Skip to main content

Advertisement

Log in

Improved left ventricular function after transplantation of microspheres and fibroblasts in a rat model of myocardial infarction

  • ORIGINAL CONTRIBUTION
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

As a novel and promising therapeutic strategy for heart failure, the application of different cell types is the subject of increasing research interest. In this study we investigated the effect of several cell types and microspheres (uniform polystyrene microspheres, 10 µm diameter) transplanted 4 weeks after induction of myocardial infarction in a rat model. Eight weeks after intramyocardial application of fibroblasts and microspheres, left ventricular function was significantly improved as demonstrated by isolated heart studies (Langendorff) and echocardiographic findings (LVDP fibroblasts 129 ± 32.9 mmHg, LVDP microspheres 119.2 ± 24.1 mmHg, fractional shortening (FS) microspheres 38.9 ± 4.6%, FS fibroblasts 36.84 ± 6.05%) in contrast to injection of macrophages or medium alone (LVDP medium 67 ± 22.6 mmHg, LVDP macrophages 75.9 ± 24.8 mmHg, FS macrophages 29.16 ± 8.7%, FS medium 27.2 ± 7.2%, P < 0.05). Signals of Bromodesoxy-Uridine (BrdU) labeled transplanted fibroblasts were detected in infarcted areas. Microspheres were recorded abundantly by autofluorescence. Significantly more apoptotic cells were observed in infarcted areas of macrophage (328.6 ± 37.4 cells/mm2) and medium (338.7 ± 16.5 cells/mm2; P < 0.05) treated hearts compared to microsphere (233.2 ± 16.8 cells/mm2) and fibroblast (232.2 ± 19.1 cells/mm2) injected hearts. Neovascularization, as reflected by the density of CD 31 positive vessels in the infracted area, did not differ between the four groups studied. The increased number of macrophages in infarcted areas after fibroblast and microsphere injection (fibroblasts 94.7 ± 7.1 cells/mm2, microspheres 82.2 ± 3.0 cells/mm2, macrophages 56.02 ± 9.93 cells/mm2, medium 46.35 ± 9.03 cells/mm2, P < 0.05) suggests that the underlying mechanism of augmented left ventricular function might be based on inflammatory processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adamek A, Hu K, Bayer B, Wagner H, Ertl G, Bauersachs J, Frantz S (2007) High dose aspirin and left ventricular remodeling after myocardial infarction: aspirin and myocardial infarction. Basic Res Cardiol 102(4):334–340

    Article  PubMed  CAS  Google Scholar 

  2. Bailey AS, Jiang S, Afentoulis M, Baumann CI, Schroeder DA, Olson SB, Wong MH, Fleming WH (2004) Transplanted adult hematopoietic stems cells differentiate into functional endothelial cells. Blood 103:13–19

    Article  PubMed  CAS  Google Scholar 

  3. Balsam LB, Wagers AJ, Christensen JL, Kofidis T, Weissman IL, Robbins RC (2004) Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428:668–673

    Article  PubMed  CAS  Google Scholar 

  4. Bramos D, Ikonomidis I, Tsirikos N, Kottis G, Kostopoulou V, Pamboucas C, Papadopoulou E, Venetsanou K, Giatrakos N, Yang GZ, Nihoyannopoulos P, Toumanidis S (2008) The association of coronary flow changes and inflammatory indices to ischaemia-reperfusion microvascular damage and left ventricular remodelling. Basic Res Cardiol 103(4):345–355

    Article  PubMed  CAS  Google Scholar 

  5. Dai W, Hale SL, Martin BJ, Kuang JQ, Dow JS, Wold LE, Kloner RA (2005) Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium: short- and long-term effects. Circulation 112:214–223

    Article  PubMed  Google Scholar 

  6. Fischer P, Hilfiker-Kleiner D (2007) Survival pathways in hypertrophy and heart failure: the gp130-STAT axis. Basic Res Cardiol 102(5):393–411

    Article  PubMed  CAS  Google Scholar 

  7. Fuchs S, Baffour R, Zhou YF, Shou M, Pierre A, Tio FO, Weissman NJ, Leon MB, Epstein SE, Kornowski R (2001) Transendocardial delivery of autologous bone marrow enhances collateral perfusion and regional function in pigs with chronic experimental myocardial ischemia. J Am Coll Cardiol 37:1726–1732

    Article  PubMed  CAS  Google Scholar 

  8. Gallagher G, Menzie S, Huang Y, Jackson C, Hunyor SN (2007) Regional cardiac dysfunction is associated with specific alterations in inflammatory cytokines and matrix metalloproteinases after acute myocardial infarction in sheep. Basic Res Cardiol 102(1):63–72

    Article  PubMed  CAS  Google Scholar 

  9. Halkos ME, Zhao ZQ, Kerendi F, Wang NP, Jiang R, Schmarkey LS, Martin BJ, Quyyumi AA, Few WL, Kin H, Guyton RA, Vinten-Johansen J (2008) Intravenous infusion of mesenchymal stem cells enhances regional perfusion and improves ventricular function in a porcine model of myocardial infarction. Basic Res Cardiol 103(6):525–536

    Article  PubMed  Google Scholar 

  10. Hamano K, Nishida M, Hirata K, Mikamo A, Li TS, Harada M, Miura T, Matsuzaki M, Esato K (2001) Local implantation of autologous bone marrow cells for therapeutic angiogenesis in patients with ischemic heart disease—clinical trial and preliminary results. Jpn Circ J 65:845–847

    Article  PubMed  CAS  Google Scholar 

  11. Heil M, Ziegelhoeffer T, Mees B, Schaper W (2004) A different outlook on the role of bone marrow stem cells in vascular growth—bone marrow delivers software not hardware. Circ Res 94:573–574

    Article  PubMed  CAS  Google Scholar 

  12. Hiasa K, Egashira K, Kitamoto S, Ishibashi M, Inoue S, Ni W, Zhao Q, Nagata S, Katoh M, Sata M, Takeshita A (2004) Bone marrow mononuclear cell therapy limits myocardial infarct size through vascular endothelial growth factor. Basic Res Cardiol 99:165–172

    Article  PubMed  CAS  Google Scholar 

  13. Kalka C, Masuda H, Takahashi T, Kalka-Moll WM, Silver M, Kearney M, Li T, Isner JM, Asahara T (2000) Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. PNAS 97:3422–3427

    Article  PubMed  CAS  Google Scholar 

  14. Kawamoto A, Gwon HC, Iwaguro H, Yamaguchi Ji, Uchida S, Masuda H, Silver M, Ma H, Kearney M, Isner JM, Asahara T (2001) Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation 103:634–637

    PubMed  CAS  Google Scholar 

  15. Kinnaird T, Stabile E, Burnett MS, Lee CW, Barr S, Fuchs S, Epstein SE (2004) Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res 94:678–685

    Article  PubMed  CAS  Google Scholar 

  16. Koch KC, Schaefer W, Liehn E, Rammos C, Mueller D, Schroeder J, Dimassi T, Stopinski T, Weber C (2006) Effect of catheter-based transendocardial delivery of stromal cell-derived factor 1α on left ventricular function and perfusion in a porcine model of myocardial infarction. Basic Res Cardiol 101:69–77

    Article  PubMed  CAS  Google Scholar 

  17. Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J, Homma S, Edwards NM, Itescu S (2001) Neovascularization of ischemic myocardium by human bone-marrow- derived angioblasts prevents cardiomyocytes apoptosis, reduces remodeling and improves cardiac function. Nat Med 7:430–436

    Article  PubMed  CAS  Google Scholar 

  18. Kuwana M, Okazaki Y, Kodama H, Izumi K, Yasuoka H, Ogawa Y, Kawakami Y, Ikeda Y (2003) Human circulating CD14+ monocytes as a source of progenitors that exhibit mesenchymal cell differentiation. J Leukoc Biol 74:833–845

    Article  PubMed  CAS  Google Scholar 

  19. Lee MS, Makkar RR (2004) Stem-cell transplantation in myocardial infarction: a status report. Ann Intern Med 140:729–737

    PubMed  Google Scholar 

  20. Lei Y, Haider HKh, Shujia J, Sim ES (2004) Therapeutic angiogenesis. Devising new strategies based on experiences. Basic Res Cardiol 99:121–132.

    Article  PubMed  Google Scholar 

  21. Memon IA, Sawa Y, Miyagawa S, Taketani S, Matsuda H (2005) Combined autologous cellular cardiomyoplasty with skeletal myoblasts and bone marrow cells in canine hearts for ischemic cardiomyopathy. Ann Thorac Cardiovasc Surg 130:646–653

    Article  Google Scholar 

  22. Menard C, Hagege AA, Agbulut O, Barro M, Morichetti MC, Brasselet C, Bel A, Messas E, Bissery A, Bruneval P (2005) Transplantation of cardiac-committed mouse embryonic stem cells to infarcted sheep myocardium: a preclinical study. Lancet 366:1005–1012

    Article  PubMed  Google Scholar 

  23. Merx MW, Zernecke A, Liehn EA, Schuh A, Scobel E, Butzbach B, Hanrath P, Weber C (2005) Transplantation of human umbilical vein endothelial cells improves left ventricular function in a rat model of myocardial infarction. Basic Res Cardiol 100:208–216

    Article  PubMed  Google Scholar 

  24. Murry CE, Soonpaa MH, Reinecke H, Nakajima H, Nakajima HO, Rubart M, Pasumarthi KBS, Ismail Virag J, Bartelmez SH, Poppa V, Bradford G, Dowell JD, Williams DA, Field LJ (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428:664–668

    Article  PubMed  CAS  Google Scholar 

  25. Norol F, Merlet P, Isnard R, Sebillon P, Bonnet N, Cailliot C, Carrion C, Ribeiro M, Charlotte F, Pradeau P, Mayol JF, Peinnequin A, Drouet M, Safsafi K, Vernant JP, Herodin F (2003) Influence of mobilized stem cells on myocardial infarct repair in a nonhuman primate model. Blood 102:4361–4368

    Article  PubMed  CAS  Google Scholar 

  26. Nygren JM, Jovinge S, Breitbach M, Sawen P, Roll W, Hescheler J, Taneera J, Fleischmann BK, Jacobsen SE (2004) Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat Med 10:494–501

    Article  PubMed  CAS  Google Scholar 

  27. Orlic D, Kajstura J, Chimenti S, Jakoniuk I (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705

    Article  PubMed  CAS  Google Scholar 

  28. Perin EC, Dohmann HFR, Borojevic R, Silva SA, Sousa ALS, Mesquita CT, Rossi MID, Carvalho AC, Dutra HS, Dohmann HJF, Silva GV, Belem L, Vivacqua R, Rangel FOD, Esporcatte R, Geng YJ, Vaughn WK, Assad JAR, Mesquita ET, Willerson JT (2003) Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 107:2294–2302

    Article  PubMed  Google Scholar 

  29. Pouzet B, Vilquin JT, Hagege AA, Scorsin M, Messas E, Fiszman M, Schwartz K, Menasche P (2000) Intramyocardial transplantation of autologous myoblasts: can tissue processing be optimized? Circulation 102:III210–III215

    PubMed  CAS  Google Scholar 

  30. Reinecke H, Zhang M, Bartosek T, Murry CE (1999) Survival, integration, and differentiation of cardiomyocyte grafts: a study in normal and injured rat hearts. Circulation 100:193–202

    PubMed  CAS  Google Scholar 

  31. Sakata Y, Chancey AL, Divakaran VG, Sekiguchi K, Sivasubramanian N, Mann DL (2008) Transforming growth factor-beta receptor antagonism attenuates myocardial fibrosis in mice with cardiac-restricted overexpression of tumor necrosis factor. Basic Res Cardiol 103(1):60–68

    Article  PubMed  CAS  Google Scholar 

  32. Schuh A, Breuer S, Al Dashti R, Sulemanjee N, Hanrath P, Weber C, Uretsky BF, Schwarz ER (2005) Administration of vascular endothelial growth factor adjunctive to fetal cardiomyocyte transplantation and improvement of cardiac function in the rat model. J Cardiovasc Pharmacol Ther 10:55–66

    Article  PubMed  CAS  Google Scholar 

  33. Schuh A, Liehn EA, Sasse A, Hristov M, Sobota R, Kelm M, Merx MW, Weber C (2008) Transplantation of endothelial progenitor cells improves neovascularization and left ventricular function after myocardial infarction in a rat model. Basic Res Cardiol 103:69–77

    Article  PubMed  Google Scholar 

  34. Scorsin M, Marotte F, Sabri O, Le Dref O, Demirag M, Samuel JL, Rappaport L, Menasche P (1996) Can grafted cardiomyocytes colonize peri-infarct myocardial areas? Circulation 94:II337–II340

    PubMed  CAS  Google Scholar 

  35. Shintani S, Murohara T, Ikeda H, Ueno T, Honma T, Katoh A, Sasaki Ki, Shimada T, Oike Y, Imaizumi T (2001) Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulation 103:2776–2779

    Article  PubMed  CAS  Google Scholar 

  36. Shintani S, Murohara T, Ikeda H, Ueno T, Sasaki Ki, Duan J, Imaizumi T (2001) Augmentation of postnatal neovascularization with autologous bone marrow transplantation. Circulation 103:897–903

    Article  PubMed  CAS  Google Scholar 

  37. Skobel E, Schuh A, Schwarz ER, Liehn EA, Franke A, Breuer S, Gunther K, Reffelmann T, Hanrath P, Weber C (2004) Transplantation of fetal cardiomyocytes into infarcted rat hearts result in long-term functional improvement. Tissue Eng 10:849–864

    Article  PubMed  Google Scholar 

  38. Skyschally A, Gres P, Hoffmann S, Haude M, Erbel R, Schulz R, Heusch G (2007) Bidirectional role of tumor necrosis factor-alpha in coronary microembolization: progressive contractile dysfunction versus delayed protection against infarction. Circ Res 100(1):140–146

    Article  PubMed  CAS  Google Scholar 

  39. Stamm C, Westphal B, Kleine HD, Petzsch M, Kittner C, Klinge H, Schumichen C, Nienaber CA, Freund M, Steinhoff G (2003) Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet 361:45–46

    Article  PubMed  Google Scholar 

  40. Strauer BE, Brehm M, Zeus T, Kostering M, Hernandez A, Sorg RV, Kogler G, Wernet P (2002) Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 106:1913–1918

    Article  PubMed  Google Scholar 

  41. Tatariunas AB (1991) Accumulation of lipofuscin granules in acute myocardial infarct as a model of cell aging. Biull Eksp Biol Med 111(4):443–446

    PubMed  CAS  Google Scholar 

  42. Tatariunas AB, Karnaukhov VN, Stalioraitite EI (1980) Lipofuscin granule accumulation in the area of an experimental myocardial infarct in young animals. Arkh Patol 42(8)

  43. Tomita S, Li RK, Weisel RD, Mickle DAG, Kim EJ, Sakai T, Jia ZQ (1999) Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 100:II247–II256

    PubMed  CAS  Google Scholar 

  44. Tse HF, Kwong YL, Chan JK, Lo G, Ho CL, Lau CP (2003) Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation. Lancet 361:47–49

    Article  PubMed  Google Scholar 

  45. Westermann D, Van Linthout S, Dhayat S, Dhayat N, Schmidt A, Noutsias M, Song XY, Spillmann F, Riad A, Schultheiss HP, Tschöpe C (2007) Tumor necrosis factor-alpha antagonism protects from myocardial inflammation and fibrosis in experimental diabetic cardiomyopathy. Basic Res Cardiol 102(6):500–507

    Article  PubMed  CAS  Google Scholar 

  46. Zhao Y, Glesne D, Huberman E (2003) A human peripheral blood monocyte-derived subset acts as pluripotent stem cells. PNAS 100:2426–2431

    Article  PubMed  CAS  Google Scholar 

  47. Ziegelhoeffer T, Fernandez B, Kostin S, Heil M, Voswinckel R, Helisch A, Schaper W (2004) Bone marrow-derived cells do not incorporate into the adult growing vasculature. Circ Res 94:230–238

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc W. Merx.

Additional information

Returned for 1. Revision: 10 March 2008 1. Revision received: 11 September 2008

Returned for 2. Revision: 15 October 2008 2. Revision received: 28 October 2008

Dr. A. Schuh and Dr. E.A. Liehn equally contributed to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schuh, A., Liehn, E.A., Sasse, A. et al. Improved left ventricular function after transplantation of microspheres and fibroblasts in a rat model of myocardial infarction. Basic Res Cardiol 104, 403–411 (2009). https://doi.org/10.1007/s00395-008-0763-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-008-0763-7

Keywords

Navigation