Skip to main content

Advertisement

Log in

Therapeutic effect of intermittent hypobaric hypoxia on myocardial infarction in rats

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Intermittent hypobaric hypoxia (IHH) preconditioning protects the heart against ischemic injuries. However, little is known about the therapeutic effect of IHH on myocardial infarction (MI). The aim of this study was to test whether IHH treatment influences infarct size and cardiac performance after MI. Seven days after sham operation or left anterior descending coronary artery ligation, male Sprague–Dawley rats were randomly exposed to normoxia or one 6-h period each day of IHH (5,000 m) for 14 and 28 days. Echocardiography analysis showed that IHH significantly reduced left ventricular (LV) dilation and improved cardiac performance after 14- or 28-day treatment compared with MI-normoxic groups. The improvement of LV function was further confirmed in isolated perfused MI-IHH hearts. Such protection was associated with attenuated infarct size, myocardial fibrosis, and apoptotic cardiomyocytes. IHH treatment also enhanced coronary flow and phosphorylation of heat shock protein 27 in both sham and MI groups compared with the control groups. In addition, IHH increased the capillary density and vascular endothelial growth factor expression in peri-infarcted zones compared with sham-IHH and MI-normoxic groups. Our data demonstrated for the first time that IHH treatment exerts a therapeutic effect on MI by attenuating progressive myocardial remodeling and improving myocardial contractility. IHH treatment might provide a unique and promising therapeutic approach for ischemic heart diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abbate A, Biondi-Zoccai GG, Bussani R, Dobrina A, Camilot D, Feroce F, Rossiello R, Baldi F, Silvestri F, Biasucci LM, Baldi A (2003) Increased myocardial apoptosis in patients with unfavorable left ventricular remodeling and early symptomatic post-infarction heart failure. J Am Coll Cardiol 41:753–760. doi:10.1016/S0735-1097(02)02959-5

    Article  PubMed  Google Scholar 

  2. Arias-Stella J, Topilsky M (1971) High altitude physiology: cardiac and respiratory aspects. In: Porter R, Knight J (eds) Anatomy of the coronary circulation at high altitude. Churchill Livingstone, London, pp 149–154

    Google Scholar 

  3. Banai S, Shweiki D, Pinson A, Chandra M, Lazarovici G, Keshet E (1994) Upregulation of vascular endothelial growth factor expression induced by myocardial ischaemia: implications for coronary angiogenesis. Cardiovasc Res 28:1176–1179. doi:10.1093/cvr/28.8.1176

    Article  PubMed  CAS  Google Scholar 

  4. Cai Z, Manalo DJ, Wei G, Rodriguez ER, Fox-Talbot K, Lu H, Zweier JL, Semenza GL (2003) Hearts from rodents exposed to intermittent hypoxia or erythropoietin are protected against ischemia reperfusion injury. Circulation 108:79–85. doi:10.1161/01.CIR.0000078635.89229.8A

    Article  PubMed  CAS  Google Scholar 

  5. Chen L, Lu XY, Li J, Fu JD, Zhou ZN, Yang HT (2006) Intermittent hypoxia protects cardiomyocytes against ischemia-reperfusion injury-induced alterations in Ca2+ homeostasis and contraction via the sarcoplasmic reticulum and Na+/Ca2+ exchange mechanisms. Am J Physiol Cell Physiol 290:C1221–C1229. doi:10.1152/ajpcell.00526.2005

    Article  PubMed  CAS  Google Scholar 

  6. Dana A, Skarli M, Papakrivopoulou J, Yellon DM (2000) Adenosine A(1) receptor induced delayed preconditioning in rabbits: induction of p38 mitogen-activated protein kinase activation and Hsp27 phosphorylation via a tyrosine kinase- and protein kinase C-dependent mechanism. Circ Res 86:989–997

    PubMed  CAS  Google Scholar 

  7. Davani S, Marandin A, Mersin N, Royer B, Kantelip B, Herve P, Etievent JP, Kantelip JP (2003) Mesenchymal progenitor cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a rat cellular cardiomyoplasty model. Circulation 108(Suppl 1):253–258. doi:10.1161/01.cir.0000089186.09692.fa

    Google Scholar 

  8. del Pilar V, Garcia-Godos F, Woolcott OO, Marticorena JM, Rodriguez V, Gutierrez I, Fernandez-Davila L, Contreras A, Valdivia L, Robles J, Marticorena EA (2006) Improvement of myocardial perfusion in coronary patients after intermittent hypobaric hypoxia. J Nucl Cardiol 13:69–74. doi:10.1016/j.nuclcard.2005.11.008

    Article  Google Scholar 

  9. Dong JW, Zhu HF, Zhu WZ, Ding HL, Ma TM, Zhou ZN (2003) Intermittent hypoxia attenuates ischemia/reperfusion induced apoptosis in cardiac myocytes via regulating Bcl-2/Bax expression. Cell Res 13:385–391. doi:10.1038/sj.cr.7290184

    Article  PubMed  CAS  Google Scholar 

  10. Efthymiou CA, Mocanu MM, de Belleroche J, Wells DJ, Latchmann DS, Yellon DM (2004) Heat shock protein 27 protects the heart against myocardial infarction. Basic Res Cardiol 99:392–394. doi:10.1007/s00395-004-0483-6

    Article  PubMed  CAS  Google Scholar 

  11. Forkel J, Chen X, Wandinger S, Keser F, Duschin A, Schwanke U, Frede S, Massoudy P, Schulz R, Jakob H, Heusch G (2004) Responses of chronically hypoxic rat hearts to ischemia: KATP channel blockade does not abolish increased RV tolerance to ischemia. Am J Physiol Heart Circ Physiol 286:H545–H551. doi:10.1152/ajpheart.00022.2003

    Article  PubMed  CAS  Google Scholar 

  12. Gao F, Tao L, Yan W, Gao E, Liu HR, Lopez BL, Christopher TA, Ma XL (2004) Early anti-apoptosis treatment reduces myocardial infarct size after a prolonged reperfusion. Apoptosis 9:553–559. doi:10.1023/B:APPT.0000038035.75845.ab

    Article  PubMed  CAS  Google Scholar 

  13. Gonzalez-Martin MC, Vega-Agapito V, Prieto-Lloret J, Agapito MT, Castaneda J, Gonzalez C (2009) Effects of intermittent hypoxia on blood gases plasma catecholamine and blood pressure. Adv Exp Med Biol 648:319–328. doi:10.1007/978-90-481-2259-2.36

    Article  PubMed  CAS  Google Scholar 

  14. Gore CJ, Rodriguez FA, Truijens MJ, Townsend NE, Stray-Gundersen J, Levine BD (2006) Increased serum erythropoietin but not red cell production after 4 wk of intermittent hypobaric hypoxia (4000–5500 m). J Appl Physiol 101:1386–1393. doi:10.1152/japplphysiol.00342.2006

    Article  PubMed  CAS  Google Scholar 

  15. Harada K, Friedman M, Lopez JJ, Wang SY, Li J, Prasad PV, Pearlman JD, Edelman ER, Sellke FW, Simons M (1996) Vascular endothelial growth factor administration in chronic myocardial ischemia. Am J Physiol 270:H1791–H1802

    PubMed  CAS  Google Scholar 

  16. Heimburg S, Oehler MK, Kristen P, Papadopoulos T, Caffier H (1997) The endothelial marker CD34 in the assessment of tumour vascularisation in ovarian cancer. Anticancer Res 17:3149–3151

    PubMed  CAS  Google Scholar 

  17. Heusch G, Boengler K, Schulz R (2008) Cardioprotection: nitric oxide, protein kinases, and mitochondria. Circulation 118:1915–1919. doi:10.1161/CIRCULATIONAHA.108.805242

    Article  PubMed  Google Scholar 

  18. Irlbeck M, Iwai T, Lerner T, Zimmer HG (1997) Effects of angiotensin II receptor blockade on hypoxia-induced right ventricular hypertrophy in rats. J Mol Cell Cardiol 29:2931–2939. doi:10.1006/jmcc.1997.0528

    Article  PubMed  CAS  Google Scholar 

  19. Jiang Y, Chen L, Tang Y, Ma G, Shen C, Qi C, Zhu Q, Yao Y, Liu N (2010) HO-1 gene overexpression enhances the beneficial effects of superparamagnetic iron oxide labeled bone marrow stromal cells transplantation in swine hearts underwent ischemia/reperfusion: an MRI study. Basic Res Cardiol 105:431–442. doi:10.1007/s00395-009-0079-2

    Article  PubMed  CAS  Google Scholar 

  20. Kawata H, Yoshida K, Kawamoto A, Kurioka H, Takase E, Sasaki Y, Hatanaka K, Kobayashi M, Ueyama T, Hashimoto T, Dohi K (2001) Ischemic preconditioning upregulates vascular endothelial growth factor mRNA expression and neovascularization via nuclear translocation of protein kinase C epsilon in the rat ischemic myocardium. Circ Res 88:696–704. doi:10.1161/hh0701.088842

    Article  PubMed  CAS  Google Scholar 

  21. Kido M, Du L, Sullivan CC, Li X, Deutsch R, Jamieson SW, Thistlethwaite PA (2005) Hypoxia-inducible factor 1-alpha reduces infarction and attenuates progression of cardiac dysfunction after myocardial infarction in the mouse. J Am Coll Cardiol 46:2116–2124. doi:10.1016/j.jacc.2005.08.045

    Article  PubMed  CAS  Google Scholar 

  22. Kim CH, Cho YS, Chun YS, Park JW, Kim MS (2002) Early expression of myocardial HIF-1alpha in response to mechanical stresses: regulation by stretch-activated channels and the phosphatidylinositol 3-kinase signaling pathway. Circ Res 90:E25–E33. doi:10.1161/hh0202.104923

    Article  PubMed  CAS  Google Scholar 

  23. Lacerda L, McCarthy J, Mungly SF, Lynn EG, Sack MN, Opie LH, Lecour S (2010) TNFalpha protects cardiac mitochondria independently of its cell surface receptors. Basic Res Cardiol 105:751–762. doi:10.1007/s00395-010-0113-4

    Article  PubMed  CAS  Google Scholar 

  24. Lu XY, Chen L, Cai XL, Yang HT (2008) Overexpression of heat shock protein 27 protects against ischemia/reperfusion-induced cardiac dysfunction via stabilization of troponin I and T. Cardiovasc Res 79:500–508. doi:10.1093/cvr/cvn091

    Article  PubMed  CAS  Google Scholar 

  25. Matsui T, Tao J, del Monte F, Lee KH, Li L, Picard M, Force TL, Franke TF, Hajjar RJ, Rosenzweig A (2001) Akt activation preserves cardiac function and prevents injury after transient cardiac ischemia in vivo. Circulation 104:330–335

    PubMed  CAS  Google Scholar 

  26. Meerson FZ, Ustinova EE, Orlova EH (1987) Prevention and elimination of heart arrhythmias by adaptation to intermittent high altitude hypoxia. Clin Cardiol 10:783–789. doi:10.1002/clc.4960101202

    Article  PubMed  CAS  Google Scholar 

  27. Milano G, Corno AF, Lippa S, Von Segesser LK, Samaja M (2002) Chronic and intermittent hypoxia induce different degrees of myocardial tolerance to hypoxia-induced dysfunction. Exp Biol Med 227:389–397

    CAS  Google Scholar 

  28. Mortimer EA, Monson RR, MacMahon B (1977) Reduction in mortality from coronary heart disease in men residing at high altitude. N Engl J Med 296:581–585

    Article  PubMed  Google Scholar 

  29. Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136

    PubMed  CAS  Google Scholar 

  30. Neckar J, Ostadal B, Kolar F (2004) Myocardial infarct size-limiting effect of chronic hypoxia persists for five weeks of normoxic recovery. Physiol Res 53:621–628

    PubMed  CAS  Google Scholar 

  31. Ognjanovic BI, Pavlovic SZ, Maletic SD, Zikic RV, Stajn AS, Radojicic RM, Saicic ZS, Petrovic VM (2003) Protective influence of vitamin E on antioxidant defense system in the blood of rats treated with cadmium. Physiol Res 52:563–570

    PubMed  CAS  Google Scholar 

  32. Ono K, Matsumori A, Shioi T, Furukawa Y, Sasayama S (1998) Cytokine gene expression after myocardial infarction in rat hearts: possible implication in left ventricular remodeling. Circulation 98:149–156

    PubMed  CAS  Google Scholar 

  33. Pantos C, Mourouzis I, Saranteas T, Clave G, Ligeret H, Noack-Fraissignes P, Renard PY, Massonneau M, Perimenis P, Spanou D, Kostopanagiotou G, Cokkinos DV (2009) Thyroid hormone improves postischaemic recovery of function while limiting apoptosis: a new therapeutic approach to support hemodynamics in the setting of ischaemia–reperfusion? Basic Res Cardiol 104:69–77. doi:10.1007/s00395-008-0758-4

    Article  PubMed  CAS  Google Scholar 

  34. Pfeffer MA, Braunwald E (1990) Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation 81:1161–1172

    PubMed  CAS  Google Scholar 

  35. Reller MD, Morton MJ, Giraud GD, Wu DE, Thornburg KL (1992) Maximal myocardial blood flow is enhanced by chronic hypoxemia in late gestation fetal sheep. Am J Physiol 263:H1327–H1329

    PubMed  CAS  Google Scholar 

  36. Rodriguez FA, Ventura JL, Casas M, Casas H, Pages T, Rama R, Ricart A, Palacios L, Viscor G (2000) Erythropoietin acute reaction and haematological adaptations to short, intermittent hypobaric hypoxia. Eur J Appl Physiol 82:170–177

    Article  PubMed  CAS  Google Scholar 

  37. Rosamond W, Flegal K, Friday G, Furie K, Go A, Greenlund K, Haase N, Ho M, Howard V, Kissela B, Kittner S, Lloyd-Jones D, McDermott M, Meigs J, Moy C, Nichol G, O’Donnell CJ, Roger V, Rumsfeld J, Sorlie P, Steinberger J, Thom T, Wasserthiel-Smoller S, Hong Y (2007) Heart disease and stroke statistics–2007 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 115:e69–e117. doi:10.1161/CIRCULATIONAHA.106.179918

    Article  PubMed  Google Scholar 

  38. Sakamoto K, Urushidani T, Nagao T (2000) Translocation of HSP27 to sarcomere induced by ischemic preconditioning in isolated rat hearts. Biochem Biophys Res Commun 269:137–142. doi:10.1006/bbrc.2000.2233

    Article  PubMed  CAS  Google Scholar 

  39. Sasaki H, Fukuda S, Otani H, Zhu L, Yamaura G, Engelman RM, Das DK, Maulik N (2002) Hypoxic preconditioning triggers myocardial angiogenesis: a novel approach to enhance contractile functional reserve in rat with myocardial infarction. J Mol Cell Cardiol 34:335–348. doi:10.1006/jmcc.2001.1516

    Article  PubMed  CAS  Google Scholar 

  40. Schuh A, Liehn EA, Sasse A, Schneider R, Neuss S, Weber C, Kelm M, Merx MW (2009) Improved left ventricular function after transplantation of microspheres and fibroblasts in a rat model of myocardial infarction. Basic Res Cardiol 104:403–411. doi:10.1007/s00395-008-0763-7

    Article  PubMed  Google Scholar 

  41. Shi Y, Baker JE, Zhang C, Tweddell JS, Su J, Pritchard KA Jr (2002) Chronic hypoxia increases endothelial nitric oxide synthase generation of nitric oxide by increasing heat shock protein 90 association and serine phosphorylation. Circ Res 91:300–306. doi:10.1161/01.RES.0000031799.12850.1E

    Article  PubMed  CAS  Google Scholar 

  42. Singla DK, Lyons GE, Kamp TJ (2007) Transplanted embryonic stem cells following mouse myocardial infarction inhibit apoptosis and cardiac remodeling. Am.J Physiol Heart Circ Physiol 293:H1308–H1314. doi:10.1152/ajpheart.01277.2006

    Article  PubMed  CAS  Google Scholar 

  43. Sun Y (2009) Myocardial repair/remodelling following infarction: roles of local factors. Cardiovasc Res 81:482–490. doi:10.1093/cvr/cvn333

    Article  PubMed  CAS  Google Scholar 

  44. Tang XL, Rokosh G, Sanganalmath SK, Yuan F, Sato H, Mu J, Dai S, Li C, Chen N, Peng Y, Dawn B, Hunt G, Leri A, Kajstura J, Tiwari S, Shirk G, Anversa P, Bolli R (2010) Intracoronary administration of cardiac progenitor cells alleviates left ventricular dysfunction in rats with a 30-day-old infarction. Circulation 121:293–305. doi:10.1253/circj.CJ-09-0923

    Article  PubMed  Google Scholar 

  45. Wang Y, Ahmad N, Wani MA, Ashraf M (2004) Hepatocyte growth factor prevents ventricular remodeling and dysfunction in mice via Akt pathway and angiogenesis. J Mol Cell Cardiol 37:1041–1052. doi:10.1016/j.yjmcc.2004.09.004

    Article  PubMed  CAS  Google Scholar 

  46. Whittaker P, Kloner RA, Boughner DR, Pickering JG (1994) Quantitative assessment of myocardial collagen with picrosirius red staining and circularly polarized light. Basic Res Cardiol 89:397–410. doi:10.1007/BF00788278

    Article  PubMed  CAS  Google Scholar 

  47. Xie Y, Zhu WZ, Zhu Y, Chen L, Zhou ZN, Yang HT (2004) Intermittent high altitude hypoxia protects the heart against lethal Ca2+ overload injury. Life Sci 76:559–572. doi:10.1016/j.lfs.2004.09.017

    Article  PubMed  CAS  Google Scholar 

  48. Xie Y, Zhu Y, Zhu WZ, Chen L, Zhou ZN, Yuan WJ, Yang HT (2005) Role of dual-site phospholamban phosphorylation in intermittent hypoxia-induced cardioprotection against ischemia reperfusion injury. Am J Physiol Heart Circ Physiol 288:H2594–H2602. doi:10.1152/ajpheart.00926.2004

    Article  PubMed  CAS  Google Scholar 

  49. Yellon DM, Downey JM (2003) Preconditioning the myocardium: from cellular physiology to clinical cardiology. Physiol Rev 83:1113–1151. doi:10.1152/physrev.00009.2003

    PubMed  CAS  Google Scholar 

  50. Zhang Y, Zhong N, Zhu HF, Zhou ZN (2000) Antiarrhythmic and antioxidative effects of intermittent hypoxia exposure on rat myocardium. Sheng Li Xue Bao 52:89–92

    PubMed  CAS  Google Scholar 

  51. Zhu WZ, Xie Y, Chen L, Yang HT, Zhou ZN (2006) Intermittent high altitude hypoxia inhibits opening of mitochondrial permeability transition pores against reperfusion injury. J Mol Cell Cardiol 40:96–106. doi:10.1016/j.yjmcc.2005.09.016

    Article  PubMed  CAS  Google Scholar 

  52. Zong P, Setty S, Sun W, Martinez R, Tune JD, Ehrenburg IV, Tkatchouk EN, Mallet RT, Downey HF (2004) Intermittent hypoxic training protects canine myocardium from infarction. Exp Biol Med 229:806–812

    CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Zhi-Hu Qu for technical assistance in surgery of experimental myocardial infarction (MI) and to Dr. You-Yi Zhang and Dr. Ming Xu for the constructive discussion. This study was supported in part by Grants from the Major State Basic Research Development Program of China (2006CB504106, 2007CB512100) and Knowledge Innovation Program of the CAS (KSCX2-YW-R-75).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huang-Tian Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 2,230 kb)

Supplementary material 2 (doc 35 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, WQ., Yu, Z., Xie, Y. et al. Therapeutic effect of intermittent hypobaric hypoxia on myocardial infarction in rats. Basic Res Cardiol 106, 329–342 (2011). https://doi.org/10.1007/s00395-011-0159-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-011-0159-y

Keywords

Navigation