), and transgene (pTF:UbiCre; red). Cre 1.1 was located on 9L (arrow). Scale bar 10μm (PDF 28.8 kb)

ESM 2

Sequence comparison of the fragments show in Fig. 7, lanes 1 and 3 revealed the expected rearrangement in mIGT-1 (underlined). The sequence in bold in both sequences is the 34bp loxP target sequence. The sequence upstream of loxP in both sequences is the 5' end of En TIR. The underline sequence in the IGT-1 sequenced fragment is the 3' end of the NOS terminator adjacent to the Bar gene, and the underlined sequence in the mIGT-1 sequenced fragment is the 3' end of the ubiquitin promoter fragment. The recombinant molecule sequenced in mIGT-1 would be expected if the Bar-NOS fragment was deleted by Cre-mediated excision (PDF 50.6 kb)

ESM 3

Sequence comparison of the recovered transgene and genomic fragment (top) to the En TIR sequence in the pGZ vector (bottom) (PDF 167 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaeta, R.T., Masonbrink, R.E., Zhao, C. et al. In vivo modification of a maize engineered minichromosome. Chromosoma 122, 221–232 (2013). https://doi.org/10.1007/s00412-013-0403-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-013-0403-3

Keywords

Navigation