Skip to main content

Structure and Function of the Blood–Brain Barrier (BBB)

  • Chapter
  • First Online:
Physiology, Pharmacology and Pathology of the Blood-Brain Barrier

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 273))

Abstract

The blood-brain barrier (BBB) protects the vertebrate central nervous system from harmful blood-borne, endogenous and exogenous substances to ensure proper neuronal function. The BBB describes a function that is established by endothelial cells of CNS vessels in conjunction with pericytes, astrocytes, neurons and microglia, together forming the neurovascular unit (NVU). Endothelial barrier function is crucially induced and maintained by the Wnt/β-catenin pathway and requires intact NVU for proper functionality. The BBB and the NVU are characterized by a specialized assortment of molecular specializations, providing the basis for tightening, transport and immune response functionality.

The present chapter introduces state-of-the-art knowledge of BBB structure and function and highlights current research topics, aiming to understanding in more depth the cellular and molecular interactions at the NVU, determining functionality of the BBB in health and disease, and providing novel potential targets for therapeutic BBB modulation. Moreover, we highlight recent advances in understanding BBB and NVU heterogeneity within the CNS as well as their contribution to CNS physiology, such as neurovascular coupling, and pathophysiology, is discussed. Finally, we give an outlook onto new avenues of BBB research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott NJ, Rönnbäck L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7:41–53

    Article  CAS  PubMed  Google Scholar 

  • Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ (2010) Structure and function of the blood-brain barrier. Neurobiol Dis 37:13–25

    Article  CAS  PubMed  Google Scholar 

  • Alfonso J, Le Magueresse C, Zuccotti A, Khodosevich K, Monyer H (2012) Diazepam binding inhibitor promotes progenitor proliferation in the postnatal SVZ by reducing GABA signaling. Cell Stem Cell 10:76–87

    Article  CAS  PubMed  Google Scholar 

  • Alvarez JI, Dodelet-Devillers A, Kebir H et al (2011) The hedgehog pathway promotes blood-brain barrier integrity and CNS immune quiescence. Science 334:1727–7731

    Article  CAS  PubMed  Google Scholar 

  • Ances BM, Buerk DG, Greenberg JH, Detre JA (2001) Temporal dynamics of the partial pressure of brain tissue oxygen during functional forepaw stimulation in rats. Neurosci Lett 306:106–110

    Article  CAS  PubMed  Google Scholar 

  • Andreone BJ, Lacoste B, Gu C (2015) Neuronal and vascular interactions. Annu Rev Neurosci 38:25–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armulik A, Genové G, Mäe M et al (2010) Pericytes regulate the blood–brain barrier. Nature 468:557–561

    Article  CAS  PubMed  Google Scholar 

  • Augustine V, Gokce SK, Lee S, Wang B, Davidson TJ, Reimann F, Gribble F, Deisseroth K, Lois C, Oka Y (2018) Hierarchical neural architecture underlying thirst regulation. Nature 555:204–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barar J, Rafi MA, Pourseif MM, Omidi Y (2017) Blood-brain barrier transport machineries and targeted therapy of brain diseases. Tabriz Univ Med Sci 6:225–248

    Google Scholar 

  • Behnsen G (1927) Über die Farbstoffspeicherung im Zentralnervensystem der weissen Maus in verschiedenen Alterszuständen. Cell Tissue Res 4:515–572

    Google Scholar 

  • Belova I, Jonsson G (1982) Blood-brain barrier permeability and immobilization stress. Acta Physiol Scand 116:21–29

    Article  CAS  PubMed  Google Scholar 

  • Bennett L, Yang M, Enikolopov G, Iacovitti L (2009) Circumventricular organs: a novel site of neural stem cells in the adult brain. Mol Cell Neurosci 41:337–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benz F, Wichitnaowarat V, Lehmann M et al (2019) Low wnt/β-catenin signaling determines leaky vessels in the subfornical organ and affects water homeostasis in mice. elife 8:204

    Article  Google Scholar 

  • Ben-Zvi A, Lacoste B, Kur E, Andreone BJ, Mayshar Y, Yan H, Gu C (2014) Mfsd2a is critical for the formation and function of the blood–brain barrier. Nature:1–18

    Google Scholar 

  • Berndt P, Winkler L, Cording J et al (2019) Tight junction proteins at the blood-brain barrier: far more than claudin-5. Cell Mol Life Sci 76:1987–2002

    Article  CAS  PubMed  Google Scholar 

  • Blanchette M, Daneman R (2015) Formation and maintenance of the BBB. Mech Dev 138(Pt 1):8–16

    Article  CAS  PubMed  Google Scholar 

  • Bonney S, Siegenthaler JA (2017) Differential effects of retinoic acid concentrations in regulating blood-brain barrier properties. eNeuro 4

    Google Scholar 

  • Brightman MW, Reese TS (1969) Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol 40:648–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bundgaard M, Abbott NJ (2008) All vertebrates started out with a glial blood-brain barrier 4-500 million years ago. Glia 56:699–708

    Article  PubMed  Google Scholar 

  • Campos CR, Schröter C, Wang X, Miller DS (2012) ABC transporter function and regulation at the blood-spinal cord barrier. J Cereb Blood Flow Metab 32:1559–1566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castro Dias M, Coisne C, Lazarevic I et al (2019) Claudin-3-deficient C57BL/6J mice display intact brain barriers. Sci Rep 9:203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chang J, Mancuso MR, Maier C et al (2017) Gpr124 is essential for blood-brain barrier integrity in central nervous system disease. Nat Med 23:450–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen BR, Kozberg MG, Bouchard MB, Shaik MA, Hillman EMC (2014) A critical role for the vascular endothelium in functional neurovascular coupling in the brain. J Am Heart Assoc 3:e000787

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cording J, Berg J, Käding N et al (2012) Tight junctions: Claudins regulate the interactions between occludin, tricellulin and marvelD3, which, inversely, modulate claudin oligomerization. J Cell Sci. https://doi.org/10.1242/jcs.114306

  • Daneman R, Agalliu D, Zhou L, Kuhnert F, Kuo CJ, Barres BA (2009) Wnt/beta-catenin signaling is required for CNS, but not non-CNS, angiogenesis. Proc Natl Acad Sci 106:641–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daneman R, Zhou L, Kebede AA, Barres BA (2010a) Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 468:562–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daneman R, Zhou L, Agalliu D, Cahoy JD, Kaushal A, Barres BA (2010b) The mouse blood-brain barrier transcriptome: a new resource for understanding the development and function of brain endothelial cells. PLoS One 5:e13741

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Daneman R, Daneman R, Prat A, Prat A (2015) The blood-brain barrier. Cold Spring Harb Perspect Biol 7:a020412

    Article  PubMed  PubMed Central  Google Scholar 

  • Daniel PM, Lam DK, Pratt OE (1985) Comparison of the vascular permeability of the brain and the spinal cord to mannitol and inulin in rats. J Neurochem 45:647–649

    Article  CAS  PubMed  Google Scholar 

  • Darlington TK, Wager-Smith K, Ceriani MF, Staknis D, Gekakis N, Steeves TD, Weitz CJ, Takahashi JS, Kay SA (1998) Closing the circadian loop: CLOCK-induced transcription of its own inhibitors per and tim. Science 280:1599–1603

    Article  CAS  PubMed  Google Scholar 

  • Dauchy S, Dutheil F, Weaver RJ, Chassoux F, Daumas-Duport C, Couraud P-O, Scherrmann J-M, de Waziers I, Declèves X (2008) ABC transporters, cytochromes P450 and their main transcription factors: expression at the human blood-brain barrier. J Neurochem 107:1518–1528

    Article  CAS  PubMed  Google Scholar 

  • Davis DA, Milhorat TH (1975) The blood-brain barrier of the rat choroid plexus. Anat Rec 181:779–789

    Article  CAS  PubMed  Google Scholar 

  • Dejana E, Orsenigo F (2013) Endothelial adherens junctions at a glance. J Cell Sci 126:2545–2549

    CAS  PubMed  Google Scholar 

  • Dennis MS, Watts RJ (2012) Transferrin antibodies into the brain. Neuropsychopharmacology 37:302–303

    Article  PubMed  Google Scholar 

  • Doetsch F (2003) A niche for adult neural stem cells. Curr Opin Genet Dev 13:543–550

    Article  CAS  PubMed  Google Scholar 

  • Doetsch F, Caillé I, Lim DA, García-Verdugo JM, Alvarez-Buylla A (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97:703–716

    Article  CAS  PubMed  Google Scholar 

  • Duelli R, Enerson BE, Gerhart DZ, Drewes LR (2000) Expression of large amino acid transporter LAT1 in rat brain endothelium. J Cereb Blood Flow Metab 20:1557–1562

    Article  CAS  PubMed  Google Scholar 

  • Ek CJ, Wong A, Liddelow SA, Johansson PA, Dziegielewska KM, Saunders NR (2010) Efflux mechanisms at the developing brain barriers: ABC-transporters in the fetal and postnatal rat. Toxicol Lett 197:51–59

    Article  CAS  PubMed  Google Scholar 

  • Emery P, So WV, Kaneko M, Hall JC, Rosbash M (1998) CRY, a drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity. Cell 95:669–679

    Article  CAS  PubMed  Google Scholar 

  • Engelhardt B, Sorokin L (2009) The blood-brain and the blood-cerebrospinal fluid barriers: function and dysfunction. Semin Immunopathol 31:497–511

    Article  PubMed  Google Scholar 

  • Eubelen M, Bostaille N, Cabochette P et al (2018) A molecular mechanism for Wnt ligand-specific signaling. Science 361:eaat1178

    Article  PubMed  CAS  Google Scholar 

  • Fernando RN, Eleuteri B, Abdelhady S, Nussenzweig A, Andäng M, Ernfors P (2011) Cell cycle restriction by histone H2AX limits proliferation of adult neural stem cells. Proc Natl Acad Sci 108:5837–5842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flemming KD, Graff-Radford J, Aakre J et al (2017) Population-based prevalence of cerebral cavernous malformations in older adults: Mayo clinic study of aging. JAMA Neurol 74:801–805

    Article  PubMed  PubMed Central  Google Scholar 

  • Fujioka T, Kaneko N, Sawamoto K (2019) Blood vessels as a scaffold for neuronal migration. Neurochem Int 126:69–73

    Article  CAS  PubMed  Google Scholar 

  • Fultz NE, Bonmassar G, Setsompop K, Stickgold RA, Rosen BR, Polimeni JR, Lewis LD (2019) Coupled electrophysiological, hemodynamic, and cerebrospinal fluid oscillations in human sleep. Science 366:628–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furube E, Morita M, Miyata S (2015) Characterization of neural stem cells and their progeny in the sensory circumventricular organs of adult mouse. Cell Tissue Res 362:347–365

    Article  PubMed  Google Scholar 

  • Furuse M, Sasaki H, Tsukita S (1999) Manner of interaction of heterogeneous claudin species within and between tight junction strands. J Cell Biol 147:891–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • García-Lecea M, Gasanov E, Jedrychowska J, Kondrychyn I, Teh C, You M-S, Korzh V (2017) Development of circumventricular organs in the mirror of zebrafish enhancer-trap transgenics. Front Neuroanat 11:114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garrido-Urbani S, Bradfield PF, Imhof BA (2014) Tight junction dynamics: the role of junctional adhesion molecules (JAMs). Cell Tissue Res 355:701–715

    Article  CAS  PubMed  Google Scholar 

  • Ge S, Pachter JS (2006) Isolation and culture of microvascular endothelial cells from murine spinal cord. J Neuroimmunol 177:209–214

    Article  CAS  PubMed  Google Scholar 

  • Gekakis N, Staknis D, Nguyen HB, Davis FC, Wilsbacher LD, King DP, Takahashi JS, Weitz CJ (1998) Role of the CLOCK protein in the mammalian circadian mechanism. Science 280:1564–1569

    Article  CAS  PubMed  Google Scholar 

  • Gizowski C, Zaelzer C, Bourque CW (2016) Clock-driven vasopressin neurotransmission mediates anticipatory thirst prior to sleep. Nature 537:685–688

    Article  CAS  PubMed  Google Scholar 

  • Gizowski C, Zaelzer C, Bourque CW (2018) Activation of organum vasculosum neurons and water intake in mice by vasopressin neurons in the suprachiasmatic nucleus. J Neuroendocrinol 30:e12577

    Article  CAS  Google Scholar 

  • Gleerup HS, Hasselbalch SG, Simonsen AH (2019) Biomarkers for Alzheimer’s disease in saliva: a systematic review. Dis Markers 2019:1–11. https://doi.org/10.1155/2019/4761054

    Article  CAS  Google Scholar 

  • Goldberg JS, Hirschi KK (2009) Diverse roles of the vasculature within the neural stem cell niche. Regen Med 4:879–897

    Article  PubMed  Google Scholar 

  • Gordon GRJ, Choi HB, Rungta RL, Ellis-Davies GCR, Macvicar BA (2008) Brain metabolism dictates the polarity of astrocyte control over arterioles. Nature 456:745–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gordon GRJ, Howarth C, Macvicar BA (2011) Bidirectional control of arteriole diameter by astrocytes. Exp Physiol 96:393–399

    Article  CAS  PubMed  Google Scholar 

  • Grobe JL, Buehrer BA, Hilzendeger AM, Liu X, Davis DR, Xu D, Sigmund CD (2011) Angiotensinergic signaling in the brain mediates metabolic effects of deoxycorticosterone (DOCA)-salt in C57 mice. Hypertension 57:600–607

    Article  CAS  PubMed  Google Scholar 

  • Guadagno E, Moukhles H (2004) Laminin-induced aggregation of the inwardly rectifying potassium channel, Kir4.1, and the water-permeable channel, AQP4, via a dystroglycan-containing complex in astrocytes. Glia 47:138–149

    Article  PubMed  Google Scholar 

  • Guo L, Zhang H, Hou Y, Wei T, Liu J (2016) Plasmalemma vesicle-associated protein: a crucial component of vascular homeostasis. Exp Ther Med 12:1639–1644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurnik S, Devraj K, Macas J et al (2016) Angiopoietin-2-induced blood-brain barrier compromise and increased stroke size are rescued by VE-PTP-dependent restoration of Tie2 signaling. Acta Neuropathol 131:753–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guyenet PG (2019) Sodium is detected by the OVLT to regulate sympathetic tone. Neuron 101:3–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagan N, Ben-Zvi A (2015) The molecular, cellular, and morphological components of blood-brain barrier development during embryogenesis. Semin Cell Dev Biol 38:7–15

    Article  CAS  PubMed  Google Scholar 

  • Hallmann R, Mayer DN, Berg EL, Broermann R, Butcher EC (1995) Novel mouse endothelial cell surface marker is suppressed during differentiation of the blood brain barrier. Dev Dyn 202:325–332

    Article  CAS  PubMed  Google Scholar 

  • Hallmann R, Zhang X, di Russo J, Li L, Song J, Hannocks M-J, Sorokin L (2015) The regulation of immune cell trafficking by the extracellular matrix. Curr Opin Cell Biol 36:54–61

    Article  CAS  PubMed  Google Scholar 

  • Hein TW, Xu W, Kuo L (2006) Dilation of retinal arterioles in response to lactate: role of nitric oxide, guanylyl cyclase, and ATP-sensitive potassium channels. Invest Ophthalmol Vis Sci 47:693–699

    Article  PubMed  Google Scholar 

  • Hogan-Cann AD, Lu P, Anderson CM (2019) Endothelial NMDA receptors mediate activity-dependent brain hemodynamic responses in mice. Proc Natl Acad Sci 116:10229–10231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hourai A, Miyata S (2013) Neurogenesis in the circumventricular organs of adult mouse brains. J Neurosci Res 91:757–770

    Article  CAS  PubMed  Google Scholar 

  • Iadecola C (2017) The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron 96:17–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikenouchi J, Furuse M, Furuse K, Sasaki H, Tsukita S, Tsukita S (2005) Tricellulin constitutes a novel barrier at tricellular contacts of epithelial cells. J Cell Biol 171:939–945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Junge HJ, Yang S, Burton JB, Paes K, Shu X, French DM, Costa M, Rice DS, Ye W (2009) TSPAN12 regulates retinal vascular development by promoting Norrin- but not Wnt-induced FZD4/beta-catenin signaling. Cell 139:299–311

    Article  CAS  PubMed  Google Scholar 

  • Kasischke KA, Vishwasrao HD, Fisher PJ, Zipfel WR, Webb WW (2004) Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis. Science 305:99–103

    Article  CAS  PubMed  Google Scholar 

  • Kiecker C (2017) The origins of the circumventricular organs. J Anat 53:1–14

    Google Scholar 

  • Kniesel U, Reichenbach A, Risau W, Wolburg H (1994) Quantification of tight junction complexity by means of fractal analysis. Tissue Cell 26:901–912

    Article  CAS  PubMed  Google Scholar 

  • Kofuji P, Ceelen P, Zahs KR, Surbeck LW, Lester HA, Newman EA (2000) Genetic inactivation of an inwardly rectifying potassium channel (Kir4.1 subunit) in mice: phenotypic impact in retina. J Neurosci 20:5733–5740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovács R, Heinemann U, Steinhäuser C (2012) Mechanisms underlying blood-brain barrier dysfunction in brain pathology and epileptogenesis: role of astroglia. Epilepsia 53(Suppl 6):53–59

    Article  PubMed  CAS  Google Scholar 

  • Kratzer I, Vasiljevic A, Rey C, Fèvre Montange M, Saunders N, Strazielle N, Ghersi-Egea J-F (2012) Complexity and developmental changes in the expression pattern of claudins at the blood-CSF barrier. Histochem Cell Biol 138:861–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacoste B, Comin CH, Ben-Zvi A, Kaeser PS, Xu X, Costa LDF, Gu C (2014) Sensory-related neural activity regulates the structure of vascular networks in the cerebral cortex. Neuron 83:1117–1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lampugnani MG, Malinverno M, Dejana E, Rudini N (2017) Endothelial cell disease: emerging knowledge from cerebral cavernous malformations. Curr Opin Hematol 24:256–264

    Article  CAS  PubMed  Google Scholar 

  • Lange A, Gebremedhin D, Narayanan J, Harder D (1997) 20-hydroxyeicosatetraenoic acid-induced vasoconstriction and inhibition of potassium current in cerebral vascular smooth muscle is dependent on activation of protein kinase C. J Biol Chem 272:27345–27352

    Article  CAS  PubMed  Google Scholar 

  • Langlet F, Mullier A, Bouret SG, Prevot V, Dehouck B (2013) Tanycyte-like cells form a blood-cerebrospinal fluid barrier in the circumventricular organs of the mouse brain. J Comp Neurol 521:3389–3405

    Article  PubMed  PubMed Central  Google Scholar 

  • Lavoie JL, Cassell MD, Gross KW, Sigmund CD (2004) Adjacent expression of renin and angiotensinogen in the rostral ventrolateral medulla using a dual-reporter transgenic model. Hypertension 43:1116–1119

    Article  CAS  PubMed  Google Scholar 

  • Lee S-W, Kim WJ, Choi YK, Song HS, Son MJ, Gelman IH, Kim Y-J, Kim K-W (2003) SSeCKS regulates angiogenesis and tight junction formation in blood-brain barrier. Nat Med 9:900–906

    Article  CAS  PubMed  Google Scholar 

  • Leib DE, Zimmerman CA, Knight ZA (2016) Thirst. Curr Biol 26:R1260–R1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liddelow SA (2011) Fluids and barriers of the CNS: a historical viewpoint. Fluids Barriers CNS 8:2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liddelow SA, Dziegielewska KM, Ek CJ, Johansson PA, Potter AM, Saunders NR (2009) Cellular transfer of macromolecules across the developing choroid plexus of Monodelphis domestica. Eur J Neurosci 29:253–266

    Article  PubMed  Google Scholar 

  • Liebner S, Kniesel U, Kalbacher H, Wolburg H (2000) Correlation of tight junction morphology with the expression of tight junction proteins in blood-brain barrier endothelial cells. Eur J Cell Biol 79:707–717

    Article  CAS  PubMed  Google Scholar 

  • Liebner S, Corada M, Bangsow T et al (2008) Wnt/beta-catenin signaling controls development of the blood-brain barrier. J Cell Biol 183:409–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim DA, Tramontin AD, Trevejo JM, Herrera DG, García-Verdugo JM, Alvarez-Buylla A (2000) Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron 28:713–726

    Article  CAS  PubMed  Google Scholar 

  • Lin R, Lang M, Heinsinger N, Stricsek G, Zhang J, Iozzo R, Rosenwasser R, Iacovitti L (2018) Stepwise impairment of neural stem cell proliferation and neurogenesis concomitant with disruption of blood-brain barrier in recurrent ischemic stroke. Neurobiol Dis 115:49–58

    Article  PubMed  Google Scholar 

  • Lindblom P, Gerhardt H, Liebner S et al (2003) Endothelial PDGF-B retention is required for proper investment of pericytes in the microvessel wall. Genes Dev 17:1835–1840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lippmann ES, Al-Ahmad A, Azarin SM, Palecek SP, Shusta EV (2014) A retinoic acid-enhanced, multicellular human blood-brain barrier model derived from stem cell sources. Sci Rep. https://doi.org/10.1038/srep04160

  • Lippoldt A, Liebner S, Andbjer B, Kalbacher H, Wolburg H, Haller H, Fuxe K (2000) Organization of choroid plexus epithelial and endothelial cell tight junctions and regulation of claudin-1, -2 and -5 expression by protein kinase C. Neuroreport 11:1427–1431

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Ford BD, Mann MA, Fischbach GD (2005) Neuregulin-1 increases the proliferation of neuronal progenitors from embryonic neural stem cells. Dev Biol 283:437–445

    Article  CAS  PubMed  Google Scholar 

  • Longden TA, Dabertrand F, Koide M, Gonzales AL, Tykocki NR, Brayden JE, Hill-Eubanks D, Nelson MT (2017) Capillary K+-sensing initiates retrograde hyperpolarization to increase local cerebral blood flow. Nat Neurosci 20:717–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lun MP, Monuki ES, Lehtinen MK (2015) Development and functions of the choroid plexus–cerebrospinal fluid system. Nat Rev Neurosci 16:445–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macvicar BA, Newman EA (2015) Astrocyte regulation of blood flow in the brain. Cold Spring Harb Perspect Biol 7:a020388

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahringer A, Fricker G (2016) ABC transporters at the blood-brain barrier. Expert Opin Drug Metab Toxicol 12:499–508

    Article  CAS  PubMed  Google Scholar 

  • Malonek D, Grinvald A (1996) Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping. Science 272:551–554

    Article  CAS  PubMed  Google Scholar 

  • Malonek D, Dirnagl U, Lindauer U, Yamada K, Kanno I, Grinvald A (1997) Vascular imprints of neuronal activity: relationships between the dynamics of cortical blood flow, oxygenation, and volume changes following sensory stimulation. Proc Natl Acad Sci U S A 94:14826–14831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mark MH, Farmer PM (1984) The human subfornical organ: an anatomic and ultrastructural study. Ann Clin Lab Sci 14:427–442

    CAS  PubMed  Google Scholar 

  • Masuda S, Oda Y, Sasaki H, Ikenouchi J, Higashi T, Akashi M, Nishi E, Furuse M (2011) LSR defines cell corners for tricellular tight junction formation in epithelial cells. J Cell Sci 124:548–555

    Article  CAS  PubMed  Google Scholar 

  • Maxwell DS, Pease DC (1956) The electron microscopy of the choroid plexus. J Biophys Biochem Cytol 2:467–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazzoni J, Smith JR, Shahriar S, Cutforth T, Ceja B, Agalliu D (2017) The Wnt inhibitor Apcdd1 coordinates vascular remodeling and barrier maturation of retinal blood vessels. Neuron 96:1055–1069.e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metea MR, Newman EA (2006) Glial cells dilate and constrict blood vessels: a mechanism of neurovascular coupling. J Neurosci 26:2862–2870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller DS (2015) Regulation of ABC transporters at the blood-brain barrier. Clin Pharmacol Ther 97:395–403

    Article  CAS  PubMed  Google Scholar 

  • Miller RL, Wang MH, Gray PA, Salkoff LB, Loewy AD (2013) ENaC-expressing neurons in the sensory circumventricular organs become c-Fos activated following systemic sodium changes. AJP Regul Integr Comp Physiol 305:R1141–R1152

    Article  CAS  Google Scholar 

  • Mizee MR, Wooldrik D, Lakeman KAM et al (2013) Retinoic acid induces blood-brain barrier development. J Neurosci 33:1660–1671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morita S, Miyata S (2012) Different vascular permeability between the sensory and secretory circumventricular organs of adult mouse brain. Cell Tissue Res 349:589–603

    Article  PubMed  Google Scholar 

  • Morita K, Sasaki H, Furuse M, Tsukita S (1999) Endothelial claudin: claudin-5/TMVCF constitutes tight junction strands in endothelial cells. J Cell Biol 147:185–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morita S, Hourai A, Miyata S (2014) Changes in pericytic expression of NG2 and PDGFRB and vascular permeability in the sensory circumventricular organs of adult mouse by osmotic stimulation. Cell Biochem Funct 32:51–61

    Article  CAS  PubMed  Google Scholar 

  • Morita S, Furube E, Mannari T, Okuda H, Tatsumi K, Wanaka A, Miyata S (2015) Vascular endothelial growth factor-dependent angiogenesis and dynamic vascular plasticity in the sensory circumventricular organs of adult mouse brain. Cell Tissue Res 359:865–884

    Article  CAS  PubMed  Google Scholar 

  • Morita S, Furube E, Mannari T, Okuda H, Tatsumi K, Wanaka A, Miyata S (2016) Heterogeneous vascular permeability and alternative diffusion barrier in sensory circumventricular organs of adult mouse brain. Cell Tissue Res 363:497–511

    Article  PubMed  Google Scholar 

  • Moura DAP, Lemos RR, Oliveira JRM (2017) New data from Pdfgb ret/ret mutant mice might Lead to a paradoxical association between brain calcification, Pericytes recruitment and BBB integrity. J Mol Neurosci 63:419–421

    Article  CAS  PubMed  Google Scholar 

  • Mullier A, Bouret SG, Prevot V, Dehouck B (2010) Differential distribution of tight junction proteins suggests a role for tanycytes in blood-hypothalamus barrier regulation in the adult mouse brain. J Comp Neurol 518:943–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neal EH, Marinelli NA, Shi Y et al (2019) A simplified, fully defined differentiation scheme for producing blood-brain barrier endothelial cells from human iPSCs. Stem Cell Rep 12:1380–1388

    Article  CAS  Google Scholar 

  • Nguyen LN, Ma D, Shui G, Wong P, Cazenave-Gassiot A, Zhang X, Wenk MR, Goh ELK, Silver DL (2014) Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid. Nature 509:503–506

    Article  CAS  PubMed  Google Scholar 

  • Niewoehner J, Bohrmann B, Collin L et al (2014) Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle. Neuron 81:49–60

    Article  CAS  PubMed  Google Scholar 

  • Nishijima T, Piriz J, Duflot S et al (2010) Neuronal activity drives localized blood-brain-barrier transport of serum insulin-like growth factor-I into the CNS. Neuron 67:834–846

    Article  CAS  PubMed  Google Scholar 

  • Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N, Furuse M, Tsukita S (2003) Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol 161:653–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noell S, Fallier-Becker P, Beyer C, Kröger S, Mack AF, Wolburg H (2007) Effects of agrin on the expression and distribution of the water channel protein aquaporin-4 and volume regulation in cultured astrocytes. Eur J Neurosci 26:2109–2118

    Article  PubMed  Google Scholar 

  • Noell S, Fallier-Becker P, Deutsch U, Mack AF, Wolburg H (2009) Agrin defines polarized distribution of orthogonal arrays of particles in astrocytes. Cell Tissue Res 337:185–195

    Article  CAS  PubMed  Google Scholar 

  • Nomura K, Hiyama TY, Sakuta H et al (2019) [Na+] increases in body fluids sensed by central Nax induce sympathetically mediated blood pressure elevations via H+-dependent activation of ASIC1a. Neuron 101:60–75.e6

    Article  CAS  PubMed  Google Scholar 

  • Noumbissi ME, Galasso B, Stins MF (2018) Brain vascular heterogeneity: implications for disease pathogenesis and design of in vitro blood-brain barrier models. Fluids Barriers CNS 15:12–12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Obernier K, Alvarez-Buylla A (2019) Neural stem cells: origin, heterogeneity and regulation in the adult mammalian brain. Development 146:dev156059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oka Y, Ye M, Zuker CS (2015) Thirst driving and suppressing signals encoded by distinct neural populations in the brain. Nature:1–12

    Google Scholar 

  • Olsson B, Blennow K, Zetterberg H (2016) The clinical value of fluid biomarkers for dementia diagnosis – Authors' reply. Lancet Neurol 15:1204–1205

    Article  PubMed  Google Scholar 

  • Ottone C, Krusche B, Whitby A, Clements M, Quadrato G, Pitulescu ME, Adams RH, Parrinello S (2014) Direct cell-cell contact with the vascular niche maintains quiescent neural stem cells. Nat Cell Biol 16:1045–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer TD, Willhoite AR, Gage FH (2000) Vascular niche for adult hippocampal neurogenesis. J Comp Neurol 425:479–494

    Article  CAS  PubMed  Google Scholar 

  • Pan W, Banks WA, Kastin AJ (1997) Permeability of the blood-brain and blood-spinal cord barriers to interferons. J Neuroimmunol 76:105–111

    Article  CAS  PubMed  Google Scholar 

  • Parri HR, Crunelli V (2002) Astrocytes, spontaneity, and the developing thalamus. J Physiol Paris 96:221–230

    Article  PubMed  Google Scholar 

  • Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci U S A 91:10625–10629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelligrino DA, Vetri F, Xu H-L (2011) Purinergic mechanisms in gliovascular coupling. Semin Cell Dev Biol 22:229–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phoenix TN, Patmore DM, Boop S et al (2016) Medulloblastoma genotype dictates blood brain barrier phenotype. Cancer Cell 29:508–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Planques A, Oliveira Moreira V, Dubreuil C, Prochiantz A, Di Nardo AA (2019) OTX2 signals from the choroid plexus to regulate adult neurogenesis. eNeuro 6

    Google Scholar 

  • Pócsai K, Kálmán M (2015) Glial and perivascular structures in the Subfornical organ. J Histochem Cytochem 63:367–383

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Price MT, Olney JW, Lowry OH, Buchsbaum S (1981) Uptake of exogenous glutamate and aspartate by circumventricular organs but not other regions of brain. J Neurochem 36:1774–1780

    Article  CAS  PubMed  Google Scholar 

  • Price MT, Pusateri ME, Crow SE, Buchsbaum S, Olney JW, Lowry OH (1984) Uptake of exogenous aspartate into circumventricular organs but not other regions of adult mouse brain. J Neurochem 42:740–744

    Article  CAS  PubMed  Google Scholar 

  • Rafii S, Butler JM, Ding B-S (2016) Angiocrine functions of organ-specific endothelial cells. Nature 529:316–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raichle ME, Mintun MA (2006) Brain work and brain imaging. Annu Rev Neurosci 29:449–476

    Article  CAS  PubMed  Google Scholar 

  • Rascher G, Fischmann A, Kröger S, Duffner F, Grote E-H, Wolburg H (2002) Extracellular matrix and the blood-brain barrier in glioblastoma multiforme: spatial segregation of tenascin and agrin. Acta Neuropathol 104:85–91

    Article  CAS  PubMed  Google Scholar 

  • Rash JE, Yasumura T, Hudson CS, Agre P, Nielsen S (1998) Direct immunogold labeling of aquaporin-4 in square arrays of astrocyte and ependymocyte plasma membranes in rat brain and spinal cord. Proc Natl Acad Sci U S A 95:11981–11986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reese TS, Karnovsky MJ (1967) Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol 34:207–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reis M, Czupalla CJ, Ziegler N et al (2012) Endothelial Wnt/β-catenin signaling inhibits glioma angiogenesis and normalizes tumor blood vessels by inducing PDGF-B expression. J Exp Med 209:1611–1627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reiss Y, Scholz A, Plate KH (2015) The angiopoietin—tie system: common signaling pathways for angiogenesis, cancer, and inflammation. In: Endothelial signaling in development and disease. Springer, New York, pp 313–328

    Chapter  Google Scholar 

  • Ridder K, Sevko A, Heide J et al (2015) Extracellular vesicle-mediated transfer of functional RNA in the tumor microenvironment. Onco Targets Ther 4:e1008371

    Google Scholar 

  • Sakka L, Coll G, Chazal J (2011) Anatomy and physiology of cerebrospinal fluid. Eur Ann Otorhinolaryngol Head Neck Dis 128:309–316

    Article  CAS  PubMed  Google Scholar 

  • Sakuta H, Lin C-H, Yamada M, Kita Y, Tokuoka SM, Shimizu T, Noda M (2019) Nax-positive glial cells in the organum vasculosum laminae terminalis produce epoxyeicosatrienoic acids to induce water intake in response to increases in [Na+] in body fluids. Neurosci Res. https://doi.org/10.1016/j.neures.2019.05.006

  • Sanin V, Heeß C, Kretzschmar HA, Schuller U (2013) Recruitment of neural precursor cells from circumventricular organs of patients with cerebral ischaemia. Neuropathol Appl Neurobiol 39:510–518

    Article  CAS  PubMed  Google Scholar 

  • Saunders NR, Dziegielewska KM, Møllgård K, Habgood MD (2018) Physiology and molecular biology of barrier mechanisms in the fetal and neonatal brain. J Physiol. https://doi.org/10.1113/JP275376

  • Segarra M, Aburto MR, Cop F et al (2018) Endothelial Dab1 signaling orchestrates neuro-glia-vessel communication in the central nervous system. Science 361:eaao2861–eaao2817

    Article  PubMed  CAS  Google Scholar 

  • Shen Q, Wang Y, Kokovay E, Lin G, Chuang S-M, Goderie SK, Roysam B, Temple S (2008) Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions. Cell Stem Cell 3:289–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sisó S, Jeffrey M, González L (2010) Sensory circumventricular organs in health and disease. Acta Neuropathol 120:689–705

    Article  PubMed  Google Scholar 

  • Skultétyová I, Tokarev D, Jezová D (1998) Stress-induced increase in blood-brain barrier permeability in control and monosodium glutamate-treated rats. Brain Res Bull 45:175–178

    Article  PubMed  Google Scholar 

  • Sohet F, Lin C, Munji RN et al (2015) LSR/angulin-1 is a tricellular tight junction protein involved in blood-brain barrier formation. J Cell Biol 208:703–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stenman JM, Rajagopal J, Carroll TJ, Ishibashi M, McMahon J, McMahon AP (2008) Canonical Wnt signaling regulates organ-specific assembly and differentiation of CNS vasculature. Science 322:1247–1250

    Article  CAS  PubMed  Google Scholar 

  • Stewart PA, Wiley MJ (1981) Developing nervous tissue induces formation of blood-brain barrier characteristics in invading endothelial cells: a study using quail--chick transplantation chimeras. Dev Biol 84:183–192

    Article  CAS  PubMed  Google Scholar 

  • Strazielle N, Ghersi-Egea JF (2013) Physiology of blood-brain interfaces in relation to brain disposition of small compounds and macromolecules. Mol Pharm 10:1473–1491

    Article  CAS  PubMed  Google Scholar 

  • Sweeney MD, Zhao Z, Montagne A, Nelson AR, Zlokovic BV (2019) Blood-brain barrier: from physiology to disease and back. Physiol Rev 99:21–78

    Article  CAS  PubMed  Google Scholar 

  • Tavazoie M, van der Veken L, Silva-Vargas V, Louissaint M, Colonna L, Zaidi B, Garcia-Verdugo JM, Doetsch F (2008) A specialized vascular niche for adult neural stem cells. Cell Stem Cell 3:279–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thresher RJ, Vitaterna MH, Miyamoto Y et al (1998) Role of mouse cryptochrome blue-light photoreceptor in circadian photoresponses. Science 282:1490–1494

    Article  CAS  PubMed  Google Scholar 

  • Thurgur H, Pinteaux E (2019) Microglia in the neurovascular unit: blood-brain barrier-microglia interactions after central nervous system disorders. Neuroscience 405:55–67

    Article  CAS  PubMed  Google Scholar 

  • Tietz S, Engelhardt B (2015) Brain barriers: crosstalk between complex tight junctions and adherens junctions. J Cell Biol 209:493–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tornavaca O, Chia M, Dufton N, Almagro LO, Conway DE, Randi AM, Schwartz MA, Matter K, Balda MS (2015) ZO-1 controls endothelial adherens junctions, cell–cell tension, angiogenesis, and barrier formation. J Cell Biol 208:821–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulrich F, Carretero-Ortega J, Menéndez J et al (2016) Reck enables cerebrovascular development by promoting canonical Wnt signaling. Development 143:147–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vallon M, Yuki K, Nguyen TD et al (2018) A RECK-WNT7 receptor-ligand interaction enables isoform-specific regulation of Wnt bioavailability. Cell Rep 25:339–349.e9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Deurs B (1979) Cell junctions in the endothelia and connective tissue of the rat choroid plexus. Anat Rec 195:73–94

    Article  PubMed  Google Scholar 

  • van Itallie CM, Anderson JM (2014) Architecture of tight junctions and principles of molecular composition. Semin Cell Dev Biol 36:157–165

    Article  PubMed  CAS  Google Scholar 

  • Vanhollebeke B, Stone OA, Bostaille N et al (2015) Tip cell-specific requirement for an atypical Gpr124- and Reck-dependent Wnt/β-catenin pathway during brain angiogenesis. elife 4:e06489

    Article  PubMed Central  Google Scholar 

  • Vanlandewijck M, He L, Mäe MA et al (2018) A molecular atlas of cell types and zonation in the brain vasculature. Nature. https://doi.org/10.1038/nature25739

  • Vanzetta I, Grinvald A (1999) Increased cortical oxidative metabolism due to sensory stimulation: implications for functional brain imaging. Science 286:1555–1558

    Article  CAS  PubMed  Google Scholar 

  • Villaseñor R, Kuennecke B, Ozmen L, Ammann M, Kugler C, Grüninger F, Loetscher H, Freskgård P-O, Collin L (2017) Region-specific permeability of the blood-brain barrier upon pericyte loss. J Cereb Blood Flow Metab 37:3683–3694

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Cho C, Williams J, Smallwood PM, Zhang C, Junge HJ, Nathans J (2018) Interplay of the Norrin and Wnt7a/Wnt7b signaling systems in blood-brain barrier and blood-retina barrier development and maintenance. Proc Natl Acad Sci 115:E11827–E11836

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Sabbagh MF, Gu X, Rattner A, Williams J, Nathans J (2019) Beta-catenin signaling regulates barrier-specific gene expression in circumventricular organ and ocular vasculatures. elife 8:3221

    Google Scholar 

  • Warth A, Mittelbronn M, Wolburg H (2005) Redistribution of the water channel protein aquaporin-4 and the K+ channel protein Kir4.1 differs in low- and high-grade human brain tumors. Acta Neuropathol 109:418–426

    Article  CAS  PubMed  Google Scholar 

  • Watanabe E, Hiyama TY, Shimizu H, Kodama R, Hayashi N, Miyata S, Yanagawa Y, Obata K, Noda M (2006) Sodium-level-sensitive sodium channel Na(x) is expressed in glial laminate processes in the sensory circumventricular organs. Am J Physiol Regul Integr Comp Physiol 290:R568–R576

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm I, Nyúl-Tóth Á, Suciu M, Hermenean A, Krizbai IA (2016) Heterogeneity of the blood-brain barrier. Tissue Barriers 4:e1143544–e1143548

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Winkler L, Blasig R, Breitkreuz-Korff O et al (2020) Tight junctions in the blood-brain barrier promote edema formation and infarct size in stroke – ambivalent effects of sealing proteins. J Cereb Blood Flow Metab 89:271678X20904687

    Google Scholar 

  • Wislocki GB, Leduc EH (1952) Vital staining of the hematoencephalic barrier by silver nitrate and trypan blue, and cytological comparisons of the neurohypophysis, pineal body, area postrema, intercolumnar tubercle and supraoptic crest. J Comp Neurol 96:371–413

    Article  CAS  PubMed  Google Scholar 

  • Wolburg H, Liebner S, Lippoldt A (2003) Freeze-fracture studies of cerebral endothelial tight junctions. Methods Mol Med 89:51–66. https://doi.org/10.1385/1-59259-419-0:51

    Article  CAS  PubMed  Google Scholar 

  • Wolburg H, Noell S, Wolburg-Buchholz K, Mack A, Fallier-Becker P (2009) Agrin, aquaporin-4, and astrocyte polarity as an important feature of the blood-brain barrier. Neuroscientist 15:180–193

    Article  CAS  PubMed  Google Scholar 

  • Wolburg-Buchholz K, Mack AF, Steiner E, Pfeiffer F, Engelhardt B, Wolburg H (2009) Loss of astrocyte polarity marks blood-brain barrier impairment during experimental autoimmune encephalomyelitis. Acta Neuropathol 118:219–233

    Article  CAS  PubMed  Google Scholar 

  • Yang Y-R, Xiong X-Y, Liu J et al (2017) Mfsd2a (major facilitator superfamily domain containing 2a) attenuates intracerebral hemorrhage-induced blood-brain barrier disruption by inhibiting vesicular transcytosis. J Am Heart Assoc 6:e005811

    Article  PubMed  PubMed Central  Google Scholar 

  • Yao Y, Chen Z-L, Norris EH, Strickland S (2014) Astrocytic laminin regulates pericyte differentiation and maintains blood brain barrier integrity. Nat Commun 5:3413

    Article  PubMed  CAS  Google Scholar 

  • Ye X, Wang Y, Cahill H, Yu M, Badea TC, Smallwood PM, Peachey NS, Nathans J (2009) Norrin, frizzled-4, and Lrp5 signaling in endothelial cells controls a genetic program for retinal vascularization. Cell 139:285–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye X, Smallwood P, Nathans J (2011) Expression of the Norrie disease gene (Ndp) in developing and adult mouse eye, ear, and brain. Gene Expr Patterns 11:151–155

    Article  CAS  PubMed  Google Scholar 

  • Yen LF, Wei VC, Kuo EY, Lai TW (2013) Distinct patterns of cerebral extravasation by Evans blue and sodium fluorescein in rats. PLoS One 8:e68595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Nathans J (2014) Gpr124 controls CNS angiogenesis and blood-brain barrier integrity by promoting ligand-specific canonical wnt signaling. Dev Cell 31:248–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Wang Y, Tischfield M, Williams J, Smallwood PM, Rattner A, Taketo MM, Nathans J (2014) Canonical WNT signaling components in vascular development and barrier formation. J Clin Invest 124:3825–3846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziegler N, Awwad K, Fisslthaler B et al (2016) β-Catenin is required for endothelial Cyp1b1 regulation influencing metabolic barrier function. J Neurosci 36:8921–8935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zonta M, Angulo MC, Gobbo S, Rosengarten B, Hossmann K-A, Pozzan T, Carmignoto G (2003) Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci 6:43–50

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Deutsche Forschungsgemeinschaft by the research group FOR2325 “The Neurovascular Interface”, the Excellence Cluster Cardio-Pulmonary Institute, the European Union HORIZON 2020 ITN “BtRAIN”, the German Centre for Heart and Circulation Research (DZHK, Column B: Shared Expertise), Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz (LOEWE), Program of the Center for Personalized Translational Epilepsy Research, (CePTER) to SL.

We thank Jadranka Macas (Edinger Institute) for providing the electron micrographs presented in Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Liebner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Benz, F., Liebner, S. (2020). Structure and Function of the Blood–Brain Barrier (BBB). In: Cader, Z., Neuhaus, W. (eds) Physiology, Pharmacology and Pathology of the Blood-Brain Barrier. Handbook of Experimental Pharmacology, vol 273. Springer, Cham. https://doi.org/10.1007/164_2020_404

Download citation

Publish with us

Policies and ethics