Skip to main content
Log in

A fast version of LASG/IAP climate system model and its 1000-year control integration

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

A fast version of the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG)/Institute of Atmospheric Physics (IAP) climate system model is briefly documented. The fast coupled model employs a low resolution version of the atmospheric component Grid Atmospheric Model of IAP/LASG (GAMIL), with the other parts of the model, namely an oceanic component LASG/IAP Climate Ocean Model (LICOM), land component Common Land Model (CLM), and sea ice component from National Center for Atmospheric Research Community Climate System Model (NCAR CCSM2), as the same as in the standard version of LASG/IAP Flexible Global Ocean Atmosphere Land System model (FGOALS g). The parameterizations of physical and dynamical processes of the atmospheric component in the fast version are identical to the standard version, although some parameter values are different. However, by virtue of reduced horizontal resolution and increased time-step of the most time-consuming atmospheric component, it runs faster by a factor of 3 and can serve as a useful tool for longterm and large-ensemble integrations. A 1000-year control simulation of the present-day climate has been completed without flux adjustments. The final 600 years of this simulation has virtually no trends in global mean sea surface temperatures and is recommended for internal variability studies. Several aspects of the control simulation’s mean climate and variability are evaluated against the observational or reanalysis data. The strengths and weaknesses of the control simulation are evaluated. The mean atmospheric circulation is well simulated, except in high latitudes. The Asian-Australian monsoonal meridional cell shows realistic features, however, an artificial rainfall center is located to the eastern periphery of the Tibetan Plateau persists throughout the year. The mean bias of SST resembles that of the standard version, appearing as a “double ITCZ” (Inter-Tropical Convergence Zone) associated with a westward extension of the equatorial eastern Pacific cold tongue. The sea ice extent is acceptable but has a higher concentration. The strength of Atlantic meridional overturning is 27.5 Sv. Evidence from the 600-year simulation suggests a modulation of internal variability on ENSO frequency, since both regular and irregular oscillations of ENSO are found during the different time periods of the long-term simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler, R. F., and Coauthors, 2003: The Version 2 Global Precipitation Climatology Project (GPCP) monthly Precipitation analysis (1979-Present). J. Hydrometeorology, 4, 1147–1167.

    Article  Google Scholar 

  • Bentsen, M., H. Drange, T. Furevik, and T. Zhou, 2004: Simulated variability of the Atlantic Meridional Overturning circulation. Climate Dyn., 22, 701–720.

    Article  Google Scholar 

  • Blackmon, M. B., and Coauthors, 2001: The Community Climate System Model. Bull. Amer. Meteor. Soc., 82(11), 2357–2376.

    Article  Google Scholar 

  • Bonan, G. B., K. W. Oleson, M. Vertenstein, S. Levis, X. Zeng, Y. Dai, R. E. Dickinson, and Z.-L. Yang, 2002: The land surface climatology of the Community Land Model coupled to the NCAR Community Climate Model. J. Climate, 15, 3123–3149.

    Article  Google Scholar 

  • Boville, B. A., and P. R. Gent, 1998: The NCAR Climate System Model, Version One. J. Climate, 11, 1115–1130.

    Article  Google Scholar 

  • Briegleb, B. P., C. M. Bitz, E. C. Hunke, W. H. Lipscomb, M. M. Holland, J. L. Schramm, and R. E. Moritz, 2004: Scientific description of the sea ice component in the Community Climate System Model: Version Three. NCAR Tech. Note NCARTN-463+STR, 70pp.

  • Bryan, F. O., G. Danabasoglu, N. Nakashiki, Y. Yoshida, D-H. Kim, J. Tsutsui, and S. C. Doney, 2006: Response of North Atlantic thermohaline circulation and ventilation to increasing carbon dioxide in CCSM3. J. Climate, 19(11), 2382–2397.

    Article  Google Scholar 

  • Collins, M., S. F. B. Tett, and C. Cooper, 2001: The internal climate variability of. HadCM3, a version of the Hadley Centre coupled model without flux adjustments. Climate Dyn., 17, 61–81.

    Article  Google Scholar 

  • Collins, W. D., and Coauthors, 2003: Description of the NCAR Community Atmosphere Model (CAM2). National Center for Atmospheric Research, Boulder, Colorado, 171pp.

    Google Scholar 

  • Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 4605–4630.

    Article  Google Scholar 

  • Dai, A., A. Hu, G. A. Meehl, W. M. Washington, and W. G. Strand, 2005: Atlantic thermohaline circulation in a coupled model: Unforced variations vs. forced changes. J. Climate, 18, 3270–3293.

    Article  Google Scholar 

  • Delworth, T. L., R. J. Stouffer, K. W. Dixon, M. J. Spelman, T. R. Knutson, A. J. Broccoli, P. J. Kushner, and R. T. Wetherald, 2002: Review of simulations of climate variability and change with the GFDL R30 coupled climate model. Climate Dyn., 19, 555–574.

    Article  Google Scholar 

  • Furevik, T., M. Bentsen, H. Drange, I. K. T. Kindem, N. G. Kvamsto, and A. Sorteberg, 2003: Description and evaluation of the Bergen climate model: ARPEGE coupled with MICOM. Climate Dyn., 21, 27–51.

    Article  Google Scholar 

  • Frank, R., 2001: An atlas of surface flues based on the ECMWF reanalysis: A climatological dataset to force global ocean general circulation models. Report No. 323, Max-Planck-Institute for Meteorology, Hamburg, 31pp.

    Google Scholar 

  • Gnanadesikan, A., and Coauthors, 2006: GFDL’s CM2 Global Coupled Climate Models. Part II: The baseline ocean simulation. J. Climate, 19, 675–697.

    Article  Google Scholar 

  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150–155.

    Article  Google Scholar 

  • Gong, D. Y., and W. S. Wang, 1999: Definition of Antarctic Oscillation index. Geophys. Res. Lett., 26, 459–462.

    Article  Google Scholar 

  • Gong, D. Y., S. H. Wang, and J. H. Zhu, 2001: East Asian winter monsoon and Arctic Oscillation. Geophys. Res. Lett., 28, 2073–2076.

    Article  Google Scholar 

  • Gordon, A., 2001: Interocean exchange. Ocean Circulation and Climate. Vol. 77, International Geophysics Series, Academic Press, 303–314.

  • Guilyardi, E., 2006: El Niño-mean state-seasonal cycle interactions in a multi-model ensemble. Climate Dyn., 26, 329–348.

    Article  Google Scholar 

  • IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Solomon et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, USA, 996pp.

    Google Scholar 

  • Jacob, R., C. Schafer, I. Foster, M. Tobis, and J. Anderson, 2001: Computational design and performance of the Fast Ocean Atmosphere Model, Version One. Proc. International Conference on Computational Science, Alexandrov et al., Eds., Springer-Verlag, 175–184.

  • Jin, X. Z., X. H. Zhang, and T. J. Zhou, 1999: Fundamental framework and experiments of the third generation of IAP/LASG World Ocean General Circulation Model. Adv. Atmos. Sci., 16, 197–215.

    Article  Google Scholar 

  • Johns, W., T. Shay, J. Bane, and D. Watts, 1995: Gulf Stream structure, transport, and recirculation near 68°W. J. Geophys. Res., 100, 817–838.

    Article  Google Scholar 

  • Johns, T. C., R. E. Carnell, J. F. Crossley, J.M. Gregory, J. F. B. Mitchell, C. A. Senior, S. F. B. Tett, and R. A. Wood, 1997: The Second Hadley Centre coupled ocean-atmosphere GCM: Model description, spinup and validation. Climate Dyn., 13, 103–134.

    Article  Google Scholar 

  • Jones, C., J. Gregory, R. Thorpe, P. Cox, J. Murphy, D. Sexton, and P. Vlades, 2005: Systematic optimization and climate simulations of FAMOUS, a fast version of HadCM3. Climate Dyn., 25, 189–204.

    Article  Google Scholar 

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–472.

    Article  Google Scholar 

  • Kiehl, J. T., and P. R. Gent, 2004: The Community Climate System Model, Version Two. J. Climate, 17, 3666–3682.

    Article  Google Scholar 

  • Lambert, S. J., and G. J. Boer, 2001: CMIP1 evaluation and inter-comparison of coupled climate models. Climate Dyn., 17, 83–106.

    Article  Google Scholar 

  • Large, W. G., and G. Danabasoglu, 2006: Attribution and impacts of upper ocean biases in CCSM3. J. Climate, 19, 2325–2346.

    Article  Google Scholar 

  • Levitus, S., and T. P. Boyer, 1994: World Ocean Atlas 1994: Temperature and Salinity. U. S. Department of Commerce, Washington, D.C., 117pp.

    Google Scholar 

  • Li, J., R. Yu, T. Zhou, and B. Wang, 2005: Why is there an early spring cooling shift downstream of the Tibetan Plateau. J. Climate, 18, 4660–4668.

    Article  Google Scholar 

  • Li, L. J., B. Wang, Y. Q. Wang, and H. Wan, 2007a: Improvements in climate simulation with modifications to the Tiedtke convective parameterization in the grid-point atmospheric model of IAP LASG (GAMIL). Adv. Atmos. Sci., 24, 323–335, DOI: 10.1007/s00376-007-0323-3.

    Article  Google Scholar 

  • Li, L., B. Wang, and T. Zhou, 2007b: Contributions of natural and anthropogenic forcings to the summer cooling over eastern China: An AGCM study. Geophys. Res. Lett., 34, L18807, doi: 10.1029/2007GL030541.

    Article  Google Scholar 

  • Li, L., B. Wang, and T. Zhou, 2007c: Impacts of external forcing on the 20th century global warming. Chinese Science Bulletin, 52, 3148–3154.

    Article  Google Scholar 

  • Li, Z. X., and S. Conil, 2003: A 1000-year simulation with the IPSL ocean-atmosphere coupled model. Annals of Geophysics, 46, 39–46.

    Google Scholar 

  • Liu, H., X. Zhang, W. Li, Y. Yu, and R. Yu, 2004: An eddy-permitting oceanic general circulation model and its preliminary evaluations. Adv. Atmos. Sci., 21, 675–690.

    Article  Google Scholar 

  • Manabe, S., and R. J. Stouffer, 1996: Low-frequency variability of surface air temperature in a 1000-year integration of a coupled atmosphere-ocean-land surface model. J. Climate, 9, 376–393.

    Article  Google Scholar 

  • Marshall, G. J., 2002: Trends in Antarctic geopotential height and temperature: A comparison between radiosonde and NCEP-NCAR reanalysis data. J. Climate, 15, 659–674.

    Article  Google Scholar 

  • Meehl, A. M., 1995: Global coupled general circulation models. Bull. Amer. Meteor. Soc., 76, 951–957.

    Google Scholar 

  • Min, S. K., S. Legutke, A. Hense, and W. T. Kwon, 2005: Internal variability in a 1000-yr control simulation with the coupled climate model ECHO-G—I. Nearsurface temperature, precipitation and mean sea level pressure. Tellus, 57A, 605–621.

    Google Scholar 

  • Montoya, M., A. Griesel, A. Levermann, J, Mignot, M. Hofmann, A. Ganopolski, and S. Rahmstorf, 2005: The earth system model of intermediate complexity CLIMBER-3a. Part I: Descrippdftion and performance for present day conditions. Climate Dyn., 25, 237–263.

    Article  Google Scholar 

  • Pacanowski, R. C., and G., Philander, 1981: Parameterization of vertical mixing in numerical models of the tropical ocean. J. Phys. Oceanogr., 11, 1442–1451.

    Article  Google Scholar 

  • Peterson, R., and L. Stramma, 1991: Upper-level circulation in the South Atlantic Ocean. Progress in Oceanography, 26, 1–73.

    Article  Google Scholar 

  • Pickart, R., D. Torres, and R. Clarke, 2002: Hydrography of the Labrador Sea during active convection. J. Phys. Oceanogr, 32, 428–457.

    Article  Google Scholar 

  • Qiu, B., and T. Joyce, 1992: Interannual variability in the mid-and low-latitude western North Pacific. J. Phys. Oceanogr, 22, 1062–1079.

    Article  Google Scholar 

  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Globally complete analyses of sea surface temperature, sea ice and night marine air temperature, 1871–2000. J. Geophys. Res., 108, 4407, doi: 10.1029/2002JD002670.

    Article  Google Scholar 

  • Read, J. F., and R. T. Pollard, 1993: Structure and transport of the Antarctic circumpolar current and Agulhas return current at 40E. J. Geophys. Res., 98, 12281–12295.

    Article  Google Scholar 

  • Rosati, A., and K., Miyakoda, 1988: A general circulation model for upper ocean circulation. J. Phys. Oceanogr., 18, 1601–1626.

    Article  Google Scholar 

  • Russell, J. L., R. J. Stouffer, and K. W. Dixon, 2006: Intercomparison of the southern ocean circulation in IPCC coupled model control simulations. J. Climate, 19, 4560–4575.

    Article  Google Scholar 

  • Talley, L. D., J. L. Reid, and P. E. Robbins, 2003: Databased meridional overturning streamfunctions for the global ocean. J. Climate, 16, 3213–3226.

    Article  Google Scholar 

  • Tao, S., and L. Chen, 1987: A review of recent research on the East Asian summer monsoon in China. Monsoon Meteorology, C. P. Chang and T. N. Krishnamurti, Eds., Oxford University Press, 60–92.

  • Trenberth, K. E., D. P. Stepaniak, and J. M. Caron, 2000: The global monsoon as seen through the divergent atmospheric circulation. J. Climate, 13, 3969–3993.

    Article  Google Scholar 

  • Trenberth, K. E., J. W. Hurrell, and D. P. Stepaniak, 2006: The Asian monsoon: Global perspective. The Asian Monsoon, Springer/Praxis Publishing, New York, 67–87.

    Chapter  Google Scholar 

  • von Storch, J.-S., V. V. Kharin, U. Cubasch, G. C. Hegerl, D. Schriever, H. von Storch, and E. Zorita, 1997: A description of a 1260-year control integration with the coupled ECHAM1/LSG general circulation model. J. Climate, 10, 1525–1543.

    Article  Google Scholar 

  • Wang, B., and Coauthors, 2004: Design of a new dynamical core for global atmospheric models based on some efficient numerical methods. Scence in China (Ser. A), 47, 4–21.

    Article  Google Scholar 

  • Wang, B., and Z. Z. Ji, 2006: Studies and Applications of New Numerical Methods in Atmospheric Sciences. Science Press, Beijing, 208pp. (in Chinese)

    Google Scholar 

  • Wang, B., and Coauthors, 2005b: Recent progress in the development of the 4th generation of LASG/IAP climate system model FGOALS and the associated experiments. 2005 Annual Meeting of the Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing.

    Google Scholar 

  • Wang, Y., L. A. Mysak, Z. Wang, and V. Brovkin, 2005a: The greening of the McGill paleoclimate model, Part I: Improved land surface scheme with vegetation dynamics. Climate Dyn., 24, 469–480.

    Article  Google Scholar 

  • Wang, Z., and L. A. Mysak, 2000: A simple coupled atmosphere-ocean-sea ice-land surface model for climate and paleoclimate studies. J. Climate, 13, 1150–1172.

    Article  Google Scholar 

  • Wang, Z., and L. A. Mysak, 2002: Simulation of the last glacial inception and rapid ice sheet growth in the McGill Paleoclimate Model. Geophys. Res. Lett., 29(23), doi: 10.1029/ 2002GL015, 120.

    Google Scholar 

  • Webster, P. J., Magana, V. O., and Palmer, T. N., 1998: Monsoon: Processes, predictability, and the prospects for prediction. J. Geophys. Res., 103, 14451–14510.

    Article  Google Scholar 

  • Wen, X., T. Zhou, S. Wang, B. Wang, H. Wan, and J. Li, 2007: Performance of a reconfigured atmospheric general circulation model at low resolution. Adv. Atmos. Sci., 24, 712–728, 10.1007/s00376-007-0712-7.

    Article  Google Scholar 

  • Wu, L., Z. Liu, R. Gallimore, R. Jacob, D. Lee, and Y. Zhong, 2003: Pacific decadal variability: the Tropical Pacific mode and the North Pacific mode. J. Climate, 16, 1101–1120.

    Article  Google Scholar 

  • Wu, L., D. Lee, and Z. Liu, 2005: The 1976/77 North Pacific climate shift: The role of subtropical ocean adjustment and coupled ocean-atmosphere feedbacks. J. Climate, 18, 5125–5140.

    Article  Google Scholar 

  • Wu, G., H. Liu, Y. C. Zhao, and W. P. Li, 1996: A ninelayer atmospheric general circulation model and its performance. Adv. Atmos. Sci., 13, 1–18.

    Article  Google Scholar 

  • Xin, X., R. Yu, T. Zhou, and B. Wang, 2006: Drought in Late Spring of South China in Recent Decades. J. Climate, 19, 3197–3206.

    Article  Google Scholar 

  • Ye, D. Z., and G. J. Yang, 1979: Mean meridional circulations over East Asia and the Pacific Ocean. I: summer; II: Winter. Chinese Journal of Atmospheric Scientific Sciences, 3, 299–305. (in Chinese)

    Google Scholar 

  • Yeager, S. G., C. A. Shields, W. G. Large, and J. J. Hack, 2006: The Low-Resolution CCSM3. J. Climate, 19, 2545–2566.

    Article  Google Scholar 

  • Yu, J. Y., and C. R. Mechoso, 1999: Links between annual variations of Peruvian stratocumulus clouds and of SST in eastern equatorial Pacific. J. Climate, 12, 3305–3318.

    Article  Google Scholar 

  • Yu, R., and T. Zhou, 2004: Impacts of winter-NAO on March cooling trends over subtropical Eurasia continent in the recent half century. Geophys. Res. Lett., 31, L12204, doi: 10.1029/2004GL019814.

  • Yu, R., W. Li, X. Zhang, Y. Yu, and T. Zhou, 2000: Climatic features related to eastern China summer rainfalls in the NCAR CCM3. Adv. Atmos. Sci., 17, 503–518.

    Article  Google Scholar 

  • Yu, Y., R. Yu, X. Zhang, and H. Liu, 2002: A Flexible Global Coupled Climate Model. Adv. Atmos. Sci., 19, 169–190.

    Article  Google Scholar 

  • Yu, R., B. Wang, and T. Zhou, 2004: Climate effects of the deep continental stratus clouds Generated by Tibetan Plateau. J. Climate, 17, 2702–2713.

    Article  Google Scholar 

  • Yu, Y. Q., and Coauthors, 2005: IAP global coupled climate model FGOALS and its application in climate change. MOST-DOE Science Team Meeting, Beijing.

  • Zhang, G. J. and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos.-Ocean, 33, 407–446.

    Google Scholar 

  • Zhang, W. J., 2006: Spatial distribution and temporal variation of the observed and simulated soil moisture over China. M. S. thesis, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 119pp. (in Chinese)

    Google Scholar 

  • Zhang, X., and J. E. Walsh, 2006: Toward a seasonally ice-covered Arctic Ocean: Scenarios from the IPCC AR4 model simulations. J. Climate, 19, 1730–1747.

    Article  Google Scholar 

  • Zhou, T., 2003: Multi-spatial variability modes of the Atlantic Meridional Overturning Circulation. Chinese Science Bulletin, 48(Suppl. II), 30–35.

    Google Scholar 

  • Zhou, T., and Z. X. Li, 2002: Simulation of the East Asian summer monsoon by using a variable resolution atmospheric GCM. Climate Dyn., 19, 167–180.

    Article  Google Scholar 

  • Zhou, T., and R. Yu, 2004: Sea-surface temperature induced variability of the Southern Annular Mode in an atmospheric general circulation model. Geophys. Res. Lett., 31, L24206,doi: 10.1029/2004GL021473.

    Article  Google Scholar 

  • Zhou, T. and R. Yu, 2006: Twentieth century surface air temperature over China and the globe simulated by coupled climate models. J. Climate, 19(22), 5843–5858.

    Article  Google Scholar 

  • Zhou, T., X. Zhang, R. Yu, Y. Yu, and S. Wang, 2000c: The North Atlantic oscillation simulated by Version 2 and 4 of IAP/LASG GOALS Model. Adv. Atmos. Sci., 17, 601–616.

    Article  Google Scholar 

  • Zhou, T., X. Zhang, and S. Wang, 2000a: The relationship between the thermohaline circulation and climate variability. Chinese Science Bulletin, 45(11), 1052-1056.

  • Zhou, T., X. Zhang, Y. Yu, R. Yu, and S. Wang, 2000b: Response of IAP/LASG GOALS model to the coupling of air-sea freshwater exchange. Adv. Atmos. Sci., 17(3), 473–486.

    Article  Google Scholar 

  • Zhou, T., R. Yu, and Z. Li, 2002: ENSO-dependent and ENSO-independent variability over the midlatitude North Pacific: Observation and Air-sea coupled model simulation. Adv. Atmos. Sci., 19, 1127–1147.

    Article  Google Scholar 

  • Zhou, T. J., R. C. Yu, Z. Z. Wang, and T. W. Wu, 2005a: The Atmospheric General Circulation Model SAMIL and the Associated Coupled Model FGOALS_s, Meteorology Press, Beijing, 288pp. (in Chinese)

    Google Scholar 

  • Zhou, T. J., and Coauthors, 2005b: The climate system model FGOALS s using LASG/IAP spectral AGCM SAMIL at its atmospheric component. Acta Meteorologica Sinica, 63(5), 702–715. (in Chinese)

    Google Scholar 

  • Zhou, T., Y. Yu, H. Liu, W. Li, X. You, and G. Zhou, 2007: Progress in the development and application of climate ocean models and ocean-atmosphere coupled models in China. Adv. Atmos. Sci., 24(6), 1109–1120, DOI: 10.1007/s00376-007-1109-3729-738.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianjun Zhou  (훜쳬뻼).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, T., Wu, B., Wen, X. et al. A fast version of LASG/IAP climate system model and its 1000-year control integration. Adv. Atmos. Sci. 25, 655–672 (2008). https://doi.org/10.1007/s00376-008-0655-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-008-0655-7

Key words

Navigation