Skip to main content

Advertisement

Log in

Description and evaluation of the bergen climate model: ARPEGE coupled with MICOM

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

A new coupled atmosphere–ocean–sea ice model has been developed, named the Bergen Climate Model (BCM). It consists of the atmospheric model ARPEGE/IFS, together with a global version of the ocean model MICOM including a dynamic–thermodynamic sea ice model. The coupling between the two models uses the OASIS software package. The new model concept is described, and results from a 300-year control integration is evaluated against observational data. In BCM, both the atmosphere and the ocean components use grids which can be irregular and have non-matching coastlines. Much effort has been put into the development of optimal interpolation schemes between the models, in particular the non-trivial problem of flux conservation in the coastal areas. A flux adjustment technique has been applied to the heat and fresh-water fluxes. There is, however, a weak drift in global mean sea-surface temperature (SST) and sea-surface salinity (SSS) of respectively 0.1 °C and 0.02 psu per century. The model gives a realistic simulation of the radiation balance at the top-of-the-atmosphere, and the net surface fluxes of longwave, shortwave, and turbulent heat fluxes are within observed values. Both global and total zonal means of cloud cover and precipitation are fairly close to observations, and errors are mainly related to the strength and positioning of the Hadley cell. The mean sea-level pressure (SLP) is well simulated, and both the mean state and the interannual standard deviation show realistic features. The SST field is several degrees too cold in the equatorial upwelling area in the Pacific, and about 1 °C too warm along the eastern margins of the oceans, and in the polar regions. The deviation from Levitus salinity is typically 0.1 psu – 0.4 psu, with a tendency for positive anomalies in the Northern Hemisphere, and negative in the Southern Hemisphere. The sea-ice distribution is realistic, but with too thin ice in the Arctic Ocean and too small ice coverage in the Southern Ocean. These model deficiencies have a strong influence on the surface air temperatures in these regions. Horizontal oceanic mass transports are in the lower range of those observed. The strength of the meridional overturning in the Atlantic is 18 Sv. An analysis of the large-scale variability in the model climate reveals realistic El Niño – Southern Oscillation (ENSO) and North Atlantic–Arctic Oscillation (NAO/AO) characteristics in the SLP and surface temperatures, including spatial patterns, frequencies, and strength. While the NAO/AO spectrum is white in SLP and red in temperature, the ENSO spectrum shows an energy maximum near 3 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.

Similar content being viewed by others

References

  • Ardanuy PE, Stowe LL, Gruber A (1991) Shortwave, longwave and net cloud radiative forcing as determined from Nimbus-7 observations. J Geophys Res 96: 18,537–18,549

    Google Scholar 

  • Barkstrom BR (1984) The Earth Radiation Budget Experiment (ERBE). Bull Am Meteorol Soc 65: 1170–1185

    Article  Google Scholar 

  • Barnard S et al. (1997) DYNAMO – Dynamics of North Atlantic models: simulation and assimilation with high resolution models. Tech Rep 294 Inst. Meereskunde, Christian Albrechts Universität, Kiel, Germany

  • Barthelet P, Terray L, Valcke S (1998) Transient CO2 experiment using the ARPEGE/OPAICE non flux corrected coupled model. Geophys Res Lett 25: 2277–2280

    Google Scholar 

  • Baumgartner A, Reichel E (1975) The world water balance. R. Oldenbourg, Munich, Germany, pp 179

  • Beesley JA, Moritz RE (1999) Toward an explanation of the annual cycle of cloudiness over the Arctic Ocean. J Clim 12: 395–415

    Article  Google Scholar 

  • Bentsen M, Drange H (2000) Parameterizing surface fluxes in ocean models using the NCEP/NCAR reanalysis data. In: RegClim General Techn Rep 4, pp 149–158. Norwegian Institute for Air Research, Kjeller, Norway

  • Bentsen M, Evensen G, Drange H, Jenkins AD (1999) Coordinate transformation on a sphere using conformal mapping. Mon Weather Rev 127: 2733–2740

    Article  Google Scholar 

  • Bjørgo E, Johannessen OM, Miles MW (1997) Analysis of merged SMMR-SSMI time series of Arctic and Antarctic sea ice parameters 1978–1995. Geophys Res Lett 24: 413–416

    Google Scholar 

  • Bleck R, Rooth C, Hu D, Smith LT (1992) Salinity-driven thermocline transients in a wind- and thermohaline-forced isopycnic coordinate model of the North Atlantic. J Phys Oceanogr 22: 1486–1505

    Article  Google Scholar 

  • Boone A, Masson V, Meyers T, Noilhan J (2000) The influence of the inclusion of soil freezing on simulations by a soil-vegetation-atmosphere transfer scheme. J Appl Meteor 39: 1544–1569

    Article  Google Scholar 

  • Bossuet C, Déqué M, Cariolle D (1998) Impact of a simple parameterization of convective gravity-wave drag in a stratosphere-troposphere general circulation model and its sensitivity to vertical resolution. Ann Geophysicae 16: 238–249

    Article  Google Scholar 

  • Bougeault P (1985) A simple parameterization of the large-scale effects of deep cumulus convection. MWR 113: 2108–2121

    Article  Google Scholar 

  • Bourke RH, McLaren AS (1992) Contour mapping of arctic basin ice draft and roughness parameters. J Geophys Res 97: 17,715–17,728

    Google Scholar 

  • Cariolle D, Déqué M (1986) Southern hemisphere medium-scale waves and total ozone disturbances in a spectral general circulation model. J Geophys Res 91: 10,825–10,846

    Google Scholar 

  • Cassou C, Noyret P, Sevault E, Thual O, Terray L, Beaucourt D, Imbard M (1998) Distributed ocean–atmosphere modelling and sensitivity to the coupling flux precision: the CATHODe Project. Mon Weather Rev 126: 1035–1053

    Article  Google Scholar 

  • Coiffer J, Ernie Y, Geleyn JF, Clochard J, Hoffman J, Dupont F (1987) The operational hemispheric model at the French Meteorological Service. In: J Meteorol Soc Japan, Special NWP Symposium Vol pp 337–345

  • Collins M, Tett SFB, Cooper C (2001) The internal climate variability of HadCM3, a version of the Hadley Centre coupled model without flux adjustment. Clim Dyn 17: 61–81

    Article  Google Scholar 

  • Courtier P, Freydier C, Geleyn JF, Rabier F, Rochas M (1991) The ARPEGE project at Météo-France. In: Proc ECMWF workshop on numerical methods in atmospheric modelling 2: 193–231. ECMWF

    Google Scholar 

  • Covey CC, AchutaRao KM, Lambert SJ, Taylor KE (2000) Intercomparison of present and future climates simulated by coupled ocean–atmosphere GCMs. PCMDI Report Series 66 Lawrence Livermore National Laboratory, pp 52

  • da Silva AM, Young CC, Levitus S (1994) Atlas of surface marine data 1994, Volumes 1 and 3. NOAA Atlas NESDIS 6 and 8, US Department of Commerce, Washington, D.C. pp 83

  • Darnell WL, Staylor WF, Gupta SK, Ritchey NA, Wilber AC (1992) Seasonal variation of surface radiation budget derived from ISCCP-C1 data. J Geophys Res 97: 15,741–15,760

    Google Scholar 

  • Déqué M, Piedelievre JP (1995) High resolution climate simulation over Europe. Clim Dyn 11: 321–339

    Article  Google Scholar 

  • Déqué M, Dreveton C, Braun A, Cariolle D (1994) The ARPEGE/IFS atmosphere model: a contribution to the French community climate modelling. Clim Dyn 10: 249–266

    Article  Google Scholar 

  • Déqué M, Marquet P, Jones RG (1998) Simulation of climate change over Europe using a global variable resolution general circulation model. Clim Dyn 14: 173–189

    Article  Google Scholar 

  • Dorman CE, Bourke RH (1978) Temperature correction for Tucker's ocean rainfall estimates. Q J R Meteorol Soc 104: 765–773

    Google Scholar 

  • Douville H, Royer JF, Mahfouf JF (1995) A new snow parameterization for the Météo-France climate model. Part II: validation in a 3D GCM experiment. Clim Dyn 12: 37–52

    Article  Google Scholar 

  • Drange H (1999) RegClim ocean modelling at NERSC. In: RegClim General Technical Report 2, pp 93–102. Norwegian Institute for Air Research, Kjeller, Norway

  • Drange H, Simonsen K (1996) Formulation of Air–Sea Fluxes in the ESOP2 Version of MICOM. Technical Report 125 Nansen Environmental and Remote Sensing Center, Bergen, Norway, pp 23

  • Fichefet T, Gaspar P (1988) A model study of upper ocean–sea ice interaction. J Phys Oceanogr 18: 181–195

    Article  Google Scholar 

  • Flato GM, Boer GJ, Lee WG, McFarlane NA, Ramsden D, Reader MC, Weaver AJ (2000) The Canadian Centre for Climate Modelling and Analysis global coupled model and its climate. Clim Dyn 16: 451–467

    Article  Google Scholar 

  • Gal-Chen T, Somerville RCJ (1975) On the use of a coordinate transformation for the solution of the Navier-Stokes equations. J Comput Phys 17: 209–228

    Google Scholar 

  • Ganopolski A, Rahmstorf S (2001) Rapid changes of glacial climate simulated in an coupled climate model. Nature 409: 153–158

    Google Scholar 

  • Gaspar P (1988) Modeling the seasonal cycle of the upper ocean. J Phys Oceanogr 18: 161–180

    Article  Google Scholar 

  • Geleyn JF (1987) Use of a modified Richardson number for parameterizing the effect of shallow convection. In: J Met Soc Japan, Special NWP Symposium, pp 141–147

  • Geleyn JF (1988) Interpolation of wind, temperature and humidity values from model levels to the height of measurement. Tellus 40A: 347–351

    Google Scholar 

  • Geleyn JF, Preuss HJ (1983) A new dataset of satellite derived surface albedo values for operational use at ECMWF. Arch Meterol Geophys Biocl, Ser A 32: 353–359

    Google Scholar 

  • Gordon C, Cooper C, Senior CA, Banks H, Gregory JM, Johns TC, Mitchell JFB, Wood RA (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16: 147–168

    Article  Google Scholar 

  • Gordon HB, O'Farrell SP (1997) Transient climate change in the CSIRO coupled model with dynamic sea ice. Mon Weather Rev 125: 875–907

    Article  Google Scholar 

  • Guilyardi E, Madec G (1997) Performance of the OPA/ARPEGE-T21 global ocean–atmosphere coupled model. Clim Dyn 13: 149–165

    Article  Google Scholar 

  • Harder M (1996) Dynamik, Rauhigkeit und Alter des Meereises in der Arktis. PhD thesis Alfred-Wegener-Institut für Polar- und Meeresforschung, Bremerhaven, Germany, pp 124

  • Harrison EF, Minnis P, Barkstrom BR, Ramanathan V, Cess RD, Gibson GG (1990) Seasonal variation of cloud radiative forcing derived from the Earth Radiation Budget Experiment. J Geophys Res 95: 18,687–18,703

    Google Scholar 

  • Hibler III WD (1979) A dynamic thermodynamic sea ice model. J Phys Oceanogr 9: 815–846

    Article  Google Scholar 

  • Hines KM, Bromwich DH, Marshall GJ (2000) Artificial surface pressure trends in the NCEP-NCAR reanalysis over the Southern Ocean and Antarctica. J Clim 13: 3940–3952

    Article  Google Scholar 

  • Hortal M (1998) Aspects of the numerics of the ECMWF model. In: Proc Recent developments in numerical methods for atmospheric modelling, ECMWF, pp 127–143

  • Hortal M, Simmons AJ (1991) Use of reduced Gaussian grids in spectral models. Mon Weather Rev 119: 1057–1074

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Rudolf B, Schneider U, Keehn PR (1995) Global precipitation estimates based on a technique for combining satellite-based estimates, rain gauge analysis, and NWP model precipitation information. J Clim 8: 1284–1295

    Article  Google Scholar 

  • Hurrel JW (1995) Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269: 676–679

    CAS  Google Scholar 

  • Johannessen OM, Shalina EV, Miles MW (1999) Satellite evidence for an Arctic sea ice cover in transformation. Science 286: 1937–1939

    Article  CAS  PubMed  Google Scholar 

  • Johns TC, Carnell RE, Crossley JF, Gregory JM, Mitchell JFB, Senior CA, Tett SFB, Wood RA (1997) The second Hadley Centre coupled ocean–atmosphere GCM: model description, spinup and validation. Clim Dyn 13: 103–134

    Article  Google Scholar 

  • Jones PD (1994) Hemispheric surface air temperature variations: a reanalysis and an update to 1993. J Clim 7: 1784–1802

    Article  Google Scholar 

  • Kalnay E et al. (1996) The NCEP/NCAR 40-Year Reanalysis Project. Bull Am Meteor Soc 77: 437–471

    Article  Google Scholar 

  • Kaplan A, Kushnir Y, Cane MA, Blumenthal MB (1997) Reduced space optimal analysis for historical datasets: 136 years of Atlantic sea surface temperatures. J Geophys Res 102: 27,835–27,860

    Google Scholar 

  • Kaplan A, Cane MA, Kushnir Y, Clement AC, Blumenthal MB, Rajagopalan B (1998) Analyses of global sea surface temperature 1856–1991. J Geophys Res 103: 18,567–18,589

    Article  Google Scholar 

  • Kaplan A, Kushnir Y, Cane M (2000) Reduced space optimal analysis of historical marine sea level pressure: 1854–1992. J Clim 13: 2987–3002

    Article  Google Scholar 

  • Kiehl JT, Trenberth KE (1997) Earth's annual global mean energy budget. Bull Am Meteorol Soc 78: 197–208

    Article  Google Scholar 

  • Kiehl JT, Hack JJ, Briegleb BP (1994) The simulated earth radiation budget of the National Center for Atmospheric Research community climate model CCM2 and comparison with the Earth Radiation Budget Experiment (ERBE). J Geophys Res 99: 20,815–20,827

    Google Scholar 

  • Kraus EB, Turner JS (1967) A one-dimensional model for the seasonal thermocline. II The general theory and its consequences. Tellus 14: 98–105

    Google Scholar 

  • Lambert SJ, Boer GJ (2001) CMIP1 evaluation and intercomparison of coupled climate models. Clim Dyn 17: 83–106

    Google Scholar 

  • Levitus S, Boyer TP (1994) World Ocean Atlas 1994 volume 4: temperature. NOAA Atlas NESDIS 4, US Department of Commerce, Washington, D.C, pp 117

    Google Scholar 

  • Levitus S, Burgett R, Boyer TP (1994) World Ocean Atlas 1994 volume 3: salinity. NOAA Atlas NESDIS 3, US Department of Commerce, Washington, D.C, pp 99

    Google Scholar 

  • Lott F (1999) Alleviation of stationary biases in a GCM through a mountain drag parameterization scheme and a simple representation of mountain lift forces. Mon Weather Rev 125: 788–801

    Article  Google Scholar 

  • Lott F, Miller MJ (1997) A new subgrid-scale orographic drag parameterization: its formulation and testing. Q J R Meteorol Soc 123: 101–127

    Article  Google Scholar 

  • Louis JF (1979) A parametric model of vertical eddy fluxes in the atmosphere. Boundary-Layer Meteorol 17: 187–202

    Google Scholar 

  • Madec G, Imbard M (1996) A global ocean mesh to overcome the North Pole singularity. Clim Dyn 12: 381–388

    Article  Google Scholar 

  • Mahfouf JF, Manzi AO, Noilhan J, Giordani H, Déqué M (1995) The land surface scheme ISBA within the Météo-France climate model ARPÉGE. Part I: implementation and preliminary results. J Clim 8: 2039–2057

    Article  Google Scholar 

  • Mantoura RFC, Martin JM, Wollast R (eds) (1991) Ocean margin processes in global change vol 9, Physical, chemical and earth sciences research Report. John Wiley Chichester, UK pp 486

  • Mascart P, Noilhan J, Giordani H (1995) A modified parameterization of flux profile relationships in the surface layer using different roughness length values for heat and momentum. Boundary-Layer Meteorol 72: 331–344

    Google Scholar 

  • Miller AJ, Lermusiaux PFJ, Poulain PM (1996) A topographic-Rossby mode resonance over the Iceland-Faeroe Ridge. J Phys Oceanogr 26: 2735–2747

    Article  Google Scholar 

  • Morcrette JJ (1991) Radiation and cloud radiative properties in the European Centre for Medium Range Forecasts forecasting system. J Geophys Res 95: 9121–9132

    Google Scholar 

  • Noilhan J, Planton S (1989) A simple parameterization of land surface processes for meteorological models. Mon Weather Rev 117: 536–549

    Article  Google Scholar 

  • Oberhuber JM (1988) An atlas based on the 'COADS' data set: the budgets of heat, buoyancy and turbulent kinetic energy at the surface of the global ocean. Tech Rep 15 Max-Planck-Institut für Meteorologie, Hamburg, Germany

    Google Scholar 

  • Ohmura A, Gilgen H (1993) Re-evaluation of the global energy balance. In: Interactions between the global climate subsystems: the legacy of Hann, vol 75, pp 93–110. American Geophysical Union

    Google Scholar 

  • Oki T, Sud YC (1998) Design of total run off integrating pathways (TRIP): a global river channel network. Earth interactions vol 2, No. 1, pp 1–37

    Google Scholar 

  • Palmer TN (2001) A nonlinear dynamical perspective on model error: a proposal for non-local stochastic-dynamic parameterization in weather and climate prediction models. Q J R Meteorol Soc 127: 279–304

    Article  Google Scholar 

  • Palmer TN, Räisänen J (2002) Quantifying the risk of extreme seasonal precipitation events in a changing climate. Nature 415: 512–514

    Article  CAS  PubMed  Google Scholar 

  • Paltridge GW, Platt CMR (1976) Radiative processes in meteorology and climatology. Elsevier, Amsterdam, pp 318

  • Parker DE, Folland CK, Jackson M (1995) Marine surface temperature: observed variations and data requirements. Clim Change 31: 559–600

    Google Scholar 

  • Parkinson CL, Washington WM (1979) A large-scale numerical model of sea ice. J Geophys Res 84: 311–337

    Google Scholar 

  • Parkinson CL, Cavalieri DJ, Gloersen P, Zwally HJ, Comiso JC (1999) Arctic sea ice extents, areas, and trends, 1978–1996. J Geophys Res 104: 20,837–20,856

    Article  Google Scholar 

  • Payne RE (1972) Albedo of the sea surface. J Atmos Sci 29: 959–970

    Article  Google Scholar 

  • Rahmstorf S (1995) Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle. Nature 378: 145–149

    CAS  Google Scholar 

  • Rahmstorf S, Ganopolski A (1999) Long-term global warming scenarios computing with an efficient coupled climate model. Clim Change 43: 353–367

    Article  CAS  Google Scholar 

  • Ramanathan VRD, Subasilar B, Zhang GJ, Contant W, Cess RD, Kiehl JT, Grassl H, Shi L (1995) Warm pool heat budget and shortwave cloud forcing: a missing physics? Science 267: 499–503

    CAS  Google Scholar 

  • Read JF, Pollard RT (1993) Structure and transport of the Antarctic circumpolar current and Agulhas return current at 40°E. J Geophys Res 98: 12,281–12,295

    Google Scholar 

  • Reynolds RW, Smith TM (1994) Improved global sea surface temperature analysis using optimum interpolation. J Clim 7: 929–948

    Article  Google Scholar 

  • Richard JL, Royer JF (1993) A statistical cloud scheme for use in an AGCM. Ann Geophysicae 11: 1093–1115

    Google Scholar 

  • Rieland M, Raschke E (1999) Diurnal variability of the earth radiation budget: sampling requirements, time integration aspects and error estimates for the Earth Radiation Budget Experiment (ERBE). Theor Appl Climatol 44: 9–24

    Google Scholar 

  • Roeckner E, Oberhuber JM, Bacher A, Christoph M, Kirchner I (1996) ENSO variability and atmospheric response in a global coupled atmosphere ocean GCM. Clim Dyn 12: 737–754

    Article  Google Scholar 

  • Rossow WB, Schiffer RA (1991) ISCCP cloud data products. Bull Am Meteorol Soc 72: 2–20

    Article  Google Scholar 

  • Rossow WB, Zhang YC (1995) Calculation of surface and top-of-atmosphere radiative fluxes from physical quantities based on ISCCP datasets: 2. Validation and first results. J Geophys Res 100: 1167–1197

    Google Scholar 

  • Rothrock DA, Yu Y, Maykut GA (1999) Thinning of the Arctic sea-ice Cover. Geophys Res Lett 26: 3469–3472

    Article  Google Scholar 

  • Russel GL, Miller JR, Rind D (1995) A coupled atmosphere–ocean model for transient climate change studies. Atmos–Ocean 33: 683–730

    Google Scholar 

  • Semtner Jr. AJ (1976) A model for the thermodynamic growth of sea ice in numerical investigations of climate. J Phys Oceanogr 6: 379–389

    Article  Google Scholar 

  • Shea DJ (1986) Climatological Atlas: 1950–1979 surface air temperature, precipitation, sea-level pressure, and sea-surface temperature (45°S–90°N). Tech Rep NCAR/TN-269+STR National Center for Atmospheric Research, Boulder, CO, USA

    Google Scholar 

  • Simmons AJ, Burridge DM (1981) An energy and angular momentum conserving vertical finite-difference scheme and hybrid vertical coordinate. Mon Weather Rev 109: 758–768

    Article  Google Scholar 

  • Steele M, Morley R, Ermold W (2001) PHC: a global ocean hydrography with a high-quality Arctic Ocean. J Clim 14: 2079–2087

    Article  Google Scholar 

  • Stephenson DB, Pavan V (2002) How well do climate models simulate the North Atlantic Oscillation? Clim Dyn. in press

  • Sun S, Bleck R, Rooth C, Dukowicz J, Chassignet E, Killworth P (1999) Inclusion of Thermobaricity in Isopycnic-Coordinate Ocean Models. J Phys Oceanogr 29: 2719–2729

    Article  Google Scholar 

  • Terray L, Thual O (1995) Oasis: le couplage océan–atmosphère. La Météorologie 10: 50–61

    Google Scholar 

  • Terray L, Thual O, Belamari S, Déqué M, Dandin P, Lévy C, Delecluse P (1995) Climatology and interannual variability simulated by the ARPEGE–OPA model. Clim Dyn 11: 487–505

    Article  Google Scholar 

  • Terray L, Valcke S, Piacentini A (1998) OASIS 2.2. User's guide and reference manual. Tech Rep CERFACS, Toulouse, France, pp 77

  • Tucker GB (1961) Precipitation over the North Atlantic Ocean. Q J R Meteorol Soc 87: 147–158

    Google Scholar 

  • Wadhams P, Davis NR (2000) Further evidence of ice thinning in the Arctic Ocean. Geophys Res Lett 27: 3973–3976

    Article  Google Scholar 

  • Walsh JE, Chapman WL, Shy TL (1996) Recent decrease of sea level pressure in the central Arctic. Notes and Correspondence. J Climate 9: 480–486

    Article  Google Scholar 

  • Whitlock CH, Charlock TP, Staylor WF, Pinker RT, Laszlo I, Ohmura A, Gilgen H, Konzelman T, Pasquale RCD, Moats CD, LeCroy SR, Ritchey NA (1995) First global WCRP shortwave surface radiation budget data set. Bull Am Meteorol Soc 76: 905–922

    Article  Google Scholar 

  • Woodruff SD, Slutz RJ, Jenne RL, Steurer PM (1987) A comprehensive ocean–atmosphere data set. Bull Am Meteorol Soc 68: 1239–1250

    Article  Google Scholar 

  • Xie P, Arkin PA (1997) Global precipitation: A/17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc 78: 2539–2558

    Article  Google Scholar 

Download references

Acknowledgements.

The authors are grateful to Laurent Terray at CERFACS, Toulouse, for the initial set-up of the OASIS coupler in Bergen, to Michel Déqué and David Salas Mélia, Meteo-France, Toulouse, for providing technical assistance and support, and to Lennart Bengtsson, MPI, Hamburg, for a series of useful discussions and thorough guidance during the work. Constructive criticisms and suggestions made by Ronald J. Stouffer, GFDL, Princeton, during the review process, are greatly appreciated. The development of the Bergen Climate Model and the model integrations have received support from the Research Council of Norway through the RegClim project, the "Spissforskningsmidler" (MB), and the Programme for Supercomputing. Additional funding has been received from the Board of Marine Sciences, University of Bergen, and the European Commission funded project PREDICATE (EVK2-CT-1999-00020) (HD). This is contribution A0013 from the Bjerknes Centre for Climate Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Furevik.

Appendix 1

Appendix 1

1.1 Computation of sea-ice surface temperature

The thermodynamic component of the sea-ice model has one ice layer and one snow layer. The temperature is determined at the ice-snow and the snow-air boundaries, assuming linear temperature profiles in the interior of the ice and snow, and with the freezing temperature of sea water as a boundary condition at the bottom of the ice. The temperatures are then diagnosed by balancing the heat flux budget at the snow-air boundary.

If only the situation with ice and no snow is considered, the heat balance at the top of ice can be stated as:

$$k\left. {{{\partial T} \over {\partial z}}} \right|_{h_{{\rm ice}}} + Q_{{\rm ns}} + Q_{{\rm sw}} = 0\enspace,$$
(3)

where k is ice conductivity, T is temperature in the ice, h ice is ice thickness, Q ns is non-solar heat flux, and Q sw is solar heat flux. The non-solar heat flux depends on the surface temperature T s and is updated in the atmosphere model using the temperature of the previous time step

$$Q_{{\rm ns}}^n = Q_{{\rm ns}} (T_s^{n - 1})\enspace.$$
(4)

Here n denotes the coupling time step. Assuming a linear temperature profile through the ice gives

$$k{{T_s - T_f} \over {h_{{\rm ice}}}} + Q_{{\rm ns}} + Q_{{\rm sw}} = 0\enspace,$$
(5)

where T f is the freezing temperature of sea water. Solving for T s n+1 using heat fluxes from time step n leads to an unstable time step procedure. To remedy this, Q ns can be linearised around T s to approximate the non-solar flux at n + 1:

$$ \tilde Q_{{\rm ns}}^{n + 1} \approx Q_{{\rm ns}}^n + {{\partial _{{\rm ns}}^n} \over {\partial T_s}} (T_s^{n + 1} - T_s^n)\enspace. $$
(6)

A stable updating of T s is obtained from

$$ k{{T_s^{n + 1} - T_f} \over {h_{{\rm ice}}}} + \tilde Q_{{\rm ns}}^{n + 1} + Q_{{\rm sw}}^n = 0\enspace, $$
(7)

The term ∂Q ns n/∂T s , delivered from the atmosphere model, is also used by the coupler to modify the distribution of non-solar heat fluxes received by ocean cells covered by the same atmosphere cell (see Sect. 3).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furevik, T., Bentsen, M., Drange, H. et al. Description and evaluation of the bergen climate model: ARPEGE coupled with MICOM. Climate Dynamics 21, 27–51 (2003). https://doi.org/10.1007/s00382-003-0317-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-003-0317-5

Keywords

Navigation