Skip to main content
Log in

Distinct chromosomal distributions of highly repetitive sequences in maize

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

The majority of genomic DNA in most plant species is made up of repetitive elements including satellites and retrotransposons. The maize genome is intermediate in size and abundance of repetitive elements between small genomes such as Arabidopsis and rice and larger genomes such as wheat. Although repetitive elements are present throughout the maize genome, individual families are non-randomly distributed along chromosomes. In this work we use fluorescence in-situ hybridization (FISH) to examine the distribution of abundant LTR retroelement families and satellites contained in heterochromatic blocks called knobs. Different retroelement families have distinct patterns of hybridization. Prem1 and Tekay, two very closely related elements, both hybridize along the length of all chromosomes but do so with greater intensity near the centromeres, although subtle differences are detectable between the hybridization patterns. Opie, Prem2/Ji, and Huck are enriched away from the centromeres and Grande is distributed uniformly along the chromosomes. Double labeling with proximally and distally enriched elements on pachytene chromosomes produces alternating blocks of element enrichment. The maize elements hybridized in the same general patterns to chromosomes of maize relatives including Zea diploperennis and Tripsacum dactyloides. Additionally, abundant Tripsacum LTR retroelements are enriched in similar chromosomal regions among the different species. The 180 bp knob satellite is present in large blocks at interstitial locations on chromosome arms. With long exposures, smaller sites of hybridization are detected at the ends of chromosomes, adjacent to the telomere tract. This distal position for knob satellites is conserved among Zea and Tripsacum species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adawy SS, Stupar RM, Jiang J (2004) Fluorescence in situ hybridization analysis reveals multiple loci of knob-associated DNA elements in one-knob and knobless maize lines. J Histochem Cytochem 52: 1113–1116.

    Article  PubMed  CAS  Google Scholar 

  • Ananiev EV, Phillips RL, Rines HW (1998) A knob-associated tandem repeat in maize capable of forming fold-back DNA segments: are chromosome knobs megatransposons? Proc Natl Acad Sci USA 95: 10785–10790.

    Article  PubMed  CAS  Google Scholar 

  • Anderson LK, Salameh N, Bass HW et al. (2004) Integrating genetic linkage maps with pachytene chromosome structure in maize. Genetics 166: 1923–1933.

    Article  PubMed  CAS  Google Scholar 

  • Anderson LK, Lai A, Stack SM, Rizzon C, Gaut BS (2006) Uneven distribution of expressed sequence tag loci on maize pachytene chromosomes. Genome Res 16: 115–122.

    Article  PubMed  CAS  Google Scholar 

  • Buckler ESt, Phelps-Durr TL, Buckler CS et al. (1999) Meiotic drive of chromosomal knobs reshaped the maize genome. Genetics 153: 415–426.

    PubMed  CAS  Google Scholar 

  • Bushman FD (2003) Targeting survival: integration site selection by retroviruses and LTR-retrotransposons. Cell 115: 135–138.

    Article  PubMed  CAS  Google Scholar 

  • Cheng Z, Dong F, Langdon T et al. (2002) Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell 14: 1691–1704.

    Article  PubMed  CAS  Google Scholar 

  • Dennis ES, Peacock WJ (1984) Knob heterochromatin homology in maize and its relatives. J Mol Evol 20: 341–350.

    Article  PubMed  CAS  Google Scholar 

  • Erayman M, Sandhu D, Sidhu D et al. (2004) Demarcating the gene-rich regions of the wheat genome. Nucleic Acids Res 32: 3546–3565.

    Article  PubMed  CAS  Google Scholar 

  • Fajkus J, Kovarik A, Kralovics R, Bezdek M (1995) Organization of telomeric and subtelomeric chromatin in the higher plant Nicotiana tabacum. Mol Gen Genet 247: 633–638.

    Article  PubMed  CAS  Google Scholar 

  • Gao L, McCarthy EM, Ganko EW, McDonald JF (2004) Evolutionary history of Oryza sativa LTR retrotransposons: a preliminary survey of the rice genome sequences. BMC Genomics 5: 18.

    Article  PubMed  Google Scholar 

  • Gardiner JM, Coe EH, Chao S (1996) Cloning maize telomeres by complementation in Saccharomyces cerevisiae. Genome 39: 736–748.

    PubMed  CAS  Google Scholar 

  • Han F, Lamb JC, Birchler JA (2006) High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize. Proc Natl Acad Sci USA 103: 3238–3243.

    Article  PubMed  CAS  Google Scholar 

  • Havecker E, Gao X, Voytas D (2004) The diversity of LTR retrotransposons. Genome Biol 5: 225.

    Article  PubMed  Google Scholar 

  • Hiatt EN, Dawe RK (2003) Four loci on abnormal chromosome 10 contribute to meiotic drive in maize. Genetics 164: 699–709.

    PubMed  CAS  Google Scholar 

  • Houben A, Demidov D, Gernand D et al. (2003) Methylation of histone H3 in euchromatin of plant chromosomes depends on basic nuclear DNA content. Plant J 33: 967–973.

    Article  PubMed  CAS  Google Scholar 

  • Kato A, Lamb JC, Birchler JA (2004) Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proc Natl Acad Sci USA 101: 13554–13559.

    Article  PubMed  CAS  Google Scholar 

  • Kato A, Lamb JC, Han F, Vega JM, Birchler JA (2005) Molecular analysis of maize chromosomes. Maydica 50: 311–320.

    Google Scholar 

  • Kato A, Albert PS, Vega JM, Birchler JA (2006) Sensitive FISH signal detection in maize using directly labeled probes produced by high concentration DNA polymerase nick translation. Biotech Histochem 81: 71–78.

    Google Scholar 

  • Kumar A, Bennetzen JL (1999) Plant retrotransposons. Annu Rev Genet 33: 479–532.

    Article  PubMed  CAS  Google Scholar 

  • Lamb JC, Birchler JA (2003) The role of DNA sequence in centromere formation. Genome Biol 4: 214.

    Article  PubMed  Google Scholar 

  • Lamb JC, Birchler JA (2006) Retroelement genome painting: cytological visualization of retroelement expansions in the genera Zea and Tripsacum. Genetics 173: 1007–1021.

    Article  PubMed  CAS  Google Scholar 

  • Lamb JC, Kato A, Birchler JA (2005) Sequences associated with A chromosome centromeres are present throughout the maize B chromosome. Chromosoma 113: 337–349.

    Article  PubMed  CAS  Google Scholar 

  • Lamb JC, Kato A, Yu W et al. (2006) Cytogenetics and chromosome analytical techniques. In Floriculture, Ornamental and Plant Biotechnology. In Teipeira da Silva JA (ed) Global Science Books, London, pp. 244–248.

  • Lesage P, Todeschini AL (2005) Happy together: the life and times of Ty retrotransposons and their hosts. Cytogenet Genome Res 110: 70–90.

    Article  PubMed  CAS  Google Scholar 

  • Longley AE (1939) Knob positions on corn chromosomes. J Agric Res 59: 475–490.

    Google Scholar 

  • Malik HS, Eickbush TH (1999) Modular evolution of the integrase domain in the Ty3/Gypsy class of LTR retrotransposons. J Virol 73: 5186–5190.

    PubMed  CAS  Google Scholar 

  • McClintock B (1930) A cytological demonstration of an interchange between two non-homologous chromosomes of Zea mays. Proc Natl Acad Sci USA 16: 791–796.

    Article  PubMed  CAS  Google Scholar 

  • McClintock B, Kato YTA, Bluemenshein A (1981) Chromosome Constitution of Races of Maize. Chapingo, Mexico: Colegio do Postgraduados.

    Google Scholar 

  • McKnight TD, Fitzgerald MS, Shippen DE (1997) Plant telomeres and telomerases. A review. Biochemistry (Mosc) 62: 1224–1231.

    CAS  Google Scholar 

  • Meyers BC, Tingey SV, Morgante M (2001) Abundance, distribution, and transcriptional activity of repetitive elements in the maize genome. Genome Res 11: 1660–1676.

    Article  PubMed  CAS  Google Scholar 

  • Mroczek RJ, Dawe RK (2003) Distribution of retroelements in centromeres and neocentromeres of maize. Genetics 165: 809–819.

    PubMed  CAS  Google Scholar 

  • Nagaki K, Murata M (2005) Characterization of CENH3 and centromere-associated DNA sequences in sugarcane. Chromosome Res 13: 195–203.

    Article  PubMed  CAS  Google Scholar 

  • Nagaki K, Song J, Stupar RM et al. (2003a) Molecular and cytological analyses of large tracks of centromeric DNA reveal the structure and evolutionary dynamics of maize centromeres. Genetics 163: 759–770.

    PubMed  CAS  Google Scholar 

  • Nagaki K, Talbert PB, Zhong CX et al. (2003b) Chromatin immunoprecipitation reveals that the 180-bp satellite repeat is the key functional DNA element of Arabidopsis thaliana centromeres. Genetics 163: 1221–1225.

    PubMed  CAS  Google Scholar 

  • Ohmido N, Kijima K, Akiyama Y, de Jong JH, Fukui K (2000) Quantification of total genomic DNA and selected repetitive sequences reveals concurrent changes in different DNA families in indica and japonica rice. Mol Gen Genet 263: 388–394.

    Article  PubMed  CAS  Google Scholar 

  • Ohmido N, Kijima K, Ashikawa I, de Jong JH, Fukui K (2001) Visualization of the terminal structure of rice chromosomes 6 and 12 with multicolor FISH to chromosomes and extended DNA fibers. Plant Mol Biol 47: 413–421.

    Article  PubMed  CAS  Google Scholar 

  • Ohtsubo H, Umeda M, Ohtsubo E (1991) Organization of DNA sequences highly repeated in tandem in rice genomes. Jpn J Genet 66: 241–254.

    Article  PubMed  CAS  Google Scholar 

  • Peacock WJ, Dennis ES, Rhoades MM, Pryor AJ (1981) Highly repeated DNA sequence limited to knob heterochromatin in maize. Proc Natl Acad Sci USA 78: 4490–4494.

    Article  PubMed  CAS  Google Scholar 

  • Peterson-Burch BD, Wright DA, Laten HM, Voytas DF (2000) Retroviruses in plants? Trends Genet 16: 151–152.

    Article  PubMed  CAS  Google Scholar 

  • Peterson-Burch B, Nettleton D, Voytas D (2004) Genomic neighborhoods for Arabidopsis retrotransposons: a role for targeted integration in the distribution of the Metaviridae. Genome Biol 5: R78.

    Article  PubMed  Google Scholar 

  • Rabinowicz PD, Bennetzen JL (2006) The maize genome as a model for efficient sequence analysis of large plant genomes. Curr Opin Plant Biol 9: 149–156.

    Article  PubMed  CAS  Google Scholar 

  • Raina SN, Sharma S, Sasakuma T, Kishii M, Vaishnavi S (2005) Novel repeated DNA sequences in safflower (Carthamus tinctorius L.) (Asteraceae): cloning, sequencing, and physical mapping by fluorescence in situ hybridization. J Heredity 96: 424–429.

    Article  CAS  Google Scholar 

  • Rhoades MM (1952) Preferential segregation in maize. In Gowen JW, ed., Heterosis. Ames, IA: Iowa State College Press, pp. 66–80.

    Google Scholar 

  • Rhoades MM, Vilkomerson H (1942) On the anaphase movement of chromosomes. Proc Natl Acad Sci USA 28: 433–436.

    Article  PubMed  CAS  Google Scholar 

  • Rokka VM, Clark MS, Knudson DL, Pehu E, Lapitan NL (1998) Cytological and molecular characterization of repetitive DNA sequences of Solanum brevidens and Solanum tuberosum. Genome 41: 487–494.

    Article  PubMed  CAS  Google Scholar 

  • SanMiguel P, Bennetzen JL (1998) Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons. Ann Bot 82: 37–44.

    Article  CAS  Google Scholar 

  • SanMiguel P, Tikhonov A, Jin YK et al. (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274: 765–768.

    Article  PubMed  CAS  Google Scholar 

  • SanMiguel P, Gaut BS, Tikhonov A, Nakajima Y, Bennetzen JL (1998) The paleontology of intergene retrotransposons of maize. Nat Genet 20: 43–45.

    Article  PubMed  CAS  Google Scholar 

  • Shi J, Dawe K (2006) Partitioning of the maize epigenome by the number of methyl groups on histone H3 lysines 9 and 27. Genetics 173: 1571–1583.

    Google Scholar 

  • Tran RK, Zilberman D, de Bustos C et al. (2005) Chromatin and siRNA pathways cooperate to maintain DNA methylation of small transposable elements in Arabidopsis. Genome Biol 6: R90.

    Article  PubMed  Google Scholar 

  • Uozu S, Ikehashi H, Ohmido N et al. (1997) Repetitive sequences: cause for variation in genome size and chromosome morphology in the genus Oryza. Plant Mol Biol 35: 791–799.

    Article  PubMed  CAS  Google Scholar 

  • Vershinin AV, Schwarzacher T, Heslop-Harrison JS (1995) The large-scale genomic organization of repetitive DNA families at the telomeres of rye chromosomes. Plant Cell 7: 1823–1833.

    Article  PubMed  CAS  Google Scholar 

  • Wang CJ, Harper L, Cande WZ (2006) High-resolution single-copy gene fluorescence in situ hybridization and its use in the construction of a cytogenetic map of maize chromosome 9. Plant Cell 18: 529–544.

    Article  PubMed  CAS  Google Scholar 

  • Xie W, Gai X, Zhu Y et al. (2001) Targeting of the yeast Ty5 retrotransposon to silent chromatin is mediated by interactions between integrase and Sir4p. Mol Cell Biol 21: 6606–6614.

    Article  PubMed  CAS  Google Scholar 

  • Yu W, Lamb JC, Han F, Birchler JA (2006) Cytological visualization of transposable elements and transpositions in somatic cells of maize. Genetics (In press).

  • Zhong XB, Fransz PF, Wennekes-Eden J et al. (1998) FISH studies reveal the molecular and chromosomal organization of individual telomere domains in tomato. Plant J 13: 507–517.

    Article  PubMed  CAS  Google Scholar 

  • Zhong CX, Marshall JB, Topp C et al. (2002) Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. Plant Cell 14: 2825–2836.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Birchler.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lamb, J.C., Meyer, J.M., Corcoran, B. et al. Distinct chromosomal distributions of highly repetitive sequences in maize. Chromosome Res 15, 33–49 (2007). https://doi.org/10.1007/s10577-006-1102-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-006-1102-1

Key words

Navigation