Abadier M, Haghayegh Jahromi N, Cardoso Alves L, Boscacci R, Vestweber D, Barnum S, Deutsch U, Engelhardt B, Lyck R (2015) Cell surface levels of endothelial ICAM-1 influence the transcellular or paracellular T-cell diapedesis across the blood–brain barrier. Eur J Immunol 45:1043–1058. https://doi.org/10.1002/eji.201445125
CAS
PubMed
Article
Google Scholar
Abulrob A, Brunette E, Slinn J, Baumann E, Stanimirovic D (2008) Dynamic analysis of the blood–brain barrier disruption in experimental stroke using time domain in vivo fluorescence imaging. Mol Imaging 7:248–262. https://doi.org/10.2310/7290.2008.00025
PubMed
Google Scholar
Agarwal R, Brunelli SM, Williams K, Mitchell MD, Feldman HI, Umscheid CA (2009) Gadolinium-based contrast agents and nephrogenic systemic fibrosis: a systematic review and meta-analysis. Nephrol Dial Transplant 24:856–863. https://doi.org/10.1093/ndt/gfn593
CAS
PubMed
Article
Google Scholar
Allen E, Jabouille A, Rivera LB, Lodewijckx I, Missiaen R, Steri V, Feyen K, Tawney J, Hanahan D, Michael IP, Bergers G (2017) Combined antiangiogenic and anti-PD-L1 therapy stimulates tumor immunity through HEV formation. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aak9679
Google Scholar
Alvarez JI, Dodelet-Devillers A, Kebir H, Ifergan I, Fabre PJ, Terouz S, Sabbagh M, Wosik K, Bourbonnière L, Bernard M, van Horssen J, de Vries HE, Charron F, Prat A (2011) The hedgehog pathway promotes blood–brain barrier integrity and CNS immune quiescence. Science 334:1727–7731. https://doi.org/10.1126/science.1206936
CAS
PubMed
Article
Google Scholar
Alvarez JI, Saint-Laurent O, Godschalk A, Terouz S, Briels C, Larouche S, Bourbonnière L, Larochelle C, Prat A (2015) Focal disturbances in the blood–brain barrier are associated with formation of neuroinflammatory lesions. Neurobiol Dis 74:14–24. https://doi.org/10.1016/j.nbd.2014.09.016
CAS
PubMed
Article
Google Scholar
Aubé B, Lévesque SA, Paré A, Chamma É, Kebir H, Gorina R, Lécuyer M-A, Alvarez JI, De Koninck Y, Engelhardt B, Prat A, Côté D, Lacroix S (2014) Neutrophils mediate blood-spinal cord barrier disruption in demyelinating neuroinflammatory diseases. J Immunol 193:2438–2454. https://doi.org/10.4049/jimmunol.1400401
PubMed
Article
CAS
Google Scholar
Avraham HK, Jiang S, Fu Y, Nakshatri H, Ovadia H, Avraham S (2014) Angiopoietin-2 mediates blood–brain barrier impairment and colonization of triple-negative breast cancer cells in brain. J Pathol 232:369–381. https://doi.org/10.1002/path.4304
CAS
PubMed
Article
Google Scholar
Baeten KM, Akassoglou K (2011) Extracellular matrix and matrix receptors in blood–brain barrier formation and stroke. Dev Neurobiol 71:1018–1039. https://doi.org/10.1002/dneu.20954
CAS
PubMed
PubMed Central
Article
Google Scholar
Banerjee S, Bhat MA (2007) Neuron-glial interactions in blood–brain barrier formation. Annu Rev Neurosci 30:235–258. https://doi.org/10.1146/annurev.neuro.30.051606.094345
CAS
PubMed
PubMed Central
Article
Google Scholar
Bauer S, van Alphen N, Becker A, Chiocchetti A, Deichmann R, Deller T, Freiman T, Freitag CM, Gehrig J, Hermsen AM, Jedlicka P, Kell C, Klein KM, Knake S, Kullmann DM, Liebner S, Norwood BA, Omigie D, Plate K, Reif A, Reif PS, Reiss Y, Roeper J, Ronellenfitsch MW, Schorge S, Schratt G, Schwarzacher SW, Steinbach JP, Strzelczyk A, Triesch J, Wagner M, Walker MC, von Wegner F, Rosenow F (2017) Personalized translational epilepsy research—novel approaches and future perspectives: part II: experimental and translational approaches. Epilepsy Behav. https://doi.org/10.1016/j.yebeh.2017.06.040
Google Scholar
Ben-Zvi A, Lacoste B, Kur E, Andreone BJ, Mayshar Y, Yan H, Gu C (2014) Mfsd2a is critical for the formation and function of the blood–brain barrier. Nature. https://doi.org/10.1038/nature13324
PubMed
PubMed Central
Google Scholar
Blair LJ, Frauen HD, Zhang B, Nordhues BA, Bijan S, Lin Y-C, Zamudio F, Hernandez LD, Sabbagh JJ, Selenica M-LB, Dickey CA (2015) Tau depletion prevents progressive blood–brain barrier damage in a mouse model of tauopathy. Acta Neuropathol Commun 3:8. https://doi.org/10.1186/s40478-015-0186-2
PubMed
PubMed Central
Article
CAS
Google Scholar
Borjini N, Fernández M, Giardino L, Calzà L (2016) Cytokine and chemokine alterations in tissue, CSF, and plasma in early presymptomatic phase of experimental allergic encephalomyelitis (EAE), in a rat model of multiple sclerosis. J Neuroinflammation 13:291. https://doi.org/10.1186/s12974-016-0757-6
PubMed
PubMed Central
Article
CAS
Google Scholar
Bouts MJ, Tiebosch IA, Rudrapatna US, van der Toorn A, Wu O, Dijkhuizen RM (2017) Prediction of hemorrhagic transformation after experimental ischemic stroke using MRI-based algorithms. J Cereb Blood Flow Metab 37:3065–3076. https://doi.org/10.1177/0271678X16683692
PubMed
Article
Google Scholar
Buckwalter MS, Coleman BS, Buttini M, Barbour R, Schenk D, Games D, Seubert P, Wyss-Coray T (2006) Increased T cell recruitment to the CNS after amyloid beta 1-42 immunization in Alzheimer’s mice overproducing transforming growth factor-beta 1. J Neurosci 26:11437–11441. https://doi.org/10.1523/JNEUROSCI.2436-06.2006
CAS
PubMed
PubMed Central
Article
Google Scholar
Campbell M, Humphries P (2012) The blood-retina barrier: tight junctions and barrier modulation. Adv Exp Med Biol 763:70–84. https://doi.org/10.1007/978-1-4614-4711-5-3
CAS
PubMed
Google Scholar
Campochiaro PA, Peters KG (2016) Targeting Tie2 for treatment of diabetic retinopathy and diabetic macular edema. Curr Diabetes Rep 16:126. https://doi.org/10.1007/s11892-016-0816-5
Article
CAS
Google Scholar
Carlson T, Kroenke M, Rao P, Lane TE, Segal B (2008) The Th17-ELR + CXC chemokine pathway is essential for the development of central nervous system autoimmune disease. J Exp Med 205:811–823. https://doi.org/10.1084/jem.20072404
CAS
PubMed
PubMed Central
Article
Google Scholar
Carman CV, Martinelli R (2015) T Lymphocyte–endothelial interactions: emerging understanding of trafficking and antigen-specific immunity. Front Immunol 6:603. https://doi.org/10.3389/fimmu.2015.00603
PubMed
PubMed Central
Article
CAS
Google Scholar
Carrano A, Hoozemans JJM, van der Vies SM, van Horssen J, de Vries HE, Rozemuller AJM (2012) Neuroinflammation and blood–brain barrier changes in capillary amyloid angiopathy. Neuro Degener Dis 10:329–331. https://doi.org/10.1159/000334916
CAS
Article
Google Scholar
Cayrol R, Wosik K, Berard JL, Dodelet-Devillers A, Ifergan I, Kebir H, Haqqani AS, Kreymborg K, Krug S, Moumdjian R, Bouthillier A, Becher B, Arbour N, David S, Stanimirovic D, Prat A (2008) Activated leukocyte cell adhesion molecule promotes leukocyte trafficking into the central nervous system. Nat Immunol 9:137–145. https://doi.org/10.1038/ni1551
CAS
PubMed
Article
Google Scholar
Chen J, Luo Y, Hui H, Cai T, Huang H, Yang F, Feng J, Zhang J, Yan X (2017) CD146 coordinates brain endothelial cell-pericyte communication for blood–brain barrier development. Proc Natl Acad Sci 4:201710848. https://doi.org/10.1073/pnas.1710848114
Google Scholar
Cheslow L, Alvarez JI (2016) Glial-endothelial crosstalk regulates blood–brain barrier function. Curr Opin Pharmacol 26:39–46. https://doi.org/10.1016/j.coph.2015.09.010
CAS
PubMed
Article
Google Scholar
Cho C, Smallwood PM, Nathans J (2017) Reck and Gpr124 are essential receptor cofactors for Wnt7a/Wnt7b-specific signaling in mammalian CNS angiogenesis and blood–brain barrier regulation. Neuron. https://doi.org/10.1016/j.neuron.2017.07.031
Google Scholar
Chow BW, Gu C (2017) Gradual suppression of transcytosis governs functional blood-retinal barrier formation. Neuron 93(1325–1333):e3. https://doi.org/10.1016/j.neuron.2017.02.043
Google Scholar
Daneman R, Engelhardt B (2017) Brain barriers in health and disease. Neurobiol Dis 107:1–3. https://doi.org/10.1016/j.nbd.2017.05.008
PubMed
Article
Google Scholar
Deddens LH, Van Tilborg GAF, Mulder WJM, de Vries HE, Dijkhuizen RM (2012) Imaging neuroinflammation after stroke: current status of cellular and molecular MRI strategies. Cerebrovasc Dis 33:392–402. https://doi.org/10.1159/000336116
CAS
PubMed
Article
Google Scholar
Dejana E, Orsenigo F (2013) Endothelial adherens junctions at a glance. J Cell Sci 126:2545–2549. https://doi.org/10.1242/jcs.124529
CAS
PubMed
Article
Google Scholar
Desestret V, Brisset J-C, Moucharrafie S, Devillard E, Nataf S, Honnorat J, Nighoghossian N, Berthezène Y, Wiart M (2009) Early-stage investigations of ultrasmall superparamagnetic iron oxide-induced signal change after permanent middle cerebral artery occlusion in mice. Stroke 40:1834–1841. https://doi.org/10.1161/STROKEAHA.108.531269
PubMed
Article
Google Scholar
Deutsch U, Schlaeger TM, Dehouck B, Döring A, Tauber S, Risau W, Engelhardt B (2008) Inducible endothelial cell-specific gene expression in transgenic mouse embryos and adult mice. Exp Cell Res 314:1202–1216. https://doi.org/10.1016/j.yexcr.2007.12.026
CAS
PubMed
Article
Google Scholar
Dijkhuizen RM (2002) Rapid breakdown of microvascular barriers and subsequent hemorrhagic transformation after delayed recombinant tissue plasminogen activator treatment in a rat embolic stroke model. Stroke 33:2100–2104. https://doi.org/10.1161/01.STR.0000023534.37670.F7
CAS
PubMed
Article
Google Scholar
Ebnet K, Brinkmann BF, Kummer D, Misselwitz S, Peddibhotla SSD, Tuncay H (2013) Tight Junctions, Junctional Adhesion Molecules (JAMs), and the Blood Brain Barrier. In: Martin TA, Jiang WG (eds) Tight Junctions in Cancer Metastasis. Springer, Netherlands, Dordrecht, p 313
Google Scholar
Elyaman W, Khoury SJ (2017) Th9 cells in the pathogenesis of EAE and multiple sclerosis. Semin Immunopathol 39:79–87. https://doi.org/10.1007/s00281-016-0604-y
CAS
PubMed
Article
Google Scholar
Engelhardt B, Liebner S (2014) Novel insights into the development and maintenance of the blood–brain barrier. Cell Tissue Res 355:687–699. https://doi.org/10.1007/s00441-014-1811-2
CAS
PubMed
PubMed Central
Article
Google Scholar
Erickson MA, Banks WA (2013) Blood–brain barrier dysfunction as a cause and consequence of Alzheimer’s disease. J Cereb Blood Flow Metab 33:1500–1513. https://doi.org/10.1038/jcbfm.2013.135
CAS
PubMed
PubMed Central
Article
Google Scholar
Ewing JR, Knight RA, Nagaraja TN, Yee JS, Nagesh V, Whitton PA, Li L, Fenstermacher JD (2003) Patlak plots of Gd-DTPA MRI data yield blood–brain transfer constants concordant with those of 14C-sucrose in areas of blood–brain opening. Magn Reson Med 50:283–292. https://doi.org/10.1002/mrm.10524
PubMed
Article
Google Scholar
Fabis MJ, Phares TW, Kean RB, Koprowski H, Hooper DC (2008) Blood–brain barrier changes and cell invasion differ between therapeutic immune clearance of neurotrophic virus and CNS autoimmunity. Proc Natl Acad Sci 105:15511–15516. https://doi.org/10.1073/pnas.0807656105
CAS
PubMed
PubMed Central
Article
Google Scholar
Ferrara N, Adamis AP (2016) Ten years of anti-vascular endothelial growth factor therapy. Nat Rev Drug Discov 15:385–403. https://doi.org/10.1038/nrd.2015.17
CAS
PubMed
Article
Google Scholar
Ferretti MT, Merlini M, Spani C, Gericke C, Schweizer N, Enzmann G, Engelhardt B, Kulic L, Suter T, Nitsch RM (2016) T-cell brain infiltration and immature antigen-presenting cells in transgenic models of Alzheimer’s disease-like cerebral amyloidosis. Brain Behav Immun 54:211–225. https://doi.org/10.1016/j.bbi.2016.02.009
CAS
PubMed
Article
Google Scholar
Glatigny S, Duhen R, Oukka M, Bettelli E (2011) Cutting edge: loss of α4 integrin expression differentially affects the homing of Th1 and Th17 cells. J Immunol 187:6176–6179. https://doi.org/10.4049/jimmunol.1102515
CAS
PubMed
PubMed Central
Article
Google Scholar
Goswami D, März S, Li Y-T, Artz A, Schäfer K, Seelige R, Pacheco-Blanco M, Jing D, Bixel MG, Araki M, Araki K, Yamamura K-I, Vestweber D (2017) Endothelial CD99 supports arrest of mouse neutrophils in venules and binds to neutrophil PILRs. Blood 129:1811–1822. https://doi.org/10.1182/blood-2016-08-733394
CAS
PubMed
Article
Google Scholar
Gurnik S, Devraj K, Macas J, Yamaji M, Starke J, Scholz A, Sommer K, Di Tacchio M, Vutukuri R, Beck H, Mittelbronn M, Foerch C, Pfeilschifter W, Liebner S, Peters KG, Plate KH, Reiss Y (2016) Angiopoietin-2-induced blood–brain barrier compromise and increased stroke size are rescued by VE-PTP-dependent restoration of Tie2 signaling. Acta Neuropathol 131:753–773. https://doi.org/10.1007/s00401-016-1551-3
CAS
PubMed
PubMed Central
Article
Google Scholar
Halliday MR, Rege SV, Ma Q, Zhao Z, Miller CA, Winkler EA, Zlokovic BV (2016) Accelerated pericyte degeneration and blood–brain barrier breakdown in apolipoprotein E4 carriers with Alzheimer’s disease. J Cereb Blood Flow Metab 36:216–227. https://doi.org/10.1038/jcbfm.2015.44
CAS
PubMed
PubMed Central
Article
Google Scholar
Hambardzumyan D, Bergers G (2015) Glioblastoma: defining tumor niches. Trends Cancer 1:252–265. https://doi.org/10.1016/j.trecan.2015.10.009
PubMed
PubMed Central
Article
Google Scholar
Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. https://doi.org/10.1016/j.cell.2011.02.013
CAS
PubMed
Article
Google Scholar
Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, Jacobs AH, Wyss-Coray T, Vitorica J, Ransohoff RM, Herrup K, Frautschy SA, Finsen B, Brown GC, Verkhratsky A, Yamanaka K, Koistinaho J, Latz E, Halle A, Petzold GC, Town T, Morgan D, Shinohara ML, Perry VH, Holmes C, Bazan NG, Brooks DJ, Hunot S, Joseph B, Deigendesch N, Garaschuk O, Boddeke E, Dinarello CA, Breitner JC, Cole GM, Golenbock DT, Kummer MP (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14:388–405. https://doi.org/10.1016/S1474-4422(15)70016-5
CAS
PubMed
Article
Google Scholar
Heye AK, Thrippleton MJ, Armitage PA, Valdés Hernández MDC, Makin SD, Glatz A, Sakka E, Wardlaw JM (2016) Tracer kinetic modelling for DCE-MRI quantification of subtle blood–brain barrier permeability. Neuroimage 125:446–455. https://doi.org/10.1016/j.neuroimage.2015.10.018
PubMed
PubMed Central
Article
Google Scholar
Hjort N, Wu O, Ashkanian M, Sølling C, Mouridsen K, Christensen S, Gyldensted C, Andersen G, Østergaard L (2008) MRI detection of early blood–brain barrier disruption: parenchymal enhancement predicts focal hemorrhagic transformation after thrombolysis. Stroke 39:1025–1028. https://doi.org/10.1161/STROKEAHA.107.497719
PubMed
Article
Google Scholar
Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D, Yancopoulos GD, Wiegand SJ (1999) Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284:1994–1998. https://doi.org/10.1126/science.284.5422.1994
CAS
PubMed
Article
Google Scholar
Holopainen T, Saharinen P, D’Amico G, Lampinen A, Eklund L, Sormunen R, Anisimov A, Zarkada G, Lohela M, Helotera H, Tammela T, Benjamin LE, Ylä-Herttuala S, Leow CC, Koh GY, Alitalo K (2012) Effects of angiopoietin-2-blocking antibody on endothelial cell-cell junctions and lung metastasis. J Natl Cancer Inst 104:461–475. https://doi.org/10.1093/jnci/djs009
CAS
PubMed
PubMed Central
Article
Google Scholar
Huppert J, Closhen D, Croxford A, White R, Kulig P, Pietrowski E, Bechmann I, Becher B, Luhmann HJ, Waisman A, Kuhlmann CRW (2010) Cellular mechanisms of IL-17-induced blood–brain barrier disruption. FASEB J 24:1023–1034. https://doi.org/10.1096/fj.09-141978
CAS
PubMed
Article
Google Scholar
Ikenouchi J, Furuse M, Furuse K, Sasaki H, Tsukita S, Tsukita S (2005) Tricellulin constitutes a novel barrier at tricellular contacts of epithelial cells. J Cell Biol 171:939–945. https://doi.org/10.1083/jcb.200510043
CAS
PubMed
PubMed Central
Article
Google Scholar
Ilhan-Mutlu A, Osswald M, Liao Y, Gömmel M, Reck M, Miles D, Mariani P, Gianni L, Lutiger B, Nendel V, Srock S, Perez-Moreno P, Thorsen F, von Baumgarten L, Preusser M, Wick W, Winkler F (2016) Bevacizumab prevents brain metastases formation in lung adenocarcinoma. Mol Cancer Ther 15:702–710. https://doi.org/10.1158/1535-7163.MCT-15-0582
CAS
PubMed
Article
Google Scholar
Jiang Q, Zhang ZG, Ding GL, Zhang L, Ewing JR, Wang L, Zhang R, Li L, Lu M, Meng H, Arbab AS, Hu J, Li QJ, Pourabdollah Nejad DS, Athiraman H, Chopp M (2005) Investigation of neural progenitor cell induced angiogenesis after embolic stroke in rat using MRI. Neuroimage 28:698–707. https://doi.org/10.1016/j.neuroimage.2005.06.063
PubMed
Article
Google Scholar
Jickling GC, Liu D, Stamova B, Ander BP, Zhan X, Lu A, Sharp FR (2014) Hemorrhagic transformation after ischemic stroke in animals and humans. J Cereb Blood Flow Metab 34:185–199. https://doi.org/10.1038/jcbfm.2013.203
CAS
PubMed
Article
Google Scholar
Kebir H, Kreymborg K, Ifergan I, Dodelet-Devillers A, Cayrol R, Bernard M, Giuliani F, Arbour N, Becher B, Prat A (2007) Human TH17 lymphocytes promote blood–brain barrier disruption and central nervous system inflammation. Nat Med 13:1173–1175. https://doi.org/10.1038/nm1651
CAS
PubMed
PubMed Central
Article
Google Scholar
Kerber M, Reiss Y, Wickersheim A, Jugold M, Kiessling F, Heil M, Tchaikovski V, Waltenberger J, Shibuya M, Plate KH, Machein MR (2008) Flt-1 signaling in macrophages promotes glioma growth in vivo. Cancer Res 68:7342–7351. https://doi.org/10.1158/0008-5472.CAN-07-6241
CAS
PubMed
Article
Google Scholar
Kerfoot SM, Kubes P (2002) Overlapping roles of P-selectin and alpha 4 integrin to recruit leukocytes to the central nervous system in experimental autoimmune encephalomyelitis. J Immunol 169:1000–1006. https://doi.org/10.4049/jimmunol.169.2.1000
CAS
PubMed
Article
Google Scholar
Klohs J, Steinbrink J, Bourayou R, Mueller S, Cordell R, Licha K, Schirner M, Dirnagl U, Lindauer U, Wunder A (2009) Near-infrared fluorescence imaging with fluorescently labeled albumin: a novel method for non-invasive optical imaging of blood–brain barrier impairment after focal cerebral ischemia in mice. J Neurosci Methods 180:126–132. https://doi.org/10.1016/j.jneumeth.2009.03.002
CAS
PubMed
Article
Google Scholar
Knight RA, Nagesh V, Nagaraja TN, Ewing JR, Whitton PA, Bershad E, Fagan SC, Fenstermacher JD (2005) Acute blood–brain barrier opening in experimentally induced focal cerebral ischemia is preferentially identified by quantitative magnetization transfer imaging. Magn Reson Med 54:822–832. https://doi.org/10.1002/mrm.20630
PubMed
Article
Google Scholar
Knowland D, Arac A, Sekiguchi KJ, Hsu M, Lutz SE, Perrino J, Steinberg GK, Barres BA, Nimmerjahn A, Agalliu D (2014) Stepwise recruitment of transcellular and paracellular pathways underlies blood–brain barrier breakdown in stroke. Neuron 82:603–617. https://doi.org/10.1016/j.neuron.2014.03.003
CAS
PubMed
PubMed Central
Article
Google Scholar
Kook S-Y, Hong HS, Moon M, Ha CM, Chang S, Mook-Jung I (2012) Aβ1−42-RAGE interaction disrupts tight junctions of the blood–brain barrier via Ca²+-calcineurin signaling. J Neurosci 32:8845–8854. https://doi.org/10.1523/JNEUROSCI.6102-11.2012
CAS
PubMed
Article
Google Scholar
Kronstein R, Seebach J, Großklaus S, Minten C, Engelhardt B, Drab M, Liebner S, Arsenijevic Y, Taha AA, Afanasieva T, Schnittler H-J (2012) Caveolin-1 opens endothelial cell junctions by targeting catenins. Cardiovasc Res 93:130–140. https://doi.org/10.1093/cvr/cvr256
CAS
PubMed
Article
Google Scholar
Larochelle C, Cayrol R, Kebir H, Alvarez JI, Lécuyer M-A, Ifergan I, Viel É, Bourbonnière L, Beauseigle D, Terouz S, Hachehouche L, Gendron S, Poirier J, Jobin C, Duquette P, Flanagan K, Yednock T, Arbour N, Prat A (2012) Melanoma cell adhesion molecule identifies encephalitogenic T lymphocytes and promotes their recruitment to the central nervous system. Brain 135:2906–2924. https://doi.org/10.1093/brain/aws212
PubMed
Article
Google Scholar
Latour LL, Kang D-W, Ezzeddine MA, Chalela JA, Warach S (2004) Early blood–brain barrier disruption in human focal brain ischemia. Ann Neurol 56:468–477. https://doi.org/10.1002/ana.20199
PubMed
Article
Google Scholar
Lemus HN, Warrington A, Rodriguez M (2018) Multiple sclerosis: mechanisms of disease and strategies for myelin and axonal repair. Neurol Clin 36:1–11. https://doi.org/10.1016/j.ncl.2017.08.002
PubMed
Article
Google Scholar
Lewis CE, Harney AS, Pollard JW (2016) The multifaceted role of perivascular macrophages in tumors. Cancer Cell 30:18–25. https://doi.org/10.1016/j.ccell.2016.05.017
CAS
PubMed
PubMed Central
Article
Google Scholar
Lécuyer M-A, Saint-Laurent O, Bourbonnière L, Larouche S, Larochelle C, Michel L, Charabati M, Abadier M, Zandee S, Haghayegh Jahromi N, Gowing E, Pittet C, Lyck R, Engelhardt B, Prat A (2017) Dual role of ALCAM in neuroinflammation and blood–brain barrier homeostasis. Proc Natl Acad Sci 114:E524–E533. https://doi.org/10.1073/pnas.1614336114
PubMed
PubMed Central
Article
CAS
Google Scholar
Li M, Shang D-S, Zhao W-D, Tian L, Li B, Fang W-G, Zhu L, Man S-M, Chen Y-H (2009) Amyloid beta interaction with receptor for advanced glycation end products up-regulates brain endothelial CCR5 expression and promotes T cells crossing the blood–brain barrier. J Immunol 182:5778–5788. https://doi.org/10.4049/jimmunol.0803013
CAS
PubMed
Article
Google Scholar
Lin K, Kazmi KS, Law M, Babb J, Peccerelli N, Pramanik BK (2007) Measuring elevated microvascular permeability and predicting hemorrhagic transformation in acute ischemic stroke using first-pass dynamic perfusion CT imaging. AJNR Am J Neuroradiol 28:1292–1298. https://doi.org/10.3174/ajnr.A0539
CAS
PubMed
Article
Google Scholar
Liu D-F, Qian C, An Y-L, Chang D, Ju S-H, Teng G-J (2014) Magnetic resonance imaging of post-ischemic blood–brain barrier damage with PEGylated iron oxide nanoparticles. Nanoscale 6:15161–15167. https://doi.org/10.1039/c4nr03942d
CAS
PubMed
Article
Google Scholar
Lockman PR, Mittapalli RK, Taskar KS, Rudraraju V, Gril B, Bohn KA, Adkins CE, Roberts A, Thorsheim HR, Gaasch JA, Huang S, Palmieri D, Steeg PS, Smith QR (2010) Heterogeneous blood-tumor barrier permeability determines drug efficacy in experimental brain metastases of breast cancer. Clin Cancer Res 16:5664–5678. https://doi.org/10.1158/1078-0432.CCR-10-1564
CAS
PubMed
PubMed Central
Article
Google Scholar
Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Ellison DW, Figarella-Branger D, Perry A, Reifenberger G, Deimling von A (2016) WHO Classification of Tumours of the Central Nervous System, 4 ed. International Agency for Research on Cancer
Lueg G, Gross CC, Lohmann H, Johnen A, Kemmling A, Deppe M, Groger J, Minnerup J, Wiendl H, Meuth SG, Duning T (2015) Clinical relevance of specific T-cell activation in the blood and cerebrospinal fluid of patients with mild Alzheimer’s disease. Neurobiol Aging 36:81–89. https://doi.org/10.1016/j.neurobiolaging.2014.08.008
CAS
PubMed
Article
Google Scholar
Lutz SE, Smith JR, Kim DH, Olson CVL, Ellefsen K, Bates JM, Gandhi SP, Agalliu D (2017) Caveolin1 is required for Th1 cell infiltration, but not tight junction remodeling, at the blood–brain barrier in autoimmune neuroinflammation. Cell Rep 21:2104–2117. https://doi.org/10.1016/j.celrep.2017.10.094
CAS
PubMed
PubMed Central
Article
Google Scholar
Man S-M, Ma Y-R, Shang D-S, Zhao W-D, Li B, Guo D-W, Fang W-G, Zhu L, Chen Y-H (2007) Peripheral T cells overexpress MIP-1alpha to enhance its transendothelial migration in Alzheimer’s disease. Neurobiol Aging 28:485–496. https://doi.org/10.1016/j.neurobiolaging.2006.02.013
CAS
PubMed
Article
Google Scholar
Marchiando AM, Shen L, Graham WV, Weber CR, Schwarz BT, Austin JR, Raleigh DR, Guan Y, Watson AJM, Montrose MH, Turner JR (2010) Caveolin-1-dependent occludin endocytosis is required for TNF-induced tight junction regulation in vivo. J Cell Biol 189:111–126. https://doi.org/10.1083/jcb.200902153
CAS
PubMed
PubMed Central
Article
Google Scholar
Masuda S, Oda Y, Sasaki H, Ikenouchi J, Higashi T, Akashi M, Nishi E, Furuse M (2011) LSR defines cell corners for tricellular tight junction formation in epithelial cells. J Cell Sci 124:548–555. https://doi.org/10.1242/jcs.072058
CAS
PubMed
Article
Google Scholar
Merali Z, Huang K, Mikulis D, Silver F, Kassner A (2017) Evolution of blood–brain-barrier permeability after acute ischemic stroke. PLoS ONE 12:e0171558. https://doi.org/10.1371/journal.pone.0171558
PubMed
PubMed Central
Article
CAS
Google Scholar
Merlini M, Meyer EP, Ulmann-Schuler A, Nitsch RM (2011) Vascular beta-amyloid and early astrocyte alterations impair cerebrovascular function and cerebral metabolism in transgenic arcAbeta mice. Acta Neuropathol 122:293–311. https://doi.org/10.1007/s00401-011-0834-y
CAS
PubMed
PubMed Central
Article
Google Scholar
Mo R, Chen J, Han Y, Bueno-Cannizares C, Misek DE, Lescure PA, Hanash S, Yung RL (2003) T cell chemokine receptor expression in aging. J Immunol 170:895–904. https://doi.org/10.4049/jimmunol.170.2.895
CAS
PubMed
Article
Google Scholar
Montagne A, Zhao Z, Zlokovic BV (2017) Alzheimer’s disease: a matter of blood–brain barrier dysfunction? J Exp Med. https://doi.org/10.1084/jem.20171406
PubMed
Google Scholar
Motz GT, Coukos G (2013) Deciphering and reversing tumor immune suppression. Immunity 39:61–73. https://doi.org/10.1016/j.immuni.2013.07.005
CAS
PubMed
PubMed Central
Article
Google Scholar
Murphy AC, Lalor SJ, Lynch MA, Mills KHG (2010) Infiltration of Th1 and Th17 cells and activation of microglia in the CNS during the course of experimental autoimmune encephalomyelitis. Brain Behav Immun 24:641–651. https://doi.org/10.1016/j.bbi.2010.01.014
CAS
PubMed
Article
Google Scholar
Nael K, Knitter JR, Jahan R, Gornbein J, Ajani Z, Feng L, Meyer BC, Schwamm LH, Yoo AJ, Marshall RS, Meyers PM, Yavagal DR, Wintermark M, Liebeskind DS, Guzy J, Starkman S, Saver JL, Kidwell CS (2017) Multiparametric magnetic resonance imaging for prediction of parenchymal hemorrhage in acute ischemic stroke after reperfusion therapy. Stroke 48:664–670. https://doi.org/10.1161/STROKEAHA.116.014343
PubMed
PubMed Central
Article
Google Scholar
Naert G, Rivest S (2013) A deficiency in CCR2 + monocytes: the hidden side of Alzheimer’s disease. J Mol Cell Biol 5:284–293. https://doi.org/10.1093/jmcb/mjt028
CAS
PubMed
Article
Google Scholar
Osswald M, Blaes J, Liao Y, Solecki G, Gommel M, Berghoff AS, Salphati L, Wallin JJ, Phillips HS, Wick W, Winkler F (2016) Impact of blood–brain barrier integrity on tumor growth and therapy response in brain metastases. Clin Cancer Res 22:6078–6087. https://doi.org/10.1158/1078-0432.CCR-16-1327
CAS
PubMed
Article
Google Scholar
Osterberg N, Ferrara N, Vacher J, Gaedicke S, Niedermann G, Weyerbrock A, Doostkam S, Schaefer H-E, Plate KH, Machein MR (2016) Decrease of VEGF-A in myeloid cells attenuates glioma progression and prolongs survival in an experimental glioma model. NeuroOncol 18:939–949. https://doi.org/10.1093/neuonc/now005
CAS
Google Scholar
Park J-S, Kim I-K, Han S, Park I, Kim C, Bae J, Oh SJ, Lee S, Kim JH, Woo D-C, He Y, Augustin HG, Kim I, Lee D, Koh GY (2016) Normalization of tumor vessels by Tie2 activation and Ang2 inhibition enhances drug delivery and produces a favorable tumor microenvironment. Cancer Cell 30:953–967. https://doi.org/10.1016/j.ccell.2016.10.018
CAS
PubMed
Article
Google Scholar
Pierson ER, Wagner CA, Goverman JM (2016) The contribution of neutrophils to CNS autoimmunity. Clin Immunol. https://doi.org/10.1016/j.clim.2016.06.017
PubMed
PubMed Central
Google Scholar
Pietronigro E, Zenaro E, Constantin G (2016) Imaging of leukocyte trafficking in Alzheimer’s disease. Front Immunol 7:33. https://doi.org/10.3389/fimmu.2016.00033
PubMed
PubMed Central
Article
CAS
Google Scholar
Pietronigro EC, Bianca Della V, Zenaro E, Constantin G (2017) NETosis in Alzheimer’s disease. Front in Immunol 8:211. https://doi.org/10.3389/fimmu.2017.00211
Article
Google Scholar
Pitter KL, Tamagno I, Alikhanyan K, Hosni-Ahmed A, Pattwell SS, Donnola S, Dai C, Ozawa T, Chang M, Chan TA, Beal K, Bishop AJ, Barker CA, Jones TS, Hentschel B, Gorlia T, Schlegel U, Stupp R, Weller M, Holland EC, Hambardzumyan D (2016) Corticosteroids compromise survival in glioblastoma. Brain 139:1458–1471. https://doi.org/10.1093/brain/aww046
PubMed
PubMed Central
Article
Google Scholar
Plate KH, Breier G, Weich HA, Risau W (1992) Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 359:845–848. https://doi.org/10.1038/359845a0
CAS
PubMed
Article
Google Scholar
Prager O, Chassidim Y, Klein C, Levi H, Shelef I, Friedman A (2010) Dynamic in vivo imaging of cerebral blood flow and blood–brain barrier permeability. Neuroimage 49:337–344. https://doi.org/10.1016/j.neuroimage.2009.08.009
PubMed
Article
Google Scholar
Prokop S, Miller KR, Drost N, Handrick S, Mathur V, Luo J, Wegner A, Wyss-Coray T, Heppner FL (2015) Impact of peripheral myeloid cells on amyloid-β pathology in Alzheimer’s disease-like mice. J Exp Med 212:1811–1818. https://doi.org/10.1084/jem.20150479
CAS
PubMed
PubMed Central
Article
Google Scholar
Quail DF, Joyce JA (2017) The Microenvironmental landscape of brain tumors. Cancer Cell 31:326–341. https://doi.org/10.1016/j.ccell.2017.02.009
CAS
PubMed
Article
Google Scholar
Querfurth HW, LaFerla FM (2010) Alzheimer’s disease. N Engl J Med 362:329–344. https://doi.org/10.1056/NEJMra0909142
CAS
PubMed
Article
Google Scholar
Reis M, Czupalla CJ, Ziegler N, Devraj K, Zinke J, Seidel S, Heck R, Thom S, Macas J, Bockamp E, Fruttiger M, Taketo MM, Dimmeler S, Plate KH, Liebner S (2012) Endothelial Wnt/β-catenin signaling inhibits glioma angiogenesis and normalizes tumor blood vessels by inducing PDGF-B expression. J Exp Med 209:1611–1627. https://doi.org/10.1084/jem.20111580
CAS
PubMed
PubMed Central
Article
Google Scholar
Reiss Y, Scholz A, Plate KH (2015) The angiopoietin—tie system: common signaling pathways for angiogenesis. Cancer Inflamm. https://doi.org/10.1007/978-1-4939-2907-8_13
Google Scholar
Ridder DA, Wenzel J, Muller K, Tollner K, Tong X-K, Assmann JC, Stroobants S, Weber T, Niturad C, Fischer L, Lembrich B, Wolburg H, Grand’Maison M, Papadopoulos P, Korpos E, Truchetet F, Rades D, Sorokin LM, Schmidt-Supprian M, Bedell BJ, Pasparakis M, Balschun D, D’Hooge R, Löscher W, Hamel E, Schwaninger M (2015) Brain endothelial TAK1 and NEMO safeguard the neurovascular unit. J Exp Med 212:1529–1549. https://doi.org/10.1084/jem.20150165
CAS
PubMed
PubMed Central
Article
Google Scholar
Roberts WG, Delaat J, Nagane M, Huang S, Cavenee WK, Palade GE (1998) Host microvasculature influence on tumor vascular morphology and endothelial gene expression. Am J Pathol 153:1239–1248. https://doi.org/10.1016/S0002-9440(10)65668-4
CAS
PubMed
PubMed Central
Article
Google Scholar
Rost NS, Cougo P, Lorenzano S, Li H, Cloonan L, Bouts MJ, Lauer A, Etherton MR, Karadeli HH, Musolino PL, Copen WA, Arai K, Lo EH, Feske SK, Furie KL, Wu O (2017) Diffuse microvascular dysfunction and loss of white matter integrity predict poor outcomes in patients with acute ischemic stroke. J Cereb Blood Flow Metab 88:2716781X7706449. https://doi.org/10.1177/0271678X17706449
Google Scholar
Rothhammer V, Heink S, Petermann F, Srivastava R, Claussen MC, Hemmer B, Korn T (2011) Th17 lymphocytes traffic to the central nervous system independently of α4 integrin expression during EAE. J Exp Med 208:2465–2476. https://doi.org/10.1084/jem.20110434
CAS
PubMed
PubMed Central
Article
Google Scholar
Saharinen P, Eklund L, Alitalo K (2017) Therapeutic targeting of the angiopoietin-TIE pathway. Nat Rev Drug Discov. https://doi.org/10.1038/nrd.2016.278
PubMed
Google Scholar
Scalzo F, Alger JR, Hu X, Saver JL, Dani KA, Muir KW, Demchuk AM, Coutts SB, Luby M, Warach S, Liebeskind DS, STIR, VISTA Imaging Investigators (2013) Multi-center prediction of hemorrhagic transformation in acute ischemic stroke using permeability imaging features. Magn Reson Imaging 31:961–969. https://doi.org/10.1016/j.mri.2013.03.013
PubMed
PubMed Central
Article
Google Scholar
Schmittnaegel M, Rigamonti N, Kadioglu E, Cassará A, Wyser Rmili C, Kiialainen A, Kienast Y, Mueller H-J, Ooi C-H, Laoui D, De Palma M (2017) Dual angiopoietin-2 and VEGFA inhibition elicits antitumor immunity that is enhanced by PD-1 checkpoint blockade. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aak9670
PubMed
Google Scholar
Schoknecht K, Prager O, Vazana U, Kamintsky L, Harhausen D, Zille M, Figge L, Chassidim Y, Schellenberger E, Kovács R, Heinemann U, Friedman A (2014) Monitoring stroke progression: in vivo imaging of cortical perfusion, blood–brain barrier permeability and cellular damage in the rat photothrombosis model. J Cereb Blood Flow Metab 34:1791–1801. https://doi.org/10.1038/jcbfm.2014.147
PubMed
PubMed Central
Article
Google Scholar
Scholz A, Harter PN, Cremer S, Yalcin BH, Gurnik S, Yamaji M, Di Tacchio M, Sommer K, Baumgarten P, Bähr O, Steinbach JP, Trojan J, Glas M, Herrlinger U, Krex D, Meinhardt M, Weyerbrock A, Timmer M, Goldbrunner R, Deckert M, Braun C, Schittenhelm J, Frueh JT, Ullrich E, Mittelbronn M, Plate KH, Reiss Y (2016) Endothelial cell-derived angiopoietin-2 is a therapeutic target in treatment-naive and bevacizumab-resistant glioblastoma. EMBO Mol Med 8:39–57. https://doi.org/10.15252/emmm.201505505
CAS
PubMed
Article
Google Scholar
Simmons SB, Liggitt D, Goverman JM (2014) Cytokine-regulated neutrophil recruitment is required for brain but not spinal cord inflammation during experimental autoimmune encephalomyelitis. J Immunol 193:555–563. https://doi.org/10.4049/jimmunol.1400807
CAS
PubMed
PubMed Central
Article
Google Scholar
Simpkins AN, Dias C, National Institutes of Health Natural History of Stroke Investigators (2016) Identification of reversible disruption of the human blood–brain barrier following acute ischemia. Stroke 47:2405–2408. https://doi.org/10.1161/STROKEAHA.116.013805
CAS
PubMed
PubMed Central
Article
Google Scholar
Sisó S, Jeffrey M, González L (2010) Sensory circumventricular organs in health and disease. Acta Neuropathol 120:689–705. https://doi.org/10.1007/s00401-010-0743-5
PubMed
Article
Google Scholar
Sohet F, Lin C, Munji RN, Lee SY, Ruderisch N, Soung A, Arnold TD, Derugin N, Vexler ZS, Yen FT, Daneman R (2015) LSR/angulin-1 is a tricellular tight junction protein involved in blood–brain barrier formation. J Cell Biol 208:703–711. https://doi.org/10.1083/jcb.201410131
CAS
PubMed
PubMed Central
Article
Google Scholar
Sonar SA, Lal G (2017) Differentiation and transmigration of CD4 T cells in neuroinflammation and autoimmunity. Front Immunol. https://doi.org/10.3389/fimmu.2017.01695
PubMed
PubMed Central
Google Scholar
Sonar SA, Shaikh S, Joshi N, Atre AN, Lal G (2017) IFN-γ promotes transendothelial migration of CD4 + T cells across the blood–brain barrier. Immunol Cell Biol 95:843–853. https://doi.org/10.1038/icb.2017.56
CAS
PubMed
Article
Google Scholar
Sourbron SP, Buckley DL (2013) Classic models for dynamic contrast-enhanced MRI. NMR Biomed 26:1004–1027. https://doi.org/10.1002/nbm.2940
PubMed
Article
Google Scholar
Späni C, Suter T, Derungs R, Ferretti MT, Welt T, Wirth F, Gericke C, Nitsch RM, Kulic L (2015) Reduced β-amyloid pathology in an APP transgenic mouse model of Alzheimer’s disease lacking functional B and T cells. Acta Neuropathol Commun 3:71. https://doi.org/10.1186/s40478-015-0251-x
PubMed
PubMed Central
Article
CAS
Google Scholar
Stamatovic SM, Keep RF, Wang MM, Jankovic I, Andjelkovic AV (2009) Caveolae-mediated internalization of occludin and claudin-5 during CCL2-induced tight junction remodeling in brain endothelial cells. J Biol Chem 284:19053–19066. https://doi.org/10.1074/jbc.M109.000521
CAS
PubMed
PubMed Central
Article
Google Scholar
Stankovic ND, Teodorczyk M, Ploen R, Zipp F, Schmidt MHH (2015) Microglia–blood vessel interactions: a double-edged sword in brain pathologies. Acta Neuropathol 131:347–363. https://doi.org/10.1007/s00401-015-1524-y
Article
Google Scholar
Stomrud E, Björkqvist M, Janciauskiene S, Minthon L, Hansson O (2010) Alterations of matrix metalloproteinases in the healthy elderly with increased risk of prodromal Alzheimer’s disease. Alzheimers Res Ther 2:20. https://doi.org/10.1186/alzrt44
PubMed
PubMed Central
Article
CAS
Google Scholar
Stratmann A, Risau W, Plate KH (1998) Cell type-specific expression of angiopoietin-1 and angiopoietin-2 suggests a role in glioblastoma angiogenesis. Am J Pathol 153:1459–1466. https://doi.org/10.1016/S0002-9440(10)65733-1
CAS
PubMed
PubMed Central
Article
Google Scholar
Stromnes IM, Cerretti LM, Liggitt D, Harris RA, Goverman JM (2008) Differential regulation of central nervous system autoimmunity by T(H)1 and T(H)17 cells. Nat Med 14:337–342. https://doi.org/10.1038/nm1715
CAS
PubMed
PubMed Central
Article
Google Scholar
Sweeney MD, Ayyadurai S, Zlokovic BV (2016) Pericytes of the neurovascular unit: key functions and signaling pathways. Nat Neurosci 19:771–783. https://doi.org/10.1038/nn.4288
CAS
PubMed
PubMed Central
Article
Google Scholar
Szigeti K, Horváth I, Veres DS, Martinecz B, Lénárt N, Kovács N, Bakcsa E, Márta A, Semjéni M, Máthé D, Dénes Á (2015) A novel SPECT-based approach reveals early mechanisms of central and peripheral inflammation after cerebral ischemia. J Cereb Blood Flow Metab 35:1921–1929. https://doi.org/10.1038/jcbfm.2015.174
PubMed
PubMed Central
Article
Google Scholar
Tietz S, Engelhardt B (2015) Brain barriers: crosstalk between complex tight junctions and adherens junctions. J Cell Biol 209:493–506. https://doi.org/10.1083/jcb.201412147
CAS
PubMed
PubMed Central
Article
Google Scholar
Underly RG, Levy M, Hartmann DA, Grant RI, Watson AN, Shih AY (2017) Pericytes as inducers of rapid, matrix metalloproteinase-9-dependent capillary damage during ischemia. J Neurosci 37:129–140. https://doi.org/10.1523/JNEUROSCI.2891-16.2016
CAS
PubMed
PubMed Central
Article
Google Scholar
van Tellingen O, Yetkin-Arik B, de Gooijer MC, Wesseling P, Wurdinger T, de Vries HE (2015) Overcoming the blood–brain tumor barrier for effective glioblastoma treatment. Drug Resist Updat 19:1–12. https://doi.org/10.1016/j.drup.2015.02.002
PubMed
Article
Google Scholar
Vanhollebeke B, Stone OA, Bostaille N, Cho C, Zhou Y, Maquet E, Gauquier A, Cabochette P, Fukuhara S, Mochizuki N, Nathans J, Stainier DY (2015) Tip cell-specific requirement for an atypical Gpr124- and Reck-dependent Wnt/β-catenin pathway during brain angiogenesis. Elife 4:e06489. https://doi.org/10.7554/eLife.06489
PubMed Central
Article
CAS
Google Scholar
Villringer K, Sanz Cuesta BE, Ostwaldt A-C, Grittner U, Brunecker P, Khalil AA, Schindler K, Eisenblätter O, Audebert H, Fiebach JB (2017) DCE-MRI blood–brain barrier assessment in acute ischemic stroke. Neurology 88:433–440. https://doi.org/10.1212/WNL.0000000000003566
PubMed
Article
Google Scholar
Wan W, Cao L, Liu L, Zhang C, Kalionis B, Tai X, Li Y, Xia S (2015) Aβ(1-42) oligomer-induced leakage in an in vitro blood–brain barrier model is associated with up-regulation of RAGE and metalloproteinases, and down-regulation of tight junction scaffold proteins. J Neurochem 134:382–393. https://doi.org/10.1111/jnc.13122
CAS
PubMed
Article
Google Scholar
Wang J, Fernández-Seara MA, Wang S, St Lawrence KS (2007) When perfusion meets diffusion: in vivo measurement of water permeability in human brain. J Cereb Blood Flow Metab 27:839–849. https://doi.org/10.1038/sj.jcbfm.9600398
PubMed
Article
Google Scholar
Watkins S, Robel S, Kimbrough IF, Robert SM, Ellis-Davies G, Sontheimer H (2014) Disruption of astrocyte-vascular coupling and the blood–brain barrier by invading glioma cells. Nat Commun 5:4196. https://doi.org/10.1038/ncomms5196
CAS
PubMed
PubMed Central
Article
Google Scholar
Wilhelm I, Nyúl-Tóth Á, Suciu M, Hermenean A, Krizbai IA (2016) Heterogeneity of the blood–brain barrier. Tissue Barriers 4:e1143544. https://doi.org/10.1080/21688370.2016.1143544
PubMed
PubMed Central
Article
CAS
Google Scholar
Winger RC, Harp CT, Chiang M-Y, Sullivan DP, Watson RL, Weber EW, Podojil JR, Miller SD, Muller WA (2016) Cutting edge: CD99 is a novel therapeutic target for control of T cell-mediated central nervous system autoimmune disease. J Immunol 196:1443–1448. https://doi.org/10.4049/jimmunol.1501634
CAS
PubMed
PubMed Central
Article
Google Scholar
Winger RC, Koblinski JE, Kanda T, Ransohoff RM, Muller WA (2014) Rapid remodeling of tight junctions during paracellular diapedesis in a human model of the blood–brain barrier. J Immunol 193:2427–2437. https://doi.org/10.4049/jimmunol.1400700
CAS
PubMed
PubMed Central
Article
Google Scholar
Wolburg H, Noell S, Fallier-Becker P, Mack AF, Wolburg-Buchholz K (2012) The disturbed blood–brain barrier in human glioblastoma. Mol Aspects Med 33:579–589. https://doi.org/10.1016/j.mam.2012.02.003
CAS
PubMed
Article
Google Scholar
Wu H, Deng R, Chen X, Wong WC, Chen H, Gao L, Nie Y, Wu W, Shen J (2016) Caveolin-1 is critical for lymphocyte trafficking into central nervous system during experimental autoimmune encephalomyelitis. J Neurosci 36:5193–5199. https://doi.org/10.1523/JNEUROSCI.3734-15.2016
CAS
PubMed
Article
Google Scholar
Wu S, Thornhill RE, Chen S, Rammo W, Mikulis DJ, Kassner A (2009) Relative recirculation: a fast, model-free surrogate for the measurement of blood–brain barrier permeability and the prediction of hemorrhagic transformation in acute ischemic stroke. Invest Radiol 44:662–668. https://doi.org/10.1097/RLI.0b013e3181ae9c40
PubMed
Article
Google Scholar
Yamada M, Itoh Y, Shintaku M, Kawamura J, Jensson O, Thorsteinsson L, Suematsu N, Matsushita M, Otomo E (1996) Immune reactions associated with cerebral amyloid angiopathy. Stroke 27:1155–1162. https://doi.org/10.1161/01.STR.27.7.1155
CAS
PubMed
Article
Google Scholar
Yang W, Wu Q, Yuan C, Gao J, Xiao M, Gu M, Ding J, Hu G (2012) Aquaporin-4 mediates astrocyte response to beta-amyloid. Mol Cell Neurosci 49:406–414. https://doi.org/10.1016/j.mcn.2012.02.002
CAS
PubMed
Article
Google Scholar
Yang Y, Rosenberg GA (2011) Blood–brain barrier breakdown in acute and chronic cerebrovascular disease. Stroke 42:3323–3328. https://doi.org/10.1161/STROKEAHA.110.608257
CAS
PubMed
PubMed Central
Article
Google Scholar
Zenaro E, Piacentino G, Constantin G (2017) The blood–brain barrier in Alzheimer’s disease. Neurobiol Dis. https://doi.org/10.1016/j.nbd.2016.07.007
PubMed
PubMed Central
Google Scholar
Zenaro E, Pietronigro E, Bianca Della V, Piacentino G, Marongiu L, Budui S, Turano E, Rossi B, Angiari S, Dusi S, Montresor A, Carlucci T, Nanì S, Tosadori G, Calciano L, Catalucci D, Berton G, Bonetti B, Constantin G (2015) Neutrophils promote Alzheimer’s disease-like pathology and cognitive decline via LFA-1 integrin. Nat Med 21:880–886. https://doi.org/10.1038/nm.3913
CAS
PubMed
Article
Google Scholar
Zhao Y-L, Song J-N, Zhang M (2014) Role of caveolin-1 in the biology of the blood–brain barrier. Rev Neurosci 25:247–254. https://doi.org/10.1515/revneuro-2013-0039
CAS
PubMed
Article
Google Scholar
Zheng S, Bai Y-Y, Changyi Y, Gao X, Zhang W, Wang Y, Zhou L, Ju S, Li C (2014) Multimodal nanoprobes evaluating physiological pore size of brain vasculatures in ischemic stroke models. Adv Healthc Mater 3:1909–1918. https://doi.org/10.1002/adhm.201400159
CAS
PubMed
Article
Google Scholar
Zhou Y, Nathans J (2014) Gpr124 controls CNS angiogenesis and blood–brain barrier integrity by promoting ligand-specific canonical wnt signaling. Dev Cell 31:248–256. https://doi.org/10.1016/j.devcel.2014.08.018
CAS
PubMed
PubMed Central
Article
Google Scholar
Zhou Y, Wang Y, Tischfield M, Williams J, Smallwood PM, Rattner A, Taketo MM, Nathans J (2014) Canonical WNT signaling components in vascular development and barrier formation. J Clin Invest 124:3825–3846. https://doi.org/10.1172/JCI76431
CAS
PubMed
PubMed Central
Article
Google Scholar
Zlokovic BV, Deane R, Sagare AP, Bell RD, Winkler EA (2010) Low-density lipoprotein receptor-related protein-1: a serial clearance homeostatic mechanism controlling Alzheimer’s amyloid β-peptide elimination from the brain. J Neurochem 115:1077–1089. https://doi.org/10.1111/j.1471-4159.2010.07002.x
CAS
PubMed
PubMed Central
Article
Google Scholar