Skip to main content
Log in

Production of transgenic maize plants and progeny by bombardment of hi-II immature embryos

  • Genetic Transformation/Somatic Cell Genetics
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

Production of transgenic maize (Zea mays L.) callus, plants, and progeny from microprojectile bombardment of 2–5-d cultured Hi-II immature embryos is described. Histological evidence indicates that these tissues are amenable to transformation due to surface layer cell division of the scutellum. Two out of every 100 bombarded embryos produced transgenic callus and R0 transgenic plants were both male and female fertile. Expected segregation of transgenes was observed in progeny. The primary advantage of bombarding these tissues is increased male and female fertility of transgenic plants compared with those produced using long-term callus or suspension cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armstrong, C. L. Somatic cell regeneration systems for in vitro genetic manipulation. In: Freeling, M.; Walbot, V., eds. The maize handbook. New York: Springer-Verlag; 1993:663–671.

    Google Scholar 

  • Armstrong, C. L.; Green, C. E. Establishment and maintenance of friable, embryogenic maize callus and the involvement of L-proline. Planta 164:207–214; 1985.

    Article  CAS  Google Scholar 

  • Armstrong, C. L.; Green, C. E.; Phillips, R. L. Development and availability of germplasm with high type II culture formation response. Maize Genetics Cooperation Newsletter 65:92–93; 1991.

    Google Scholar 

  • Armstrong, C. L.; Songstad, D. D. Method for transforming monocotyledonous plants. European Patent Application Number 93870173.7; 1993.

    Google Scholar 

  • Callis, J.; Fromm, M.; Walbot, V. Introns increase gene expression in cultured maize cells. Genes & Dev. 1:1183–1200; 1987.

    Article  CAS  Google Scholar 

  • Casas, A. M.; Kononowicz, A. J.; Zehr, U. B., et al. Transgenic sorghum plants via microprojectile bombardment. Proc. Natl. Acad. Sci. 90:11212–11216; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Christou, P.; Ford, T. L.; Kofron, M. Production of transgenic rice (Oryza sativa L.) plants from agronomically important indica and japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos. Bio/Technol. 9:957–962; 1991.

    Article  Google Scholar 

  • Chu, C. C.; Wang, C. C.; Sun, C. S., et al. Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources. Sci. Sin. 18:659–668; 1975.

    Google Scholar 

  • Cooley, J.; Ford, T.; Christou, P. Molecular and genetic characterization of elite transgenic rice plants produced by electric-discharge particle acceleration. Theor. Appl. Genet. 90:97–104; 1995.

    Article  CAS  Google Scholar 

  • D'Halluin, K.; Bonne, E.; Bossut, M., et al. Transgenic maize plants by tissue electroporation. Plant Cell 4:1495–1505; 1992.

    Article  PubMed  Google Scholar 

  • Dunder, E.; Dawson, J.; Brewer, J., et al. High frequency transformation of maize by microprojectile bombardment of immature embryos. In Vitro Cell. Dev. Biol. 29A:83; 1993.

    Google Scholar 

  • Fromm, M. E.; Morrish, F.; Armstrong, C., et al. Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Bio/Technol. 8:833–839; 1990.

    Article  CAS  Google Scholar 

  • Gordon-Kamm, W. J.; Spencer, T. M.; Mangano, M. L., et al. Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2:603–618; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Hagio, T.; Hirabayashi, T.; Machii, H., et al. Production of fertile transgenic barley (Hordeum vulgare L.) plant using the hygromycin-resistance marker. Plant Cell Rep. 14:329–334; 1995.

    Article  CAS  Google Scholar 

  • Haughn, G. W.; Smith, J.; Mazur, B., et al. Transformation with a mutant Arabidopsis acetolactate synthase gene renders tobacco resistant to sulfonylurea herbicides. Mol. & Gen. Genet. 211:266–271; 1987.

    Article  Google Scholar 

  • Jefferson, R. A.; Kavanagh, T. A.; Bevan, M. W. Gus fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6:3901–3907; 1987.

    PubMed  CAS  Google Scholar 

  • Klein, T. M.; Gradziel, T.; Fromm, M. E., et al. Factors influencing gene delivery intoZea mays cells by high-velocity microprojectiles. Bio/Technol. 6:559–563; 1988.

    Article  CAS  Google Scholar 

  • Koziel, M. G.; Beland, G. L.; Bowman, C., et al. Field performance of elite transgenic maize plants expressing an insecticidal protein derived fromBacillus thuringiensis. Bio/Technol. 11:194–200; 1993.

    Article  CAS  Google Scholar 

  • Lee, K. Y.; Townsend, J.; Tepperman, J., et al. The molecular basis of sulfonylurea herbicide resistance in tobacco. EMBO J. 7:1241–1248; 1988.

    PubMed  CAS  Google Scholar 

  • Li, B. J.; Xu, X. P.; Shi, H. P., et al. Introduction of foreign genes into the seed embryo, cells of rice by electroinjection and the regeneration of transgenic rice plants. Sci. China 34:923–930; 1991.

    Google Scholar 

  • Li, L.; Qu, R.; de Kochko, A., et al. An improved rice transformation system using the biolistic method. Plant Cell Rep. 12:250–255; 1993.

    Article  Google Scholar 

  • Perl, A.; Kless, H.; Blumenthal, A., et al. Improvement of plant regeneration and GUS expression in scutellar wheat calli by optimization of culture conditions and DNA-microprojectile delivery procedures. Mol. & Gen. Genet. 235:279–284; 1992.

    Article  CAS  Google Scholar 

  • Peschke, V. M.; Phillips, R. L. Genetic implications of somaclonal variation in plants. Adv. Genet. 30:41–75; 1992.

    Article  CAS  Google Scholar 

  • Ritala, A.; Aspegren, K.; Kurten, U., et al. Fertile transgenic barley by particle bombardment of immature embryos. Plant Mol. Biol. 24:317–325; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Rochester, D. E.; Winters, J. A.; Shah, D. M. The structure and expression of maize genes encoding the major heat shock protein. EMBO J. 5:451–458; 1986.

    PubMed  CAS  Google Scholar 

  • Songstad, D. D.; Armstrong, C. L.; Petersen, W. L. AgNO3 increases type-II callus production from immature embryos of maize inbred B73 and its derivatives. Plant Cell Rep. 9:699–702; 1991.

    Article  CAS  Google Scholar 

  • Songstad, D. D.; Halaka, F. G.; DeBoer, D. L., et al. Transient expression of GUS and anthocyanin constructs in intact maize immature embryos following electroporation. Plant Cell Tissue Organ Cult. 33:195–201; 1993.

    Article  CAS  Google Scholar 

  • Walters, D. A.; Vetsch, C. S.; Potts, D. E., et al. Transformation and inheritance of a hygromycin phosphotransferase gene in maize plants. Plant Mol. Biol. 18:189–200; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Wan, Y.; Lemaux, P. G. Generation of large numbers of independently transformed fertile barley plants. Plant Physiol. 104:37–48; 1994.

    PubMed  CAS  Google Scholar 

  • Weeks, J. T.; Anderson, O. D.; Blechl, A. E. Rapid production of multiple independent lines of fertile transgenic wheat (Triticum aestivum). Plant Physiol. 102:1077–1084; 1993.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Songstad, D.D., Armstrong, C.L., Petersen, W.L. et al. Production of transgenic maize plants and progeny by bombardment of hi-II immature embryos. In Vitro Cell Dev Biol - Plant 32, 179–183 (1996). https://doi.org/10.1007/BF02822763

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02822763

Key words

Navigation