Skip to main content

Advertisement

Log in

Simulated variability of the Atlantic meridional overturning circulation

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

To examine the multi-annual to decadal scale variability of the Atlantic Meridional Overturning Circulation (AMOC) we conducted a four-member ensemble with a daily reanalysis forced, medium-resolution global version of the isopycnic coordinate ocean model MICOM, and a 300-years integration with the fully coupled Bergen Climate Model (BCM). The simulations of the AMOC with both model systems yield a long-term mean value of 18 Sv and decadal variability with an amplitude of 1–3 Sv. The power spectrum of the inter-annual to decadal scale variability of the AMOC in BCM generally follows the theoretical red noise spectrum, with indications of increased power near the 20-years period. Comparison with observational proxy indices for the AMOC, e.g. the thickness of the Labrador Sea Water, the strength of the baroclinic gyre circulation in the North Atlantic Ocean, and the surface temperature anomalies along the mean path of the Gulf Stream, shows similar trends and phasing of the variability, indicating that the simulated AMOC variability is robust and real. Mixing indices have been constructed for the Labrador, the Irminger and the Greenland-Iceland-Norwegian (GIN) seas. While convective mixing in the Labrador and the GIN seas are in opposite phase, and linked to the NAO as observations suggest, the convective mixing in the Irminger Sea is in phase with or leads the Labrador Sea. Newly formed deep water is seen as a slow, anomalous cold and fresh, plume flowing southward along the western continental slope of the Atlantic Ocean, with a return flow of warm and saline water on the surface. In addition, fast-travelling topographically trapped waves propagate southward along the continental slope towards equator, where they go east and continue along the eastern rim of the Atlantic. For both types of experiments, the Northern Hemisphere sea level pressure and 2 m temperature anomaly patterns computed based on the difference between climate states with strong and weak AMOC yields a NAO-like pattern with intensified Icelandic low and Azores high, and a warming of 0.25–0.5 °C of the central North Atlantic sea-surface temperature (SST). The reanalysis forced simulations indicate a coupling between the Labrador Sea Water production rate and an equatorial Atlantic SST index in accordance with observations. This coupling is not identified in the coupled simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.

Similar content being viewed by others

References

  • Alley RB (1998) Paleoclimatology: Icing the North Atlantic. Nature 392: 335–337

    Article  CAS  Google Scholar 

  • Arakawa A, Lamb VR (1977) Computational design of the basic dynamical processes of the UCLA general circulation model. In: Chang J (ed) Methods in computational physics. Academic Press, New York vol. 17, pp 173–265

  • Bentsen M, Drange H (2000) Parametrizing surface fluxes in ocean models using the NCEP/NCAR reanalysis data. In: RegClim General Technical Report 4, pp 149–158. Norwegian Institute for Air Research, Kjeller, Norway

  • Bentsen M, Evensen G, Drange H, Jenkins AD (1999) Coordinate transformation on a sphere using conformal mapping. Mon Weather Rev 127: 2733–2740

    Article  Google Scholar 

  • Bjerknes J (1964) Atlantic air-sea interaction. Advances in geophysics. Academic Press, New York vol 10, pp 1–83

  • Bleck R, Rooth C, Hu D, Smith LT (1992) Salinity-driven thermocline transients in a wind- and thermohaline-forced isopycnic coordinate model of the North Atlantic. J Phys Oceanogr 22: 1486–1505

    Article  Google Scholar 

  • Bond G, Broecker W, Johnsen S, McManus J, Labeyrie L, Jouzel J, Bonani G (1993) Correlations between climate records from North Atlantic sediments and Greenland ice. Nature 365: 143–147

    Article  Google Scholar 

  • Bower A, Hunt H (2000) Lagrangian observations of deep western boundary current in the North Atlantic Ocean. Part I: Large-scale pathways and spreading rates. J Phys Oceanogr 30: 764–783

    Article  Google Scholar 

  • Broecker WS (1997) Thermodynamic circulation, the achilles heel of our climate system: will man-made CO2 upset the current balance? Science 278: 1582–1588

    Article  CAS  PubMed  Google Scholar 

  • Clark PU, Pisias NG, Stocker TF, Weaver AJ (2002) The role of the thermohaline circulation in abrupt climate change. Nature 415: 863–869

    Article  CAS  PubMed  Google Scholar 

  • Covey C, AchutaRao KM, Cubasch U, Jones P, Lambert SJ, Mann ME, Phillips TJ, Taylor KE (2003) An overview of results from the Coupled Model Intercomparison Project. Glob Planet Change 37: 103–133

    Article  Google Scholar 

  • Cubasch U, Meehl GA, Boer GJ, Stouffer RJ, Dix M, Noda A, Senior CA, Raper S, Yap KS (2001) Projections of future climate change. In: Houghton JT, Ding Y, Nogua M, Griggs D, Linden PV, Maskell K (eds) Climate change 2001: the scientific basis. Cambridge University Press, Cambridge, UK pp 525–582

  • Curry RG, McCartney MS (2001) Ocean gyre circulation changes associated with the North Atlantic Oscillation. J Phys Oceanogr 31: 3374–3400

    Article  Google Scholar 

  • Curry RG, McCartney MS, Joyce TM (1998) Oceanic transport of subpolar climate signals to mid-depth subtropical waters. Nature 391: 575–577

    Article  CAS  Google Scholar 

  • Delworth TL, Greatbatch RJ (2000) Multidecadal thermohaline circulation variability driven by atmospheric surface flux forcing. J Clim 13: 1481–1495

    Article  Google Scholar 

  • Delworth TL, Manabe S, Stouffer RJ (1993) Interdecadal variations of the thermohaline circulation in a coupled ocean-atmosphere model. J Clim 6: 1993–2011

    Article  Google Scholar 

  • Déqué M, Dreveton C, Braun A, Cariolle D (1994) The ARPEGE/IFS atmosphere model: a contribution to the French community climate modelling. Clim Dyn 10: 249–266

    Article  Google Scholar 

  • Dickson B, Yashayaev I, Meincke J, Turrell B, Dye S, Holfort J (2002) Rapid freshening of the deep North Atlantic Ocean over the past four decades. Nature 416: 832–837

    Article  CAS  PubMed  Google Scholar 

  • Dickson RR, Brown J (1994) The production of North Atlantic Deep Water: sources, rates, and pathways. J Geophys Res 99: 12,319–12,341

    Article  Google Scholar 

  • Dickson RR, Lazier J, Meincke J, Rhines P, Swift J (1996) Long-term coordinated changes in the convective activity of the North Atlantic. Prog Oceanogr 38: 241–295

    Article  Google Scholar 

  • Dixon KW, Delworth TL, Spelman MJ, Stouffer R (1999) The influence of transient surface fluxes on North Atlantic overturning in a coupled GCM climate change experiment. Geophys Res Lett 26: 2749–2752

    Article  Google Scholar 

  • Dong BW, Sutton RT (2001) The dominant mechanisms of variability in Atlantic ocean heat transport in a coupled ocean-atmosphere GCM. Geophys Res Lett 28: 2445–2448

    Article  Google Scholar 

  • Drange H, Simonsen K (1996) Formulation of air-sea fluxes in the ESOP2 version of MICOM. Technical Report 125, Nansen Environmental and Remote Sensing Center, Norway, Bergen, pp 23

  • Eden C, Jung T (2001) North Atlantic interdecadal variability: oceanic response to the North Atlantic Oscillation. J Clim 14: 676–691

    Article  Google Scholar 

  • Fichefet T, Gaspar P (1988) A model study of upper ocean-sea ice interaction. J Phys Oceanogr 18: 181–195

    Article  Google Scholar 

  • Frankignoul C, de Coëtlogon G, Joyce TM, Dong S (2001) Gulf Stream variability and ocean–atmosphere interactions. J Phys Oceanogr 31: 3516–3529

    Article  Google Scholar 

  • Friedrich H, Levitus S (1972) An approximation to the equation of state for sea water, suitable for numerical ocean models. J Phys Oceanogr 2: 514–517

    Article  Google Scholar 

  • Furevik T, Bentsen M, Drange H, Kindem IKT, Kvamstø NG, Sorteberg A (2003) Description and evaluation of the Bergen climate model: ARPEGE coupled with MICOM. Clim Dyn 21: 27–51

    Article  Google Scholar 

  • Gargett AE (1984) Vertical eddy diffusivity in the ocean interior. J Mar Res 42: 359–393

    Google Scholar 

  • Gaspar P (1998) Modeling the seasonal cycle of the upper ocean. J Phys Oceangr 18:161–180

    Google Scholar 

  • Gent PR (2001) Will the North Atlantic Ocean thermohaline circulation weaken during the 21st century? Geophys Res Lett 28: 1023–1026

    Article  Google Scholar 

  • Gloersen P, Campbell WJ, Cavalieri DJ, Comiso JC, Parkinson CL, Zwally HJ (1992) Arctic and Antarctic sea ice, 1978–1987. National Aeronautics and Space Administration, Washington, D.C. NASA SP-551, pp 290

  • Griffies SM, Tziperman E (1995) A linear thermohaline oscillator driven by stochastic atmospheric forcing. J Clim 8: 2440–2453

    Article  Google Scholar 

  • Hall MM, Bryden HL (1982) Direct estimates and mechanisms of ocean heat transport. Deep-Sea Res 29: 339–359

    Google Scholar 

  • Hansen B, Turrell WR, Østerhus S (2001) Decreasing overflow from the Nordic seas into the Atlantic Ocean through the Faroe Bank channel since 1950. Nature 411: 927–930

    Article  CAS  PubMed  Google Scholar 

  • Harder M (1996) Dynamik, Rauhigkeit und Alter des Meereises in der Arktis. PhD Thesis Alfred-Wegener-Institut für Polar- und Meeresforschung, Bremerhaven, Germany, pp 124

  • Hibler III WD (1979) A dynamic thermodynamic sea ice model. J Phys Oceanogr 9: 815–846

    Article  Google Scholar 

  • Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269: 676–679

    CAS  Google Scholar 

  • Jayne S, Marotzke J (2001) The dynamics of ocean heat transport variability. Rev Geophys 39: 385–411

    Article  Google Scholar 

  • Johnson HL, Marshall DP (2002) A theory for the surface atlantic response to thermohaline variability. J Phys Oceanogr 32: 1121–1132

    Article  Google Scholar 

  • Joyce TM, Deser C, Spall MA (2000) The relation between decadal variability of subtropical mode water and the North Atlantic Oscillation. J Clim 13: 2550–2569

    Article  Google Scholar 

  • Kalnay E et al. (1996) The NCEP/NCAR 40-Year Reanalysis Project. Bull Am Meteorol Soc 77: 437–471

    Article  Google Scholar 

  • Kawase M (1987) Establishment of deep ocean circulation driven by deep-water production. J Phys Oceanogr 17: 2294–2317

    Article  Google Scholar 

  • Latif M, Roeckner E, Mikolajewicz U, Voss R (2000) Tropical stabilisation of the thermohaline circulation in a greenhouse warming simulation. J Clim 13: 1809–1830

    Article  Google Scholar 

  • Lavin A, Bryden HL, Parrilla G (1998) Meridional transport and heat flux variations in the subtropical North Atlantic. Glob Atmos Ocean Sys 6: 269–293

    Google Scholar 

  • Levitus S, Boyer TP (1994) World Ocean Atlas 1994 vol 4: temperature. NOAA Atlas NESDIS 4, US Department of Commerce, Washington, D.C, USA pp 117

    Google Scholar 

  • Levitus S, Burgett R, Boyer TP (1994) World Ocean Atlas 1994 vol 3: salinity. NOAA Atlas NESDIS 3, US Department of Commerce, Washington, D.C. USA pp 99

    Google Scholar 

  • Mann ME, Park J (1994) Global-scale modes of surface temperature variability on interannual to century time scales. J Geophys Res 99: 25,819–25,833

    Google Scholar 

  • Marshall J, Kushnir Y, Battisti D, Chang P, Czaja A, Dickson R, Hurrell J, McCartney M, Saravanan R, Visbeck M (2001) North Atlantic climate variability: phenomena, impacts and mechanisms. Int J Clim 21: 1863–1898

    Article  Google Scholar 

  • Mauritzen C, Häkkinen S (1999) On the relationship between dense water formation and the “meridional overturning cell” in the North Atlantic Ocean. Deep-Sea Res 46: 877–894

    Google Scholar 

  • McDougall TJ, Dewar WK (1998) Vertical mixing and cabbeling in layered models. J Phys Oceanogr 28: 1458–1480

    Article  Google Scholar 

  • Mikolajewizc U, Voss R (2000) The role of the individual air-sea flux components in CO2-induced changes of the ocean circulation and climate. Clim Dyn 16: 627–642

    Article  Google Scholar 

  • O’Neill BC, Oppenheimer M (2002) Dangerous climate impacts and the Kyoto Protocol. Science 296: 1971–1972

    Article  CAS  PubMed  Google Scholar 

  • Otterå OH, Drange H, Bentsen M, Kvamstø NG, Jiang D (2003) The sensitivity of the present-day Atlantic meridional overturning circulation to freshwater forcing. Geophys Res Lett 30: doi:10.1029/2003GL017578

  • Otterå OH, Drange H, Bentsen M, Kvamstø NG, Jiang D (2004) Transient response of enhanced freshwater to the Nordic Seas-Arctic Ocean in the Bergen Climate Model. Tellus. (in press)

  • Parkinson CL, Washington WM (1979) A large-scale numerical model of sea ice. J Geophys Res 84: 311–337

    Google Scholar 

  • Pickart RS, Lavender K (2000) Is Labrador Sea Water formed in the Irminger Basin? WOCE Newsle 39: 6–8

    Google Scholar 

  • Pickart RS, Straneo F, Moore GWK (2003) Is Labrador Sea Water formed in the Irminger basin? Deep-Sea Res 50: 23–52

    Google Scholar 

  • Rahmstorf S, Ganopolski A (1999) Long-term global warming scenarios computed with an efficient coupled climate model. Clim Change 43: 353–367

    Google Scholar 

  • Rossby T, Benway RL (2000) Slow variations in mean path of the Gulf Stream east of Cape Hatteras. Geophys Res Lett 27: 117–120

    Article  Google Scholar 

  • Schmittner A, Weaver AJ (2001) Dependence of multiple climate states on ocean mixing parameters. Geophys Res Lett 28: 1027–1030

    Article  Google Scholar 

  • Semtner Jr AJ (1976) A model for the thermodynamic growth of sea ice in numerical investigations of climate. J Phys Oceanogr 6: 379–389

    Article  Google Scholar 

  • Smolarkiewicz PK (1984) A fully multidimensional positive definite advection transport algorithm with small implicit diffusion. J Comput Phys 54: 325–362

    Google Scholar 

  • Smolarkiewicz PK, Clark TL (1986) The multidimensional positive definite advection transport algorithm: further development and applications. J Comp Phys 67: 396–438

    CAS  Google Scholar 

  • Stocker TF, Schmittner A (1997) Influence of CO2 emission rates on the stability of the thermohaline circulation. Nature 388: 862–865

    CAS  Google Scholar 

  • Sun S, Bleck R (2001) Thermohaline circulation studies with an isopycnic coordinate ocean model. J Phys Oceanogr 31: 2761–2782

    Article  Google Scholar 

  • Taylor AH, Stephens JA (1980) Latitudinal displacements of the Gulf Stream (1966 to 1977) and their relation to changes in temperature and zooplankton abundance in the NE Atlantic. Oceanol Acta 3: 145–149

    Google Scholar 

  • Terray L, Thual O (1995) Oasis: le couplage océan–atmosphère. La Météorologie 10: 50–61

    Google Scholar 

  • Terray L, Thual O, Belamari S, Déqué M, Dandin P, Lévy C, Delecluse P (1995) Climatology and interannual variability simulated by the arpege–opa model. Clim Dyn 11: 487–505

    Article  Google Scholar 

  • Timmermann A, Latif M, Voss R, Grötzner A (1998) Northern Hemispheric interdecadal variability: a coupled air-sea mode. J Clim 11: 1906–1931

    Google Scholar 

  • Trenberth KE, Caron JM (2001) Estimates of meridional atmosphere and ocean heat transports. J Clim 14: 3433–3443

    Article  Google Scholar 

  • von Storch JS, Müller P, Stouffer RJ, Voss R, Tett SFB (2000) Variability of deep-ocean mass transport: spectral shapes and spatial scales. J Clim 13: 1916–1935

    Article  Google Scholar 

  • Weaver AJ, Sarachik ES (1991) Evidence for decadal variability in an ocean general circulation model: an advective mechanism. Atmos-Ocean 29: 197–231

    Google Scholar 

  • Weaver AJ, Sarachik ES, Marotzke J (1991) Freshwater flux forcing and interdecadal ocean variability. Nature 353: 836–838

    Article  Google Scholar 

  • Weaver AJ, Valcke S (1998) On the variability of the thermohaline circulation in the GFDL coupled model. J Clim 11: 759–767

    Article  Google Scholar 

  • Weaver AJ, Marotzke J, Cummins PF, Sarachik ES (1993) Stability and variability of the thermohaline circulation. J Phys Oceanogr 23: 39–60

    Article  Google Scholar 

  • Weisse R, Mikolajewicz U, Maier-Reimer E (1994) Decadal variability of the North Atlantic in an ocean general circulation model. J Geophys Res 99: 12,411–12,421

    Article  Google Scholar 

  • Wood RA, Keen AB, Mitchell JFB, Gregory JM (1999) Changing spatial structure of the thermohaline circulation in response to atmospheric CO2 forcing in a climate model. Nature 399: 572–575

    CAS  Google Scholar 

  • Wu P, Wood R, Stott P (2004) Does the recent freshening trend in the North Atlantic indicate a weakening thermohaline circulation? Geophys Res Lett 31:doi:10.1029/2003GL018584

  • Yang J (1999) A linkage between decadal climate variations in the Labrador Sea and the tropical Atlantic Ocean. Geophys Res Lett 26: 1023–1026

    Article  Google Scholar 

  • Zalesak ST (1979) Fully multidimensional flux-corrected transport algorithms for fluids. J Comp Phys 31: 335–362

    Google Scholar 

Download references

Acknowledgements

The model development and analysis have been supported by the Research Council of Norway through several projects, and in particular RegClim, NOClim and KlimaProg’s “Spissforskningsmidler”, and the Programme of Supercomputing. The work has also received support from the EU-project PREDICATE (EVK2-CT-1999–00020). The authors would like to thank C. Frankignoul and R. G. Curry for providing the Gulf Stream and the transport indices, respectively. The authors are grateful to the BCM group for help and guidance throughout the work. Support from the G. C. Rieber Foundations is also acknowledged with thanks. Comments from two anonymous reviewers improved the manuscript. This is contribution A0041 from the Bjerknes Centre for Climate Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bentsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bentsen, M., Drange, H., Furevik, T. et al. Simulated variability of the Atlantic meridional overturning circulation. Climate Dynamics 22, 701–720 (2004). https://doi.org/10.1007/s00382-004-0397-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-004-0397-x

Keywords

Navigation