Skip to main content
Log in

TNFα protects cardiac mitochondria independently of its cell surface receptors

  • Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Our novel proposal is that TNFα exerts a direct effect on mitochondrial respiratory function in the heart, independently of its cell surface receptors. TNFα-induced cardioprotection is known to involve reactive oxygen species (ROS) and sphingolipids. We therefore further propose that this direct mitochondrial effect is mediated via ROS and sphingolipids. The protective concentration of TNFα (0.5 ng/ml) was added to isolated heart mitochondria from black 6 × 129 mice (WT) and double TNF receptor knockout mice (TNFR1&2−/−). Respiratory parameters and inner mitochondrial membrane potential were analyzed in the presence/absence of two antioxidants, N-acetyl-l-cysteine or N-tert-butyl-α-(2-sulfophenyl)nitrone or two antagonists of the sphingolipid pathway, N-oleoylethanolamine (NOE) or imipramine. In WT, TNFα reduced State 3 respiration from 279.3 ± 3 to 119.3 ± 2 (nmol O2/mg protein/min), increased proton leak from 15.7 ± 0.6% (control) to 36.6 ± 4.4%, and decreased membrane potential by 20.5 ± 3.1% compared to control groups. In TNFR1&2−/− mice, TNFα reduced State 3 respiration from 205.2 ± 4 to 75.7 ± 1 (p < 0.05 vs. respective control). In WT mice, both antioxidants added with TNFα restored State 3 respiration to 269.2 ± 2 and 257.6 ± 2, respectively. Imipramine and NOE also restored State 3 respiration to 248.4 ± 2 and 249.0 ± 2, respectively (p < 0.01 vs. TNFα alone). Similarly, both antioxidant and inhibitors of the sphingolipid pathway restored the proton leak to pre-TNF values. TNFα-treated mitochondria or isolated cardiac muscle fibers showed an increase in respiration after anoxia–reoxygenation, but this effect was lost in the presence of an antioxidant or NOE. Similar data were obtained in TNFR1&2−/− mice. TNFα exerts a protective effect on respiratory function in isolated mitochondria subjected to an anoxia–reoxygenation insult. This effect appears to be independent of its cell surface receptors, but is likely to be mediated by ROS and sphingolipids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Andreyev AY, Kushnareva YE, Starkov AA (2005) Mitochondrial metabolism of reactive oxygen species. Biochemistry 70:200–214

    PubMed  CAS  Google Scholar 

  2. Baines CP (2009) The mitochondrial permeability transition pore and ischemia-reperfusion injury. Basic Res Cardiol 104:181–188

    Article  PubMed  CAS  Google Scholar 

  3. Birbes H, Luberto C, Hsu YT, El Bawab S, Hannun YA, Obeid LM (2005) A mitochondrial pool of sphingomyelin is involved in TNFalpha-induced Bax translocation to mitochondria. Biochem J 386:445–451

    Article  PubMed  CAS  Google Scholar 

  4. Boengler K, Stahlhofen S, van de Sand A, Gres P, Ruiz-Meana M, Garcia-Dorado D, Heusch G, Schulz R (2009) Presence of connexin 43 in subsarcolemmal, but not in interfibrillar cardiomyocyte mitochondria. Basic Res Cardiol 104:141–147

    Article  PubMed  CAS  Google Scholar 

  5. Budnikov E, Postnov A, Doroshchuk AD, Afanasjeva GV, Postnov Iu V (2002) Decreased ATP-synthesis ability of liver mitochondria in spontaneously hypertensive rats (SHR): role of calcium overload of the mitochondria. Kardiologiia 42:47–50

    PubMed  Google Scholar 

  6. Busquets S, Aranda X, Ribas-Carbo M, Azcon-Bieto J, Lopez-Soriano FJ, Argiles JM (2003) Tumour necrosis factor-alpha uncouples respiration in isolated rat mitochondria. Cytokine 22:1–4

    Article  PubMed  CAS  Google Scholar 

  7. Corda S, Laplace C, Vicaut E, Duranteau J (2001) Rapid reactive oxygen species production by mitochondria in endothelial cells exposed to tumor necrosis factor-alpha is mediated by ceramide. Am J Respir Cell Mol Biol 24:762–768

    PubMed  CAS  Google Scholar 

  8. Dbaibo GS, El-Assaad W, Krikorian A, Liu B, Diab K, Idriss NZ, El-Sabban M, Driscoll TA, Perry DK, Hannun YA (2001) Ceramide generation by two distinct pathways in tumor necrosis factor alpha-induced cell death. FEBS Lett 503:7–12

    Article  PubMed  CAS  Google Scholar 

  9. Di Lisa F, Blank PS, Colonna R, Gambassi G, Silverman HS, Stern MD, Hansford RG (1995) Mitochondrial membrane potential in single living adult rat cardiac myocytes exposed to anoxia or metabolic inhibition. J Physiol 486(Pt 1):1–13

    PubMed  CAS  Google Scholar 

  10. Di Lisa F, Kaludercic N, Carpi A, Menabo R, Giorgio M (2009) Mitochondrial pathways for ROS formation and myocardial injury: the relevance of p66(Shc) and monoamine oxidase. Basic Res Cardiol 104:131–139

    Article  PubMed  CAS  Google Scholar 

  11. Dorge H, Schulz R, Belesjorow S, Post H, van de Sand A, Konietzka I, Frede S, Hartung T, Vinten-Johansen J, Youker A, Entman ML, Erbel R, Heusch G (2002) Coronary microembolization: the role of TNFα in contractile dysfunction. J Mol Cell Cardiol 34:51–62

    Google Scholar 

  12. Gurevitch J, Frolkis I, Yuhas Y, Paz Y, Matsa M, Mohr R, Yakirevich V (1996) Tumor necrosis factor-alpha is released from the isolated heart undergoing ischemia and reperfusion. J Am Coll Cardiol 28:247–252

    Article  PubMed  CAS  Google Scholar 

  13. Heusch G, Boengler K, Schulz R (2010) Inhibition of mitochondrial permeability transition pore opening: the Holy Grail of cardioprotection. Basic Res Cardiol 105:151–154

    Article  PubMed  Google Scholar 

  14. Jin ZQ, Goetzl EJ, Karliner JS (2004) Sphingosine kinase activation mediates ischemic preconditioning in murine heart. Circulation 110:1980–1989

    Article  PubMed  CAS  Google Scholar 

  15. Karliner JS (2009) Sphingosine kinase regulation and cardioprotection. Cardiovasc Res 82:184–192

    Article  PubMed  CAS  Google Scholar 

  16. Kimura H, Shintani-Ishida K, Nakajima M, Liu S, Matsumoto K, Yoshida K (2006) Ischemic preconditioning or p38 MAP kinase inhibition attenuates myocardial TNF alpha production and mitochondria damage in brief myocardial ischemia. Life Sci 78:1901–1910

    Article  PubMed  CAS  Google Scholar 

  17. Lacerda L, Smith RM, Opie L, Lecour S (2006) TNFalpha-induced cytoprotection requires the production of free radicals within mitochondria in C2C12 myotubes. Life Sci 79:2194–2201

    Article  PubMed  CAS  Google Scholar 

  18. Lacerda L, Somers S, Opie LH, Lecour S (2009) Ischaemic postconditioning protects against reperfusion injury via the SAFE pathway. Cardiovasc Res 84:201–208

    Article  PubMed  CAS  Google Scholar 

  19. Lancaster JR Jr, Laster SM, Gooding LR (1989) Inhibition of target cell mitochondrial electron transfer by tumor necrosis factor. FEBS Lett 248:169–174

    Article  PubMed  CAS  Google Scholar 

  20. Lecour S (2009) Activation of the protective Survivor Activating Factor Enhancement (SAFE) pathway against reperfusion injury: does it go beyond the RISK pathway? J Mol Cell Cardiol 47:32–40

    Article  PubMed  CAS  Google Scholar 

  21. Lecour S, Owira P, Opie LH (2006) Ceramide-induced preconditioning involves reactive oxygen species. Life Sci 78:1702–1706

    Article  PubMed  CAS  Google Scholar 

  22. Lecour S, Smith RM, Woodward B, Opie LH, Rochette L, Sack MN (2002) Identification of a novel role for sphingolipid signaling in TNF alpha and ischemic preconditioning mediated cardioprotection. J Mol Cell Cardiol 34:509–518

    Article  PubMed  CAS  Google Scholar 

  23. Lecour S, Suleman N, Deuchar GA, Somers S, Lacerda L, Huisamen B, Opie LH (2005) Pharmacological preconditioning with tumor necrosis factor-alpha activates signal transducer and activator of transcription-3 at reperfusion without involving classic prosurvival kinases (Akt and extracellular signal-regulated kinase). Circulation 112:3911–3918

    Article  PubMed  CAS  Google Scholar 

  24. Ledgerwood EC, Prins JB, Bright NA, Johnson DR, Wolfreys K, Pober JS, O’Rahilly S, Bradley JR (1998) Tumor necrosis factor is delivered to mitochondria where a tumor necrosis factor-binding protein is localized. Lab Invest 78:1583–1589

    PubMed  CAS  Google Scholar 

  25. Ledgerwood EC, Prins JB, Bright NA, Johnson DR, Wolfreys K, Pober JS, O’Rahilly S, Bradley JR (1998) Tumour necrosis factor is trafficked to a mitochondrial tumour necrosis factor binding protein. Biochem Soc Trans 26:S316

    PubMed  CAS  Google Scholar 

  26. Lenaz G (2001) The mitochondrial production of reactive oxygen species: mechanisms and implications in human pathology. IUBMB Life 52:159–164

    Article  PubMed  CAS  Google Scholar 

  27. Macouillard-Poulletier de G, Belaud-Rotureau MA, Voisin P, Leducq N, Belloc F, Canioni P, Diolez P (1998) Flow cytometric analysis of mitochondrial activity in situ: application to acetylceramide-induced mitochondrial swelling and apoptosis. Cytometry 33:333–339

    Google Scholar 

  28. McCarthy J, McLeod CJ, Minners J, Essop MF, Ping P, Sack MN (2005) PKCepsilon activation augments cardiac mitochondrial respiratory post-anoxic reserve—a putative mechanism in PKCepsilon cardioprotection. J Mol Cell Cardiol 38:697–700

    Article  PubMed  CAS  Google Scholar 

  29. McLeod CJ, Aziz A, Hoyt RF Jr, McCoy JP Jr, Sack MN (2005) Uncoupling proteins 2 and 3 function in concert to augment tolerance to cardiac ischemia. J Biol Chem 280:33470–33476

    Article  PubMed  CAS  Google Scholar 

  30. McLeod CJ, Jeyabalan AP, Minners JO, Clevenger R, Hoyt RF Jr, Sack MN (2004) Delayed ischemic preconditioning activates nuclear-encoded electron-transfer-chain gene expression in parallel with enhanced postanoxic mitochondrial respiratory recovery. Circulation 110:534–539

    Article  PubMed  CAS  Google Scholar 

  31. Meldrum DR (1998) Tumor necrosis factor in the heart. Am J Physiol 274:R577–R595

    PubMed  CAS  Google Scholar 

  32. Minners J, Lacerda L, McCarthy J, Meiring JJ, Yellon DM, Sack MN (2001) Ischemic and pharmacological preconditioning in Girardi cells and C2C12 myotubes induce mitochondrial uncoupling. Circ Res 89:787–792

    Article  PubMed  CAS  Google Scholar 

  33. Nadtochiy SM, Tompkins AJ, Brookes PS (2006) Different mechanisms of mitochondrial proton leak in ischaemia/reperfusion injury and preconditioning: implications for pathology and cardioprotection. Biochem J 395:611–618

    Article  PubMed  CAS  Google Scholar 

  34. Nogueira V, Rigoulet M, Piquet MA, Devin A, Fontaine E, Leverve XM (2001) Mitochondrial respiratory chain adjustment to cellular energy demand. J Biol Chem 276:46104–46110

    Article  PubMed  CAS  Google Scholar 

  35. Pellieux C, Montessuit C, Papageorgiou I, Lerch R (2009) Angiotensin II downregulates the fatty acid oxidation pathway in adult rat cardiomyocytes via release of tumour necrosis factor-alpha. Cardiovasc Res 82:341–350

    Article  PubMed  CAS  Google Scholar 

  36. Perry G, Castellani RJ, Hirai K, Smith MA (1998) Reactive oxygen species mediate cellular damage in Alzheimer disease. J Alzheimers Dis 1:45–55

    PubMed  CAS  Google Scholar 

  37. Peterson GL (1977) A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem 83:346–356

    Article  PubMed  CAS  Google Scholar 

  38. Reers M, Smith TW, Chen LB (1991) J-aggregate formation of a carbocyanine as a quantitative fluorescent indicator of membrane potential. Biochemistry 30:4480–4486

    Article  PubMed  CAS  Google Scholar 

  39. Schulz R, Heusch G (2009) Tumor necrosis factor-alpha and its receptors 1 and 2: Yin and Yang in myocardial infarction? Circulation 119:1355–1357

    Article  PubMed  Google Scholar 

  40. Schulze-Osthoff K, Bakker AC, Vanhaesebroeck B, Beyaert R, Jacob WA, Fiers W (1992) Cytotoxic activity of tumor necrosis factor is mediated by early damage of mitochondrial functions. Evidence for the involvement of mitochondrial radical generation. J Biol Chem 267:5317–5323

    PubMed  CAS  Google Scholar 

  41. Shen X, Zheng S, Metreveli NS, Epstein PN (2006) Protection of cardiac mitochondria by overexpression of MnSOD reduces diabetic cardiomyopathy. Diabetes 55:798–805

    Article  PubMed  CAS  Google Scholar 

  42. Shiva S, Sack MN, Greer JJ, Duranski M, Ringwood LA, Burwell L, Wang X, MacArthur PH, Shoja A, Raghavachari N, Calvert JW, Brookes PS, Lefer DJ, Gladwin MT (2007) Nitrite augments tolerance to ischemia/reperfusion injury via the modulation of mitochondrial electron transfer. J Exp Med 204:2089–2102

    Article  PubMed  CAS  Google Scholar 

  43. Skyschally A, Gres P, Hoffmann S, Haude M, Erbel R, Schulz R, Heusch G (2007) Bidirectional role of tumor necrosis factor-alpha in coronary microembolization: progressive contractile dysfunction versus delayed protection against infarction. Circ Res 100:140–146

    Article  PubMed  CAS  Google Scholar 

  44. Skyschally A, van Caster P, Boengler K, Gres P, Musiolik J, Schilawa D, Schulz R, Heusch G (2009) Ischemic postconditioning in pigs: no causal role for RISK activation. Circ Res 104:15–18

    Article  PubMed  CAS  Google Scholar 

  45. Smith RM, Suleman N, McCarthy J, Sack MN (2002) Classic ischemic but not pharmacologic preconditioning is abrogated following genetic ablation of the TNFalpha gene. Cardiovasc Res 55:553–560

    Article  PubMed  CAS  Google Scholar 

  46. Sordahl LA, Besch HR Jr, Allen JC, Crow C, Lindenmayer GE, Schwartz A (1971) Enzymatic aspects of the cardiac muscle cell: mitochondria, sarcoplasmic reticulum and nonovalent cation active transport system. Methods Achiev Exp Pathol 5:287–346

    PubMed  CAS  Google Scholar 

  47. Thielmann M, Dorge H, Martin C, Belosjorow S, Schwanke U, van de Sand A, Konietska I, Buchert A, Kruger A, Schulz R, Heusch G (2002) Myocardial dysfunction with coronary microembolization. Circ Res 90(7):807–813

    Google Scholar 

  48. Torre-Amione G, Kapadia S, Lee J, Bies RD, Lebovitz R, Mann DL (1995) Expression and functional significance of tumor necrosis factor receptors in human myocardium. Circulation 92:1487–1493

    PubMed  CAS  Google Scholar 

  49. Veksler VI, Kuznetsov AV, Sharov VG, Kapelko VI, Saks VA (1987) Mitochondrial respiratory parameters in cardiac tissue: a novel method of assessment by using saponin-skinned fibers. Biochim Biophys Acta 892:191–196

    Article  PubMed  CAS  Google Scholar 

  50. Vessey DA, Li L, Kelley M, Karliner JS (2008) Combined sphingosine, S1P and ischemic postconditioning rescue the heart after protracted ischemia. Biochem Biophys Res Commun 375:425–429

    Article  PubMed  CAS  Google Scholar 

  51. Wang M, Tsai BM, Crisostomo PR, Meldrum DR (2006) Tumor necrosis factor receptor 1 signaling resistance in the female myocardium during ischemia. Circulation 114:I282–I289

    Article  PubMed  Google Scholar 

  52. Wei L, Sun D, Yin Z, Yuan Y, Hwang A, Zhang Y, Si R, Zhang R, Guo W, Cao F, Wang H (2010) A PKC-beta inhibitor protects against cardiac microvascular ischemia reperfusion injury in diabetic rats. Apoptosis 15:488–498

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a CRIG grant from the Wellcome, the Interuniversity Cape Heart Group of the South African Medical Research Council and the National Research Foundation. S.L. was supported by a Servier Senior Fellowship for Research in Heart Failure and a Medical Research Council career award. L.L. by the Wellcome Trust and the Medical Research Council of South Africa.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lydia Lacerda.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 229 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lacerda, L., McCarthy, J., Mungly, S.F.K. et al. TNFα protects cardiac mitochondria independently of its cell surface receptors. Basic Res Cardiol 105, 751–762 (2010). https://doi.org/10.1007/s00395-010-0113-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-010-0113-4

Keywords

Navigation