Skip to main content

Advertisement

Log in

The earth system model of intermediate complexity CLIMBER-3α. Part I: description and performance for present-day conditions

  • Published:
Climate Dynamics Aims and scope Submit manuscript

A Publisher’s Erratum to this article was published on 16 December 2005

Abstract

We herein present the CLIMBER-3α Earth System Model of Intermediate Complexity (EMIC), which has evolved from the CLIMBER-2 EMIC. The main difference with respect to CLIMBER-2 is its oceanic component, which has been replaced by a state-of-the-art ocean model, which includes an ocean general circulation model (GCM), a biogeochemistry module, and a state-of-the-art sea-ice model. Thus, CLIMBER-3α includes modules describing the atmosphere, land-surface scheme, terrestrial vegetation, ocean, sea ice, and ocean biogeochemistry. Owing to its relatively simple atmospheric component, it is approximately two orders of magnitude faster than coupled GCMs, allowing the performance of a much larger number of integrations and sensitivity studies as well as longer ones. At the same time its oceanic component confers on it a larger degree of realism compared to those EMICs which include simpler oceanic components. The coupling does not include heat or freshwater flux corrections. The comparison against the climatologies shows that CLIMBER-3α satisfactorily describes the large-scale characteristics of the atmosphere, ocean and sea ice on seasonal timescales. As a result of the tracer advection scheme employed, the ocean component satisfactorily simulates the large-scale oceanic circulation with very little numerical and explicit vertical diffusion. The model is thus suited for the study of the large-scale climate and large-scale ocean dynamics. We herein describe its performance for present-day boundary conditions. In a companion paper (Part II), the sensitivity of the model to variations in the external forcing, as well as the role of certain model parameterisations and internal parameters, will be analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  • Arakawa A (1966) Computational design of long-term numerical integration of the equations of fluid motions. J Comp Phys 1:119–143

    Article  Google Scholar 

  • Bacon S, Gould WJ, Jia Y (2003) Open convection in the Irminger Sea. Geophys Res Lett 30(5):Art no 1246

  • Böning CW, Bryan FO, Holland WR, Döscher R (1996) Deep water formation and meridional overturning in a high resolution model of the North Atlantic. J Phys Oceanogr 26:1142–1164

    Article  Google Scholar 

  • Boris JP, Book DL (1973) Flux-corrected transport I. SHASTA: A fluid transport algorithm that works. J Comp Phys 11:38–69

    Article  Google Scholar 

  • Bourke RH, Garrett RP (1987) Sea ice thickness distribution in the Arctic Ocean. Cold Regions Sci Technol 13:259–280

    Article  Google Scholar 

  • Brovkin V, Bendtsen J, Claussen M, Ganopolski A, Kubatzki C, Petoukhov V, Andreev A (2000) Carbon cycle vegetation and climate dynamics in the Holocene experiments with the CLIMBER-2 model. Glob Biogeochem Cyc 16(4):1139. doi: 10.1029/2001GB001662

    Google Scholar 

  • Bryan K (1969) A numerical method for the study of the circulation of the world ocean. J Comp Phys 4:347–376

    Article  Google Scholar 

  • Bryan K (1984) Accelerating the convergence to equilibrium of ocean-climate models. J Phys Oceanogr 14:666–673

    Article  Google Scholar 

  • Claussen M, Mysak LA, Weaver AJ, Crucifix M, Fichefet T, Loutre M-F, Weber SL, Alcamo J, Alexeev VA, Berger A, Calov R, Ganopolski A, Goosse H, Lohmann G, Lunkeit F, Mokhov II, Petoukhov V, Stone P, Wang Z (2002) Earth system models of intermediate complexity: closing the gap in the spectrum of climate models. Clim Dyn 18:579–586

    Article  Google Scholar 

  • Dickinson RE, Henderson-Sellers A, Kennedy PJ, Wilson MF (1986) Biosphere–atmosphere transfer scheme (BATS) for the NCAR CCM NCAR/TN-275-STR. National Center for Atmospheric Research Boulder Colorado, p 69

  • Döös K, Webb DJ (1994) The Deacon cell and other meridional cells of the Southern Ocean. J Phys Oceanogr 24:429–442

    Article  Google Scholar 

  • Emery W, Fowler C, Maslanik J (1997) Satellite-derived maps of Arctic and Antarctic sea ice motion: 1988 to 1994. Geophys Res Lett 24(8):897–900

    Article  Google Scholar 

  • Fichefet T, Morales-Maqueda MA (1997) Sensitivity of a global sea ice model to the treatment of ice thermodynamics. J Geophys Res 102:12609–12646

    Article  Google Scholar 

  • Fichefet T, Morales-Maqueda MA (1999) Modelling the influence of snow accumulation and snow-ice formation on the seasonal cycle of the Antarctic sea-ice cover. Clim Dyn 15:251–268

    Article  Google Scholar 

  • Ganachaud A, Wunsch C (2000) Improved estimates of global ocean circulation heat transport and mixing from hydrographic data. Nature 408:453–457

    Article  PubMed  Google Scholar 

  • Gent PR, McWilliams JC (1990) Isopycnal mixing in ocean circulation models. J Phys Oceanogr 20:150–155

    Article  Google Scholar 

  • Gent PR, Willebrand J, McDougall TJ, McWilliams JC (1995) Parameterizing eddy-induced tracer transports in ocean circulation models. J Phys Oceanogr 25:463–474

    Article  Google Scholar 

  • Gerdes R, Köberle C, Willerbrand J (1991) The influence of numerical advection schemes on the results of ocean general circulation models. Clim Dyn 5:211–226

    Article  Google Scholar 

  • Gloersen P, Campbell W, Cavalieri D, Comiso J, Parkinson C, Zwally H (1992) Arctic and Antarctic sea ice 1978-1987: satellite passive-microwave observations and analysis, NASA SP-511

  • Gnanadesikan A, Toggweiler JR (1999) Constraints by silicon cycling on vertical exchange in general circulation models. Geophys Res Lett 26(13):1865–1868

    Article  Google Scholar 

  • Goosse H, Fichefet T (1999) Importance of ice-ocean interactions for the global ocean circulation: a model study. J Geophys Res 104(C10):23337–23355

    Article  Google Scholar 

  • Gregg MC, Sanford TB, Winkel DP (2003) Reduced mixing from the breaking of internal waves in equatorial waters. Nature 422:513–515

    Article  PubMed  Google Scholar 

  • Gregory JM, Mitchell JFB (1997) The climate response to CO2 of the Hadley Centre coupled AOGCM with and without flux adjustment. Geophys Res Lett 24(15):1943–1946

    Article  Google Scholar 

  • Grenfell T, Maykut G (1977) The optical properties of ice and snow in the Arctic basin. J Glaciol 18:445–463

    Google Scholar 

  • Grenfell T, Perovich DK (1984) Spectral albedos of sea ice and incident solar irradiance in the Southern Beaufort Sea. J Geophys Res 89:3573–3580

    Google Scholar 

  • Griffies SM (1997) The Gent-McWilliams skew flux. J Phys Oceanogr 28:831–841

    Article  Google Scholar 

  • Griffies SM, Boning C, Bryan FO, Chassignet EP, Gerdes R, Hasumi H, Hirst A, Treguier AM, Webb D (2000) Developments in ocean climate modelling. Ocean Model 2:123–192

    Article  Google Scholar 

  • Griffies SM, Pacanowski RC, Hallberg RW (2000) Spurious Diapycnal Mixing Associated with Advection in a z-Coordinate Ocean Model. Mon Wea Rev 128:538–564

    Article  Google Scholar 

  • Grist JP, Josey SA (2003) Inverse analysis adjustment of the SOC air-sea flux climatology using ocean heat transport constraints. J Clim 16:3274–3295

    Article  Google Scholar 

  • Grody NC (1991) Classification of snow cover and precipitationusing the special sensor microwave/imager (SSM/I). J Geophys Res 96(D4):7423–7435

    Google Scholar 

  • Hansen B, Østerhus S (2000) North Atlantic-Nordic Seas exchanges. Prog Oceanogr 45:109–208

    Article  Google Scholar 

  • Hansen J, Russell G, Rind D, Stone P, Lacis A, Lebedeff S, Duedy R, Travis L (1983) Efficient three-dimensional global models for climate studies: models I and II. Mon Wea Rev 111:609–662

    Article  Google Scholar 

  • Harrison EP, Minnis P, Barkstrom BP, Ramanathan V, Cess RD, Gibson GC (1990) Seasonal variation of cloud radiative forcing derived from the earth radiation budget experiment. J Geophys Res 95:18687–18703

    Google Scholar 

  • Hasumi H, Suginohara N (1999) Effects of locally enhanced vertical diffusivity over rough bathymetry on the world ocean circulation. J Geophys Res 104:23367–23374

    Article  Google Scholar 

  • Hautala SL, Roemmich DH, Schmitz WJ Jr (1994) Is the North Pacific in Sverdrup balance along 40°N?. J Geophys Res 99:16041–16052

    Article  Google Scholar 

  • Hibler WD (1979) A dynamic-thermodynamic sea-ice model. J Phys Oceanogr 9:815–846

    Article  Google Scholar 

  • Houghton JT, Ding Y, Griggs D, Noguer M van der Linden PJ, Xiaosu D (eds) (2001) Climate change 2001: the scienepsic basis. Contribution of Working Group I to the 3rd assessment report of the intergovernmental panel on climate change (IPCC). Cambridge University Press, Cambridge

  • Hunke EC, Dukowicz JK (1997) An elastic-viscous-plastic model for sea ice dynamics. J Phys Oceanogr 27:1849–1867

    Article  Google Scholar 

  • Josey SA (2001) A comparison of ECMWF, NCEP-NCAR, and SOC surface heat fluxes with moored buoy measurements in the subduction region of the Northeast Atlantic. J Clim 14:1789–1789

    Article  Google Scholar 

  • Josey SA, Kent EC, Taylor PK (1998) The Southampton Oceanography Centre (SOC) Ocean–atmosphere heat momentum and freshwater flux atlas. Southampton Oceanography Centre Report No 6, p 33

  • Kamenkovich IV, Marotzke J, Stone P (2000) Factors affecting heat transport in an Ocean General Circulation Model. J Phys Oceanogr 30:175–194

    Google Scholar 

  • Key R, Kozyr A, Sabine C, Lee K, Wanninkhof R, Bullister J, Feely R, Millero F, Mordy C, Peng T-H (2004) A global ocean carbon climatology: results from GLODAP. Glob Biogeochem Cyc 18:4031. doi:10.1029/2004GB002247

    Google Scholar 

  • Kistler R, Kalnay E, W WC, Saha S, White G, Woollen J, Chelliah M, Ebisuzaki W, Kanamitsu M, Kousky V, van den Dool H, Jenne R, Fiorino M (2001) The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull Am Met Soc 82:247–267

    Article  Google Scholar 

  • Lab Sea Group (1998) The Labrador Sea deep convection experiment. Bull Am Met Soc 79(10):2033–2058

    Article  Google Scholar 

  • Lambert SJ, Boer GJ (2001) CMIP1 evaluation and intercomparison of coupled climate models. Clim Dyn 17:83–106

    Article  Google Scholar 

  • Large WG, McWilliams JC, Doney SC (1994) Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev Geophys 32:363–403

    Article  Google Scholar 

  • Ledwell J, Watson A, Law C (1993) Evidence for slow mixing across the pycnocline from an open-ocean tracer release experiment. Nature 364:701–703

    Article  Google Scholar 

  • Ledwell J, Montgomery E, Polzin K, Laurent L, Schmitt R, Toole J (2000) Evidence for enhanced mixing over rough topography in the abyssal ocean. Nature 403:179–182

    Article  PubMed  Google Scholar 

  • Leemans R, Cramer W (1991) The IIASA database for mean monthly values of temperature, precipitation and cloudiness of a global terrestrial grid. Research Report RR-91-18 International Institute of Applied Systems Analyses, Laxenburg, Austria

  • Levermann A, Griesel A, Hofmann M, Montoya M, Rahmstorf S (2005) Dynamic sea level changes following changes in the thermohaline circulation. Clim Dyn 24:347–354

    Article  Google Scholar 

  • Levitus S (1982) Climatological atlas of the world ocean. NOAA Professional Paper, vol 13. US Dept of Commerce NOAA Washington DC

  • Manabe S, Stouffer RJ (1988) Two stable equilibria of a coupled ocean-atmosphere model. J Clim 1:841–866

    Article  Google Scholar 

  • Marshall J, Schott F (1999) Open-ocean convection: observations, theory, and models. Rev Geophys 37:1–64

    Article  Google Scholar 

  • Massom RA, Eicken H, Haas C, Jeffries MO, Drinkwater MR, Sturm M, Worby AP, Wu XR, Lytle VI, Ushio S, Morris K, Reid PA, Warren SG, Allison I (2001) Snow on Antarctic Sea ice. Rev Geophys 39:413–445

    Article  Google Scholar 

  • Moum J, Osborn T (1986) Mixing in the main thermocline. J Phys Oceanogr 16:1250–1259

    Article  Google Scholar 

  • Moum J, Caldwell D, Nash J, Gunderson G (2002) Observations of boundary mixing over the continental slope. J Phys Oceanogr 32:2113–2130

    Article  Google Scholar 

  • National Geophysical Data Center (1988) Data announcement 88-MGG-02 digital relief of the surface of the earth. National Oceanic and Atmospheric Administration (NOAA), Boulder, CO

  • Nowlin W, Klinck J (1986) The physics of the Antarctic Circumpolar Current. Rev Geophys 24:469

    Google Scholar 

  • Oakey N, Ruddick B, Walsh D, Burke J (1994) Turbulence and microstructure measurements during NATRE. Eos 75:130

    Article  Google Scholar 

  • Opsteegh JD, Haarsma RJ, Selten FM, Kattenberg A (1998) ECBILT: a dynamic alternative to mixed boundary conditions in ocean models. Tellus 50A:348–367

    Article  Google Scholar 

  • Pacanowski RC, Griffies SM (1999) The MOM-3 manual. Technical Report 4, GFDL Ocean Group, NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, NJ

  • Paluszkiewicz T, Romea R (1997) A one-dimensional model for the parameterization of deep convection in the ocean. Dyn Atmos and Oceans 26:95–130

    Article  Google Scholar 

  • Parkinson C, Cavalieri D, Gloersen P, Zwally H, Comiso J (1999) Arctic sea ice extents areas and trends 1978–1996. J Geophys Res 104(C9):20837

    Article  Google Scholar 

  • Peixoto J, Oort A (1992) Physics of climate. American Institute of Physics, New York

    Google Scholar 

  • Petoukhov V, Ganopolski A, Brovkin V, Claussen M, Eliseev A, Kubatzki C, Rahmstorf S (2000) CLIMBER-2: a climate system model of intermediate complexity. Part I: model description and performance for present climate. Clim Dyn 16(1):1–17

    Article  Google Scholar 

  • Polzin K, Toole J, Ledwell J, Schmitt R (1997) Spatial variability of turbulent mixing in the Abyssal Ocean. Science 276:93–96

    Article  PubMed  Google Scholar 

  • Prather MC (1986) Numerical advection by conservation of second order moments. J Geophys Res 91:6671–6681

    Google Scholar 

  • Rahmstorf S (2002) Ocean circulation and climate during the past 120,000 years. Nature 419:207–214

    Article  PubMed  Google Scholar 

  • Rahmstorf S, Ganopolski A (1999) Long-term global warming scenarios computed with an efficient coupled climate model. Clim Change 43:353–367

    Article  Google Scholar 

  • Redi MH (1982) Oceanic isopycnal mixing by coordinate rotation. J Phys Oceanogr 12:1154–1158

    Article  Google Scholar 

  • Robbins PE, Toole JM (1997) The dissolved silica budget as a constraint on the meridional overturning circulation of the Indian Ocean. Deep Sea Res 44:879–906

    Article  Google Scholar 

  • Schlitzer R (2000) Electronic atlas of WOCE hydrographic and tracer data Now Available. Eos Trans AGU 81(5):45

    Article  Google Scholar 

  • Schott F, Lee T, Zantopp R (1988) Variability of structure and transport of the Florida current in the period range from days to seasonal. J Phys Oceanogr 18:1209–1230

    Article  Google Scholar 

  • Semtner AJ (1976) A model for the thermodynamic growth of sea ice in numerical investigations of climate. J Phys Oceanogr 6:379–389

    Article  Google Scholar 

  • Shine K, Henderson-Sellers A (1985) The sensitivity of a thermodynamic sea ice model to changes in surface albedo parameterization. J Geophys Res 2243–2250:2243–2250

    Article  Google Scholar 

  • Speer K, Rintoul SR, Sloyan B (2000) The diabatic deacon cell. J Phys Oceanogr 30:3212–3222

    Article  MathSciNet  Google Scholar 

  • Stammer D, Wunsch C, Giering R, Eckert C, Heimbach P, Marotzke J, Adcroft A, Hill CN, Marshall J (2002) Global ocean circulation during 1992-1997, estimated fron ocean observations and a general circulation model. J Geophys Res 107:C9. doi: 10.1029/2001JC000888

    Google Scholar 

  • Stocker TF, Wright DG, Mysak LA (1992) A zonally averaged coupled ocean-atmosphere model for paleoclimate studies. J Clim 5:773–797

    Article  Google Scholar 

  • Talley L, Reid J, Robbins P (2003) Data-based meridional overturning streamfunctions for the Global Ocean. J Clim 16:3213

    Article  Google Scholar 

  • Timmermann A, Goosse H (2004) Is the wind-stress forcing essential for the meridional overturning circulation? Geophys Res Lett 31:L04,303. doi: 10.1029/2003GL01,877

  • Toggweiler JR, Samuels B (1993) New radiocarbon constraints on the upwelling of abyssal water to the ocean’s surface. In: Heimann M (ed) The global carbon cycle, NATO ASI Series, Springer

  • Trenberth KE, Caron JM (2000) Estimates of meridional atmosphere and ocean heat transports. J Clim 14:3433–3443

    Article  Google Scholar 

  • Weaver AJ, Eby M, Wiebe EC, Bitz CM, Duffy PB, Ewen TL, Fanning AF, Holland MM, MacFadyen A, Saenko O, Schmittner A, Wang H, Yoshimori M (2001) The UVic earth system climate model: model description climatology and applications to past present and future climates. Atmos Ocean 4:361–428

    Google Scholar 

  • Wijffels SE (2001) Ocean transport of freshwater. In: Ocean circulation and Climate. Academic, New York

    Google Scholar 

  • Wunsch C, Hu D, Grant B (1983) Mass heat salt and nutrient fluxes in the South Pacific Ocean. J Phys Oceanogr 13:725–753

    Article  Google Scholar 

Download references

Acknowledgements

Many thanks to the GFDL/Princeton Ocean Model Development Team (OMDT) for providing and assisting us with the MOM 3 model. Special thanks to Miguel Angel Morales Maqueda for the sea-ice module implementation into the model and for the substantial modifications of the MOM 3 model, without which the current performance could not have been achieved. Thanks as well to Steve Lambert for providing us with the figures from the CMIP1 intercomparison and to two anonymous reviewers for their instructive comments. This work was funded by a James S. McDonnell Foundation Centennial Fellowship (Marisa Montoya, Alexa Griesel, Matthias Hofmann), a Gary Comer Foundation Fellowship (Anders Levermann and Juliette Mignot), and through the Ramón y Cajal Programme of the Spanish Ministry for Science and Education (Marisa Montoya)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marisa Montoya.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00382-005-0061-0

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montoya, M., Griesel, A., Levermann, A. et al. The earth system model of intermediate complexity CLIMBER-3α. Part I: description and performance for present-day conditions. Clim Dyn 25, 237–263 (2005). https://doi.org/10.1007/s00382-005-0044-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-005-0044-1

Keywords

Navigation